Pseudomonas pp 509-574 | Cite as

Degradation of Chloroaromatics by Pseudomona(d)s

  • Dietmar H. Pieper
  • Walter Reineke


Chlorinated hydrocarbons comprise a large spectrum of compounds that are of enormous industrial and economic importance because of their applications and global outputs. Apart from the common feature of having one or more covalent bound chlorine atoms, these compounds show a complex diversity of behavior that is primarily characterized by their aliphatic or aromatic character and the presence of other functional groups. Nevertheless, the introduction of chlorine atom(s) into a hydrocarbon significantly influences its physicochemical and biochemical properties and the tendency for bioaccumulation and environmental persistence. Acting in combination with possible (eco)toxicological effects, these properties have pushed the chloro-chemistry into the focus of considerable debate and governmental regulatory action.


Pseudomonas Putida Phenol Hydroxylase Salicylate Hydroxylase Strain LB400 Catabolic Plasmid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abril, M.-A., Michan, C., Timmis, K.N., and Ramos, J.L., 1989, Regulator and enzyme specificities of the TOL plasmid-encoded upper pathway for degradation of aromatic hydrocarbons and expansion of the substrate range of the pathway. J. Bacteriol., 171:6782–6790.PubMedGoogle Scholar
  2. 2.
    Adrian, L., Szewzyk, U., Wecke, J., and Görisch, H., 2000, Bacterial dehalorespiration with chlorinated benzenes. Nature, 408:580–583.PubMedCrossRefGoogle Scholar
  3. 3.
    Ahmad, D., Sylvestre, M., and Sondossi, M., 1991, Subcloning of bph genes from Pseudomonas testosteroni B-356 in Pseudomonas putida and Escherichia coli: Evidence for dehalogenation during initial attack on chlorobiphenyls. Appl. Environ. Microbiol., 57:2880–2887.PubMedGoogle Scholar
  4. 4.
    Anzai, Y., Kim, H.S., Park, J.Y., Wakabayashi, H., and Oyaizu, H., 2000, Phylogenetic affiliation of the pseudomonads based on 16S rRNA sequence. Int. J. Syst. Evol. Microbiol., 50:1563–1569.PubMedCrossRefGoogle Scholar
  5. 5.
    Aoki, K., Otsuka, R., Shinke, R., and Nishina, H., 1984, Rapid biodegradation of aniline by Frateuria species ANA-18 and its aniline metabolism. Agric. Biol. Chem., 48:865–872.CrossRefGoogle Scholar
  6. 6.
    Arensdorf, J.J. and Focht, D.D., 1994, Formation of chlorocatechol meta cleavage products by a pseudomonad during metabolism of monochlorobiphenyls. Appl. Environ. Microbiol., 60:2884–2889.PubMedGoogle Scholar
  7. 7.
    Arensdorf, J.J. and Focht, D.D., 1995, A meta cleavage pathway for 4-chlorobenzoate, an intermediate in the metabolism of 4-chlorobiphenyl by Pseudomonas cepacia PI66. Appl. Environ. Microbiol., 61:443–447.PubMedGoogle Scholar
  8. 8.
    Arfmann, H.A., Timmis, K.N., and Wittich, R.M., 1997, Mineralization of 4-chlorodibenzo-furan by a consortium consisting of Sphingomonas sp. strain RW1 and Burkholderia sp. strain JWS. Appl. Environ. Microbiol., 63:3458–3462.PubMedGoogle Scholar
  9. 9.
    Armengaud, J., Happe, B., and Timmis, K.N., 1998, Genetic analysis of dioxin dioxygenase of Sphingomonas sp. strain RW1: Catabolic genes dispersed on the genome. J. Bacteriol., 180:3954–3966.PubMedGoogle Scholar
  10. 10.
    Armengaud, J., Timmis, K.N., and Wittich, R.M., 1999, A functional 4-hydroxysalicylate/hydrox-yquinol degradative pathway gene cluster is linked to the initial dibenzo-p-dioxin pathway genes in Sphingomonas sp. strain RW1. J. Bacteriol., 181:3452–3461.PubMedGoogle Scholar
  11. 11.
    Asturias, J.A. and Timmis, K.N., 1993, Three different 2,3-dihydroxybiphenyl-l,2-dioxygenase genes in the gram-positive polychlorobiphenyl-degrading bacterium Rhodococcus globerulus P6. J. Bacteriol., 175:4631–4640PubMedGoogle Scholar
  12. 12.
    Babbitt, P.C., Kenyon, G.L., Martin, B.M., Charest, H., Sylvestre, M., Scholten, J.D., Chang, K.-H., Liang, P.-H., and Dunaway-Mariano, D., 1992, Ancestry of the 4-chlorobenzoate dehalogenase: Analysis of amino acid sequence identities among families of acyl:adenyl ligases, enoyl-CoA hydratases/isomerases, and acyl-CoA thioesterases. Biochemistry, 31:5594–5604.PubMedCrossRefGoogle Scholar
  13. 13.
    Bartels, F., Backhaus, S., Moore, E.R.B., Timmis, K.N., and Hofer, B., 1999, Occurrence and expression of glutathione-S-transferase-encoding bphK genes in Burkholderia sp. strain LB400 and other biphenyl-utilizing bacteria. Microbiology, 145:2821–2834.PubMedGoogle Scholar
  14. 14.
    Bartels, L, Knackmuss, H.-J., and Reineke, W., 1984, Suicide inactivation of catechol 2,3-dioxygenase from Pseudomonas putida mt-2 by 3-halocatechols. Appl. Environ. Microbiol., 47:500–505.PubMedGoogle Scholar
  15. 15.
    Bayly, R.C., Dagley, S., and Gibson, D.T., 1966, The metabolism of cresols by species of Pseudomonas. Biochem. J., 101:293–301PubMedGoogle Scholar
  16. 16.
    Beadle, C.A. and Smith, A.R.W., 1982, The purification and properties of 2,4-dichlorophenol hydroxylase from a strain of Acinetobacter species. Eur. J. Biochem., 123:323–332.PubMedCrossRefGoogle Scholar
  17. 17.
    Bedard, D.L. and Haberl, M.L., 1990, Influence of chlorine substitution pattern on the degradation of poly chlorinated biphenyls by eight bacterial strains. Microb. Ecol., 20:87–102.CrossRefGoogle Scholar
  18. 18.
    Bedard, D.L., Haberl, MX., May, R.J., and Brennan, M.J., 1987, Evidence for novel mechanisms of polychlorinated biphenyl metabolism in Alcaligenes eutrophus H850. Appl. Environ. Microbiol., 53:1103–1112.PubMedGoogle Scholar
  19. 19.
    Beil, S., Happe, B., Timmis, K.N., and Pieper, D.H., 1997, Genetic and biochemical characterization of the broad-spectrum chlorobenzene dioxygenase from Burkholderia sp. strain PS12: Dechlorination of 1,2,4,5-tetrachlorobenzene. Eur. J. Biochem., 247:190–199.PubMedCrossRefGoogle Scholar
  20. 20.
    Beil, S., Mason, J.R., Timmis, K.N., and Pieper, D.H., 1998, Identification of chlorobenzene dioxygenase sequence elements involved in dechlorination of 1,2,4,5-tetrachlorobenzene. J. Bacteriol., 180:5520–5528.PubMedGoogle Scholar
  21. 21.
    Beil, S., Timmis, K.N., and Pieper, D.H., 1999, Genetic and biochemical analyses of the tec operon suggest a route for evolution of chlorobenzene degradation genes. J. Bacteriol., 181:341–346.PubMedGoogle Scholar
  22. 22.
    Benning, M.M., Wesenberg, G., Liu, R.Q., Taylor, K.L., Dunaway-Mariano, D., and Holden, H.M., 1998, The three-dimensional structure of 4-hydroxybenzoyl-CoA thioesterase from Pseudomonas sp. strain CBS-3. J. Biol. Chem., 273:33572–33579.PubMedCrossRefGoogle Scholar
  23. 23.
    Bertoni, G., Bolognese, R, Galli, E., and Barbieri, P., 1996, Cloning of the genes for and characterization of the early stages of toluene and o-xylene catabolism in Pseudomonas stutzeri OX1. Appl. Environ. Microbiol., 62:3704–3711.PubMedGoogle Scholar
  24. 24.
    Bertoni, G., Martino, M., Galli, E., and Barbieri, P., 1998, Analysis of the gene cluster encoding toluene/o-xylene monooxygenäse from Pseudomonas stutzeri OX1. Appl. Environ. Microbiol., 64:3626–3632.PubMedGoogle Scholar
  25. 25.
    Bianchi, D., Bosetti, A., Cidaria, D., Bernardi, A., Gagliardi, I., and Amico, P.D., 1997, Oxidation of polycyclic aromatic heterocycles by Pseudomonas fluorescens TTC1. Appl. Microbiol. Biotechnol., 47:596–599CrossRefGoogle Scholar
  26. 26.
    Blasco, R., Mallavarapu, M., Wittich, R.M., Timmis, K.N., and Pieper, D.H., 1997, Evidence that formation of protoanemonin from metabolites of 4-chlorobiphenyl degradation negatively affects the survival of 4-chlorobiphenyl-cometabolizing microorganisms. Appl. Environ. Microbiol., 63:427–434.PubMedGoogle Scholar
  27. 27.
    Blasco, R., Wittich, R.-M., Mallavarapu, M., Timmis, K.N., and Pieper, D.H., 1995, From xenobiotic to antibiotic. Formation of protoanemonin from 4-chlorocatechol by enzymes of the 3-oxoadipate pathway. J. Biol. Chem., 270:29229–29235.PubMedCrossRefGoogle Scholar
  28. 28.
    Bollag, J.-M., Briggs, G.G., Dawson, J.E., and Alexander, M., 1968, 2,4-D metabolism: Enzymatic degradation of chlorocatechol. J. Agric. Food Chem., 16:829–833.CrossRefGoogle Scholar
  29. 29.
    Bosch, R., Garcia-Valdes, E., and Moore, E.R.B., 1999, Genetic characterization and evolutionary implications of a chromosomally encoded naphthalene-degradation upper pathway from Pseudomonas stutzeri AN10. Gene, 236:149–157.PubMedCrossRefGoogle Scholar
  30. 30.
    Bosch, R., Moore, E.R.B., Garcia-Valdes, E., and Pieper, D.H., 1999, NahW, a novel, inducible salicylate hydroxylase involved in mineralization of naphthalene by Pseudomonas stutzeri AN10. J. Bacteriol., 181:2315–2322.PubMedGoogle Scholar
  31. 31.
    Bott, T.L. and Kaplan, L.A., 2002, Autecological properties of 3-chlorobenzoate-degrading bacteria and their population dynamics when introduced into sediments. Microb. Ecol., 43:199–216.PubMedCrossRefGoogle Scholar
  32. 32.
    Boyle, A.W., Silvin, C.J., Hassett, J.P., Nakas, J.P., and Tanenbaum, S.W., 1992, Bacterial PCB biodegradation. Biodegradation, 3:285–298.CrossRefGoogle Scholar
  33. 33.
    Brazil, G.M., Kenefick, L., Callanan, M., Haro, A., de Lorenzo, V., Dowling, D.N., and O’Gara, F., 1995, Construction of a rhizosphere pseudomonad with potential to degrade polychlorinated biphenyls and detection of bph gene expression in the rhizosphere. Appl. Environ. Microbiol., 61:1946–1952.PubMedGoogle Scholar
  34. 34.
    Brenner, V., Hernandez, B.S., and Focht, D.D., 1993, Variation in chlorobenzoate catabolism by Pseudomonas putida Plll as a consequence of genetic alterations. Appl. Environ. Microbiol., 59:2790–2794.PubMedGoogle Scholar
  35. 35.
    Brinkmann, U. and Reineke, W., 1992, Degradation of chlorotoluenes by in vivo constructed hybrid strains: Problems of enzyme specificity, induction and prevention of meta-pathway. FEMS Microbiol. Lett., 96:81–88.CrossRefGoogle Scholar
  36. 36.
    Broderick, J.B. and O’Halloran, T.V, 1991, Overproduction, purification, and characterization of chlorocatechol dioxygenase, a non-heme iron dioxygenase with broad substrate tolerance. Biochemistry, 30:7349–7358.PubMedCrossRefGoogle Scholar
  37. 37.
    Brunsbach, F.R. and Reineke, W., 1993, Degradation of chloroanilines in soil slurry by specialized organisms. Appl. Microbiol. Biotechnol., 40:402–407.CrossRefGoogle Scholar
  38. 38.
    Bunge, M., Adrian, L., Kraus, A., Opel, M., Lorenz, W.G., Andreesen, J.R., Görisch, H., and Lechner, U., 2003, Reductive dehalogenation of chlorinated dioxins by an anaerobic bacterium. Nature, 421:357–360.PubMedCrossRefGoogle Scholar
  39. 39.
    Byrne, A.M., Kukor, J.J., and Olsen, R.H., 1995, Sequence analysis of the gene cluster encoding toluene-3-monooxygenase from Pseudomonas pickettii PKO1. Gene, 154:65–70.PubMedCrossRefGoogle Scholar
  40. 40.
    Cai, M. and Xun, L.Y., 2002, Organization and regulation of pentachlorophenol-degrading genes in Sphingobium chlorophenolicum ATCC 39723. J. Bacteriol., 184:4672–4680.PubMedCrossRefGoogle Scholar
  41. 41.
    Cane, P.A. and Williams, P.A., 1982, The plasmid-coded metabolism of naphthalene and 2-methylnaphthalene in Pseudomonas strains: Phenotypic changes correlated with structural modification of the plasmid pWW60-l. J. Gen. Microbiol., 128:2281–2290.Google Scholar
  42. 42.
    Cerniglia, C., Morgan, J., and Gibson, D.T., 1979, Bacterial and fungal oxidation of dibenzo-furan. Biochem. J., 180:175–185.PubMedGoogle Scholar
  43. 43.
    Chae, J., Kim, Y., Kim, Y.C., Zylstra, G.J., and Kim, C.K., 2000, Genetic structure and functional implication of the fcb gene cluster for hydrolytic dechlorination of 4-chlorobenzoate from Pseudomonas sp. DJ-12. Gene, 258:109–116.PubMedCrossRefGoogle Scholar
  44. 44.
    Chang, K.H., Liang, PH., Beck, W., Scholten, J.D., and Dunaway-Mariano, D., 1992, Isolation and characterization of the three polypeptide components of 4-chlorobenzoate dehalogenase from Pseudomonas sp. strain CBS-3. Biochemistry, 31:5605–5610.PubMedCrossRefGoogle Scholar
  45. 45.
    Chapman, P.J., 1979, Degradation mechanisms. In A.W. Bourquin and P.H. Pritchard (eds), Microbial degradation of pollutants in marine environments. EPA-600/9-79-012 Environmental Protection Agency, Gulf Breeze, FL, USA.Google Scholar
  46. 46.
    Chatterjee, D.K. and Chakrabarty, A.M., 1983, Genetic homology between independently isolated chlorobenzoate-degradative plasmids. J. Bacteriol., 153:532–534.PubMedGoogle Scholar
  47. 47.
    Chatterjee, D.K., Kellogg, ST., Hamada, S., and Chakrabarty, A.M., 1981, Plasmid specifying total degradation of 3-chlorobenzoate by a modified ortho pathway. J. Bacteriol., 146:639–646.PubMedGoogle Scholar
  48. 48.
    Chatterjee, D.K., Kellogg, S.T., Watkins, D.R., and Chakrabarty, A.M., 1981, Plasmids in the biodegradation of chlorinated aromatic compounds. In S.B. Levy, R.C. Clowes, and E.L. Koenig (eds), Molecular Biology, Pathogenicity, and Ecology of Bacterial Plasmids, pp. 519–528. Plenum Press, New York.CrossRefGoogle Scholar
  49. 49.
    Coco, W.M., Rothmel, R.K., Henikoff, S., and Chakrabarty, A.M., 1993, Nucleotide sequence and initial functional characterization of the clcR gene encoding a LysR family activator of the clcABD chlorocatechol operon in Pseudomonasputida. J. Bacteriol., 175:417–427.PubMedGoogle Scholar
  50. 50.
    Coschigano, P.W., Häggblom, M.M., and Young, L.Y., 1994, Metabolism of both 4-chlorobenzoate and toluene under denitrifying conditions by a constructed bacterial strain. Appl. Environ. Microbiol., 60:989–995.PubMedGoogle Scholar
  51. 51.
    Cowles, C.E., Nichols, N.N., and Harwood, C.S., 2000, BenR, a XylS homologue, regulates three different pathways of aromatic acid degradation in Pseudomonas putida. J. Bacteriol., 182:6339–6346.PubMedCrossRefGoogle Scholar
  52. 52.
    Crawford, R.L. and Mohn, W.W., 1985, Microbiological removal of pentachlorophenol from soil using a Flavobacterium. Enzyme Microb. Technol., 7:617–620.CrossRefGoogle Scholar
  53. 53.
    Crooks, G.P., Xu, L., Barkley, R.M., and Copley, S.D., 1995, Exploration of possible mechanisms for 4-chlorobenzoyl Co A dehalogenase: Evidence for an aryl-enzyme intermediate. J.Am. Chem. Soc., 117:10791–10798.CrossRefGoogle Scholar
  54. 54.
    Cutter, L.A., Watts, J.E.M., Sowers, K.R., and May, H.D., 2001, Identification of a microorganism that links its growth to the reductive dechlorination of 2,3,5,6-chlorobiphenyl. Environ. Microbiol., 3:699–709.PubMedCrossRefGoogle Scholar
  55. 55.
    Czaran, T.L., Hoekstra, R.F., and Pagie, L., 2002, Chemical warfare between microbes promotes biodiversity. Proc. Natl. Acad. Sci. USA, 99:786–790.PubMedCrossRefGoogle Scholar
  56. 56.
    Dai, M.H., Rogers, J.B., Warner, J.R., and Copley, S.D., 2003, A previously unrecognized step in pentachlorophenol degradation in Sphingobium chlorophenolicum is catalyzed by tetra-chlorobenzoquinone reductase (PcpD). J. Bacteriol., 185:302–310.PubMedCrossRefGoogle Scholar
  57. 57.
    Dai, S., Vaillancourt, EH., Maroufi, H., Drouin, N.M., Neau, D.B., Snieckus, V., Nolin, J.T., and Eltis, L.D., 2002, Identification and analysis of a bottleneck in PCB degradation. Nature Struct. Biol., 9:934–939.PubMedCrossRefGoogle Scholar
  58. 58.
    Daubaras, D.L., Saido, K., and Chakrabarty, A.M., 1996, Purification of hydroxyquinol 1,2-dioxygenase and maleylacetate reductase: The lower pathway of 2,4,5-trichlorophenoxyacetic acid metabolism by Burkholderia cepacia AC1100. Appl. Environ. Microbiol., 62:4276–4279.PubMedGoogle Scholar
  59. 59.
    de Bont, J.A.M., Vorage, M.A.J.W., Hartmans, S., and van den Tweel, W.J.J., 1986, Microbial degradation of 1,3-dichlorobenzene. Appl. Environ. Microbiol., 52:677–680.PubMedGoogle Scholar
  60. 60.
    De Lipthay, J.R., Tuxen, N., Johnsen, K., Hansen, L., Albrechtsen, H.J., Bjerg, PL., and Aamand, J., 2003, In situ exposure to low herbicide concentrations affects microbial population composition and catabolic gene frequency in an aerobic shallow aquifer. Appl. Environ. Microbiol., 69:461–467.PubMedCrossRefGoogle Scholar
  61. 61.
    Dehmel, U., Engesser, K.-H., Timmis, K.N., and Dwyer, DE, 1995, Cloning, nucleotide sequence, and expression of the gene encoding a novel dioxygenase involved in metabolism of carboxy-diphenyl ethers in Pseudomonas pseudoalcaligenes POB310. Arch. Microbiol., 163:35–41.PubMedCrossRefGoogle Scholar
  62. 62.
    Dejonghe, W., Goris, J., Dierickx, A., de Dobbeleer, V., Crul, K., de Vos, P., Verstraete, W., and Top, E.M., 2002, Diversity of 3-chloroaniline and 3,4-dichloroaniline degrading bacteria isolated from three different soils and involvement of their plasmids in chloroaniline degradation. FEMS Microbiol. Ecol., 42:315–325.PubMedCrossRefGoogle Scholar
  63. 63.
    Dejonghe, W., Goris, J., El Fantroussi, S., Hofte, M., de Vos, P., Verstraete, W., and Top, E.M., 2000, Effect of dissemination of 2,4-dichlorophenoxyacetic acid (2,4-D) degradation plasmids on 2,4-D degradation and on bacterial community structure in two different soil horizons. Appl. Environ. Microbiol., 66:3297–3304.PubMedCrossRefGoogle Scholar
  64. 64.
    Don, R.H. and Pemberton, J.M., 1985, Genetic and physical map of the 2,4-dichlorophe-noxyacetic acid-degradative plasmid pJP4. J. Bacteriol., 161:466–468.PubMedGoogle Scholar
  65. 65.
    Don, R.H. and Pemberton, J.M., 1981, Properties of six pesticide degradation plasmids isolated from Alcaligenes paradoxus and Alcaligenes eutrophus. J. Bacteriol., 145:681–686PubMedGoogle Scholar
  66. 66.
    Dong, J., Carey, PR., Wei, Y.S., Luo, L.S., Lu, X.F., Liu, R.Q., and Dunaway-Mariano, D., 2002, Raman evidence for Meisenheimer complex formation in the hydrolysis reactions of 4-fluorobenzoyl-and 4-nitrobenzoyl-coenzyme a catalyzed by 4-chlorobenzoyl-coenzyme A dehalogenase. Biochemistry, 41:7453–7463.PubMedCrossRefGoogle Scholar
  67. 67.
    Dorn, E., Hellwig, M., Reineke, W., and Knackmuss, H.-J., 1974, Isolation and characterization of a 3-chlorobenzoate degrading pseudomonad. Arch. Microbiol., 99:61–70.PubMedCrossRefGoogle Scholar
  68. 68.
    Dorn, E. and Knackmuss, H.-J., 1978, Chemical structure and biodegradability of halogenated aromatic compounds. Substituent effects on 1,2-dioxygenation of catechol. Biochem. J., 174:85–94.PubMedGoogle Scholar
  69. 69.
    Dorn, E. and Knackmuss, H.-J., 1978, Chemical structure and biodegradability of halogenated aromatic compounds. Two catechol 1,2-dioxygenases from a 3-chlorobenzoate-grown pseudomonad. Biochem. J., 174:73–84.PubMedGoogle Scholar
  70. 70.
    Ederer, M.M., Crawford, R.L., Herwig, R.P, and Orser, C.S., 1997, PCP degradation is mediated by closely related strains of the genus Sphingomonas. Mol. Ecol., 6:39–49.PubMedCrossRefGoogle Scholar
  71. 71.
    Edgehill, R.U. and Finn, R.K., 1982, Isolation, characterization and growth kinetics of bacteria metabolizing pentachlorophenol. Appl. Microbiol. Biotechnol., 16:179–184.CrossRefGoogle Scholar
  72. 72.
    Egland, P.G., Gibson, J., and Harwood, C.S., 2001, Reductive, coenzyme A-mediated pathway for 3-chlorobenzoate degradation in the phototrophic bacterium Rhodopseudomonas palustris. Appl. Environ. Microbiol., 67:1396–1399.PubMedCrossRefGoogle Scholar
  73. 73.
    Eisner, A., Löffler, F., Miyashita, K., Müller, R., and Lingens, F., 1991, Resolution of 4-chlorobenzoate dehalogenase from Pseudomonas sp. strain CBS3 into three components. Appl. Environ. Microbiol., 57:324–326.Google Scholar
  74. 74.
    Eltis, L.D. and Bolin, J.T., 1996, Evolutionary relationships among extradiol dioxygenases. J. Bacteriol., 178:5930–5937.PubMedGoogle Scholar
  75. 75.
    Engelberts, K., Schmidt, E., and Reineke, W., 1989, Degradation of o-toluate by Pseudomonas sp. strain WR401. FEMS Microbiol. Lett., 59:35–38.CrossRefGoogle Scholar
  76. 76.
    Engesser, K.-H., Schmidt, E., and Knackmuss, H.-J., 1980, Adaptation of Alcaligenes eutrophus B9 and Pseudomonas sp. B13 to 2-fluorobenzoate as growth substrate. Appl Environ. Microbiol., 39:68–73.PubMedGoogle Scholar
  77. 77.
    Engesser, K.H., Auling, G., Busse, J., and Knackmuss, H.-J., 1990, 3-Fluorobenzoate enriched bacterial strain FLB 300 degrades benzoate and all three isomeric monofluorobenzoates. Arch. Microbiol., 153:193–199.CrossRefGoogle Scholar
  78. 78.
    Engesser, K.H., Fietz, W., Fischer, P., Schulte, P., and Knackmuss, H.-J., 1990, Dioxygenolytic cleavage of aryl ether bonds: l,2-dihydroxy-l,2-dihydroxy-4-carboxybenzophenone as evidence for initial 1,2-dioxygenation in 3-and 4-carboxy biphenyl ether degradation. FEMS Microbiol. Lett., 69:317–322.CrossRefGoogle Scholar
  79. 79.
    Engesser, K.H. and Schulte, P., 1989, Degradation of 2-bromo-, 2-chloro-and 2-fluorobenzoate by Pseudomonas putida CLB 250. FEMS Microbiol. Lett., 60:143–148.CrossRefGoogle Scholar
  80. 80.
    Engesser, K.H., Strubel, V., Christoglou, K., Fischer, P., and Rast, H.G., 1989, Dioxygenolytic cleavage of aryl ether bonds: l,10-dihydro-l,10-dihydroxyfluoren-9-one, a novel arene dihydrodiol as evidence for angular dioxygenation of dibenzofuran. FEMS Microbiol Lett., 65:205–210.CrossRefGoogle Scholar
  81. 81.
    Erickson, B.D. and Mondello, F.J., 1993, Enhanced biodegradation of polychlorinated biphenyls after site-directed mutagenesis of a biphenyl dioxygenase gene. Appl. Environ. Microbiol., 59:3858–3862.PubMedGoogle Scholar
  82. 82.
    Erickson, B.D. and Mondello, F.J., 1992, Nucleotide sequencing and transcriptional mapping of the genes encoding biphenyl dioxygenase, a multicomponent polychlorinated-biphenyldegrading enzyme in Pseudomonas strain LB400. J. Bacteriol., 174:2903–2912.PubMedGoogle Scholar
  83. 83.
    Eulberg, D., Kourbatova, E.M., Golovleva, L.A., and Schlömann, M., 1998, Evolutionary relationship between chlorocatechol catabolic enzymes from Rhodococcus opacus 1CP and their counterparts in proteobacteria: Sequence divergence and functional convergence. J. Bacteriol., 180:1082–1094.PubMedGoogle Scholar
  84. 84.
    Evans, W.C., Smith, B.S.W., Moss, P., and Fernley, H.N., 1971, Bacterial metabolism of 4-chlorophenoxyacetate. Biochem. J., 122:509–517.PubMedGoogle Scholar
  85. 85.
    Feigel, B.J. and Knackmuss, H.-J., 1993, Syntrophic interactions during degradation of 4-aminobenzenesulfonic acid by a two species bacterial culture. Arch. Microbiol., 159: 124–130.PubMedCrossRefGoogle Scholar
  86. 86.
    Fetzner, S., Müller, R., and Lingens, F., 1989, Degradation of 2-chlorobenzoate by Pseudomonas cepacia 2CBS. Biol Chem. Hoppe Seyler, 370:1173–1182.PubMedCrossRefGoogle Scholar
  87. 87.
    Fetzner, S., Müller, R., and Lingens, F., 1992, Purification and some properties of 2-haloben-zoate 1,2-dioxygenase, a two component enzyme system from Pseudomonas cepacia 2CBS. J. Bacteriol., 174:279–290.PubMedGoogle Scholar
  88. 88.
    Fortnagel, P., Harms, H., Wittich, R.-M., Krohn, S., Meyer, H., Sinnwell, V., Wilkes, H., and Francke, W., 1990, Metabolism of dibenzofuran by Pseudomonas sp. strain HH69 and the mixed culture HH27. Appl. Environ. Microbiol., 56:1148–1156.PubMedGoogle Scholar
  89. 89.
    Frantz, B. and Chakrabarty, A.M., 1987, Organization and nucleotide sequence determination of a gene cluster involved in 3-chlorocatechol degradation. Proc. Natl. Acad. Sci. USA, 84:4460–4464.PubMedCrossRefGoogle Scholar
  90. 90.
    Fries, M.R., Zhou, J., Chee-Sanford, J., and Tiedje, J.M., 1994, Isolation, characterization and distribution of denitrifying toluene degraders from a variety of habitats. Appl. Environ. Microbiol., 60:2802–2810.PubMedGoogle Scholar
  91. 91.
    Fuenmayor, S.L., Wild, M., Boyes, A.L., and Williams, P.A., 1998, A gene cluster encoding steps in conversion of naphthalene to gentisate in Pseudomonas sp. strain U2. J. Bacteriol., 180:2522–2530.PubMedGoogle Scholar
  92. 92.
    Fujii, T., Takeo, M., and Maeda, Y., 1997, Plasmid-encoded genes specifying aniline oxidation from Acinetobacter sp. strain YAA. Microbiology, 143:93–99.PubMedCrossRefGoogle Scholar
  93. 93.
    Fukuda, K., Nagata, S., and Taniguchi, H., 2002, Isolation and characterization of dibenzofuran-degrading bacteria. FEMS Microbiol. Lett., 208:179–185.PubMedCrossRefGoogle Scholar
  94. 94.
    Fukuda, M., Yasukochi, Y., Kikuchi, Y., Nagata, Y., Kimbara, K., Horiuchi, H., Takagi, M., and Yano, K., 1994, Identification of the bphA and bphB genes of Pseudomonas sp. strain KKS102 involved in degradation of biphenyl and polychlorinated biphenyls. Biochem. Biophys. Res. Commun., 202:850–856.PubMedCrossRefGoogle Scholar
  95. 95.
    Fukumori, F. and Saint, C.P., 2001, Nucleotide sequences and regulational analysis of genes involved in conversion of aniline to catechol in Pseudomonas putida UCC22(pTDNl). J. Bacteriol., 179:399–408.Google Scholar
  96. 96.
    Fulthorpe, R.R. and Wyndham, R.C., 1991, Transfer and expression of the catabolic plasmid pBRC60 in wild bacterial recipients in a freshwater ecosystem. Appl. Environ. Microbiol., 57:1546–1553.PubMedGoogle Scholar
  97. 97.
    Furukawa, K., 2000, Engineering dioxygenases for efficient degradation of environmental pollutants. Curr. Opin. Biotechnol., 11:244–249.PubMedCrossRefGoogle Scholar
  98. 98.
    Furukawa, K., Hirose, J., Suyama, A., Zaiki, T., and Hayashida, S., 1993, Gene components responsible for discrete substrate specifity in the metabolism of biphenyl (bph operon) and toluene (tod operon). J. Bacteriol., 175:5224–5232.PubMedGoogle Scholar
  99. 99.
    Furukawa, K. and Miyazaki, T., 1986, Cloning of a gene cluster encoding biphenyl and chlorobiphenyl degradation in Pseudomonas pseudoalcaligenes. J. Bacteriol., 166:392–398PubMedGoogle Scholar
  100. 100.
    Furukawa, K., Tomizuka, N., and Kamibayashi, A., 1979, Effect of chlorine substitution on the bacterial metabolism of various polychlorinated biphenyls. Appl. Environ. Microbiol., 38:301–310.PubMedGoogle Scholar
  101. 101.
    Futamata, H., Harayama, S., and Watanabe, K., 2001, Group-specific monitoring of phenol hydroxylase genes for a functional assessment of phenol-stimulated trichloroethylene bioremediation. Appl. Environ. Microbiol., 67:4671–4677.PubMedCrossRefGoogle Scholar
  102. 102.
    Gartemann, K. and Eichenlaub, R., 2001, Isolation and characterization of IS 1409, an insertion element of 4-chlorobenzoate-degrading Arthrobacter sp. strain TM1, and development of a system for transposon mutagenesis. J. Bacteriol., 183:3729.PubMedCrossRefGoogle Scholar
  103. 103.
    Gaunt, J.K. and Evans, W.C., 1971, Metabolism of 4-chloro-2-methylphenoxyacetate by a soil pseudomonad. Biochem. J., 122:533–542.PubMedGoogle Scholar
  104. 104.
    Ghiorse, W.C. and Wilson, J.T., 1988, Microbial ecology of the terrestrial subsurface. Adv. Appl. Microbiol., 33:107–172.PubMedCrossRefGoogle Scholar
  105. 105.
    Gibson, D.T., Hensley, M., Yoshioka, H., and Mabry, T.J., 1970, Formation of (+)-cis-2,3-dihydroxy-l-methylcyclohexa-4,6-diene from toluene by Pseudomonas putida. Biochemistry, 9:1626–1630.PubMedCrossRefGoogle Scholar
  106. 106.
    Gibson, D.T. and Parales, R.E., 2000, Aromatic hydrocarbon dioxygenases in environmental biotechnology. Curr. Opin. Biotechnol., 11:236–243.PubMedCrossRefGoogle Scholar
  107. 107.
    Göbel, M., Kassel-Cati, K., Schmidt, E., and Reineke, W., 2002, Degradation of aromatics and chloroaromatics by Pseudomonas sp. strain B13: Cloning, characterization, and analysis of sequences encoding 3-oxoadipate: succinyl-coenzyme A (CoA) transferase and 3-oxoadipyl-CoA thiolase. J. Bacteriol., 184:216–223.PubMedCrossRefGoogle Scholar
  108. 108.
    Goldman, P., Milne, G.W.A., and Pignataro, M.T., 1967, Fluorine containing metabolites formed from 2-fluorobenzoic acid by Pseudomonas species. Arch. Biochem. Biophys., 118:178–184.CrossRefGoogle Scholar
  109. 109.
    Goris, J., Dejonghe, W., Falsen, E., de Clerck, E., Geeraerts, B., Willems, A., Top, E.M., Vandamme, P., and de Vos, P., 2002, Diversity of transconjugants that acquired plasmid pJP4 or pEMTl after inoculation of a donor strain in the A-and B-horizon of an agricultural soil and description of Burkholderia hospita sp. nov. and Burkholderia terricola sp. nov. Syst. Appl. Microbiol., 25:340–352.PubMedCrossRefGoogle Scholar
  110. 110.
    Haak, B., Fetzner, S., and Lingens, F., 1995, Cloning, nucleotide sequence, and expression of the plasmid-encoded genes for the two-component 2-halobenzoate 1,2-dioxygenase from Pseudomonas cepacia 2CBS. J. Bacteriol., 177:667–675.PubMedGoogle Scholar
  111. 111.
    Habe, H., Ashikawa, Y., Saiki, Y., Yoshida, T., Nojiri, H., and Omori, T., 2002, Sphingomonas sp. strain KA1, carrying a carbazole dioxygenase gene homologue, degrades chlorinated dibenzo-p-dioxins in soil. FEMS Microbiol. Lett., 211:43–49.PubMedCrossRefGoogle Scholar
  112. 112.
    Habe, H., Chung, J.S., Lee, J.H., Kasuga, K., Yoshida, T., Nojiri, H., and Omori, T., 2001, Degradation of chlorinated dibenzofurans and dibenzo-/?-dioxins by two types of bacteria having angular dioxygenases with different features. Appl. Environ. Microbiol., 67:3610–3617.PubMedCrossRefGoogle Scholar
  113. 113.
    Haddock, J.D., Horton, J.R., and Gibson, D.T., 1995, Dihydroxylation and dechlorination of chlorinated biphenyls by purified biphenyl 2,3-dioxygenase from Pseudomonas sp. strain LB400. J. Bacteriol., 177:20–26.PubMedGoogle Scholar
  114. 114.
    Häggblom, M.M., Rivera, M.D., and Young, L.Y., 1996, Anaerobic degradation of halo-genated benzoic acids coupled to denitrification observed in a variety of sediment and soil samples. FEMS Microbiol. Lett., 144:213–219.PubMedCrossRefGoogle Scholar
  115. 115.
    Haigler, B.E., Nishino, S.F., and Spain, J.C., 1988, Degradation of 1,2-dichlorobenzene by a Pseudomonas sp. Appl. Environ. Microbiol., 54:294–301PubMedGoogle Scholar
  116. 116.
    Halden, R.U., Peters, E.G., Halden, B.G., and Dwycr, D.F., 2000, Transformation of mono-and dichlorinated phenoxybenzoates by phenoxybenzoate-dioxygenase in Pseudomonas pseudoalcaligenes POB310 and a modified diarylether-metabolizing bacterium. Biotechnol. Bioeng., 69:107–112.PubMedCrossRefGoogle Scholar
  117. 117.
    Happe, B., Eltis, L., Poth, H., Hedderich, R., and Timmis, K.N., 1993, Characterization of 2,2′,3-trihydroxybiphenyl dioxygenase, an extradiol dioxygenase from the dibenzofuran-and dibenzo-p-dioxin-degrading bacterium Sphingomonas sp. strain RW1. J. Bacteriol., 175:7313–7320.PubMedGoogle Scholar
  118. 118.
    Harayama, S. and Kok, M., 1992, Functional and evolutionary relationships among diverse oxygenases. Annu. Rev. Microbiol., 46:565–601.PubMedCrossRefGoogle Scholar
  119. 119.
    Harayama, S., Rekik, M., Bairoch, A., Neidle, E.L., and Ornston, L.N., 1991, Potential DNA slippage structures acquired during evolutionary divergence of Acinetobacter calcoaceticus chromosomal benABC and Pseudomonas putida TOL pWWO plasmid xylXYZ, genes encoding benzoate dioxygenases. J. Bacteriol., 173:7540–7548.PubMedGoogle Scholar
  120. 120.
    Harms, G., Rabus, R., and Widdel, F., 1999, Anaerobic oxidation of the aromatic plant hydrocarbon p-cymene by newly isolated denitrifying bacteria. Arch. Microbiol., 172:303–312.PubMedCrossRefGoogle Scholar
  121. 121.
    Hartmann, J., Engelberts, K., Nordhaus, B., Schmidt, E., and Reineke, W., 1989, Degradation of 2-chlorobenzoate by in vivo constructed hybrid pseudomonads. FEMS Microbiol. Lett., 61:17–22.CrossRefGoogle Scholar
  122. 122.
    Harwood, C.S. and Parales, R.E., 1996, The β-ketoadipate pathway and the biology of self-identity. Annu. Rev. Microbiol., 50:553–590.PubMedCrossRefGoogle Scholar
  123. 123.
    Havel, J. and Reineke, W., 1992, Degradation of Aroclor 1221 and survival of strains in soil microcosms. Appl. Microbiol. Biotechnol., 38:129–134.CrossRefGoogle Scholar
  124. 124.
    Havel, J. and Reineke, W., 1991, Total degradation of various chlorobiphenyls by cocultures and in vivo constructed hybrid pseudomonads. FEMS Microbiol. Lett., 78:163–170.Google Scholar
  125. 125.
    Hayase, N., Taira, K., and Furukawa, K., 1990, Pseudomonas putida KF715 bphABCD operon encoding biphenyl and polychlorinated biphenyl degradation: Cloning analysis, and expression in soil bacteria. J. Bacteriol., 172:1160–1164.PubMedGoogle Scholar
  126. 126.
    Hein, P., Powlowski, J., Barriault, D, Hurtubise, Y., Ahmad, D., and Sylvestre, M., 1998, Biphenyl-associated meta-cleavage dioxygenases from Comamonas testosteroni B-356. Can. J. Microbiol., 44:42–49.PubMedGoogle Scholar
  127. 127.
    Heiss, G., Stolz, A., Kuhm, A.E., Müller, C., Klein, J., Altenbuchner, J., and Knackmuss, H.J., 1995, Characterization of a 2,3-dihydroxybiphenyl dioxygenase from the naphthalenesulfonate-degrading bacterium strain BN6. J. Bacteriol., 177:5865–5871.PubMedGoogle Scholar
  128. 128.
    Hernandez, B.S., Higson, F.K., Kondrat, R., and Focht, D.D., 1991, Metabolism of and inhibition by chlorobenzoates in Pseudomonas putida Plll. Appl. Environ. Microbiol., 57: 3361–3366.PubMedGoogle Scholar
  129. 129.
    Hickey, W.J., Brenner, V., and Focht, D.D., 1992, Mineralization of 2-chloro-and 2,5-dichlorobiphenyl by Pseudomonas sp. strain UCR2. FEMS Microbiol. Lett., 98:175–180.CrossRefGoogle Scholar
  130. 130.
    Hickey, W.J. and Focht, D.D., 1990, Degradation of mono-, di-, and trihalogenated benzoic acids by Pseudomonas aeruginosa JB2. Appl Environ. Microbiol., 56:3842–3850.PubMedGoogle Scholar
  131. 131.
    Hickey, W.J. and Sabat, G., 2001, Integration of matrix-assisted laser desorption ionization-time of flight mass spectrometry and molecular cloning for the identification and functional characterization of mobile ortho-halobenzoate oxygenase genes in Pseudomonas aeruginosa strain JB2. Appl Environ. Microbiol., 67:5648–5655.PubMedCrossRefGoogle Scholar
  132. 132.
    Hickey, W.J., Sabat, G., Yuroff, A.S., Arment, A.R., and Perez-Lesher, J., 2001, Cloning, nucleotide sequencing, and functional analysis of a novel, mobile cluster of biodegradation genes from Pseudomonas aeruginosa strain JB2. Appl Environ. Microbiol., 67:4603–4609.PubMedCrossRefGoogle Scholar
  133. 133.
    Higson, F.K. and Focht, D.D., 1990, Degradation of 2-bromobenzoic acid by a strain of Pseudomonas aeruginosa. Appl Environ. Microbiol., 56:1615–1619PubMedGoogle Scholar
  134. 134.
    Higson, F.K. and Focht, D.D., 1992, Utilization of 3-chloro-2-methylbenzoic acid by Pseudomonas cepacia MB2 through the meta fission pathway. Appl Environ. Microbiol., 58:2501–2504.PubMedGoogle Scholar
  135. 135.
    Hinteregger, C., Loidl, M., and Streichsbier, F., 1992, Characterization of isofunctional ring-cleavage enzymes in aniline and 3-chloroaniline degradation by Pseudomonas acidovorans CA28. FEMS Microbiol. Lett., 97:261–266.CrossRefGoogle Scholar
  136. 136.
    Hirose, J., Suyama, A., Hayashida, S., and Furukawa, K., 1994, Construction of hybrid biphenyl (bph) and toluene (tod) genes for functional analysis of aromatic ring dioxyge-nases. Gene, 138:27–33.PubMedCrossRefGoogle Scholar
  137. 137.
    Hofer, B., Backhaus, S., and Timmis, K.N., 1994, The biphenyl/polychlorinated biphenyl-degradation locus (bph) of Pseudomonas sp. LB400 encodes four additional metabolic enzymes. Gene, 144:9–16.PubMedCrossRefGoogle Scholar
  138. 138.
    Hollender, J., Dort, W., and Hopp, J., 1994, Regulation of chloro-and ethylphenol degradation in Comamonas testosteroni JH5. Appl. Environ. Microbiol., 60:2330–2338.PubMedGoogle Scholar
  139. 139.
    Hollender, J., Hopp, J., and Dort, W., 1997, Degradation of 4-chlorophenol via the meta cleavage pathway by Comamonas testosteroni JH5. Appl. Environ. Microbiol., 63:4567–4572.PubMedGoogle Scholar
  140. 140.
    Hong, H.B., Chang, Y.S., Nam, I.H., Fortnagel, P., and Schmidt, S., 2002, Biotransformation of 2,7-dichloro-and l,2,3,4-tetrachlorodibenzo-p-dioxin by Sphingomonas wittichii RW1. Appl Environ. Microbiol., 68:2584–2588.PubMedCrossRefGoogle Scholar
  141. 141.
    Hooper, S.W., Dockendorf, T.C., and Sayler, G.S., 1989, Characteristics and restriction analysis of the 4-chlorobiphenyl catabolic plasmid, pSS50. Appl Environ. Microbiol., 55:1286–1288.PubMedGoogle Scholar
  142. 142.
    Hrywna, Y., Tsoi, T.V, Maltseva, O.V, Quensen, J.F., and Tiedje, J.M., 1999, Construction and characterization of two recombinant bacteria that grow on ortho-and para-substituted chlorobiphenyls. Appl Environ. Microbiol., 65:2163–2169.PubMedGoogle Scholar
  143. 143.
    Hudlicky, T., Gonzalez, D., and Gibson, D.T., 1999, Enzymatic dihydroxylation of aromatics in enantioselective synthesis: Expanding asymmetric methodology. Aldrich. Acta, 32:35–62.Google Scholar
  144. 144.
    Iida, T., Mukouzaka, Y., Nakamura, K., and Kudo, T., 2002, Plasmid-borne genes code for an angular dioxygenase involved in dibenzofuran degradation by Terrabacter sp. strain YK3. Appl Environ. Microbiol., 68:3716–3723.PubMedCrossRefGoogle Scholar
  145. 145.
    Janke, D. and Fritsche, W., 1979, Dechlorierung von 4-Chlorphenol nach extradioler Ringspaltung durch Pseudomonas putida. Z.Allgem. Mikrobiol., 19:139–141CrossRefGoogle Scholar
  146. 146.
    Jeenes, DJ., Reineke, W., Knackmuss, H.-J., and Williams, P.A., 1982, TOL plasmid pWWO in constructed halobenzoate-degrading Pseudomonas strains: Enzyme regulation and DNA structure. J. Bacteriol., 150:180–187.PubMedGoogle Scholar
  147. 147.
    Jimenez, J.I., Minambres, B., Garcia, J.L., and Diaz, E., 2002, Genomic analysis of the aromatic catabolic pathways from Pseudomonas putida KT2440. Environ. Microbiol., 4:824–841.PubMedCrossRefGoogle Scholar
  148. 148.
    Johnson, G.R. and Olsen, R.H., 1997, Multiple pathways for toluene degradation in Burkholderia sp. strain JS150. Appl Environ. Microbiol., 63:4047–4052.PubMedGoogle Scholar
  149. 149.
    Johnson, G.R. and Olsen, R.H., 1995, Nucleotide sequence analysis of genes encoding a toluene/benzene-2-monooxygenase from Pseudomonas sp. strain JS150. Appl Environ. Microbiol., 61:3336–3346.PubMedGoogle Scholar
  150. 150.
    Jones, R., Pagmantidis, V., and Williams, P.A., 2000, sal genes determining the catabolism of salicylate esters are part of a superoperonic cluster of catabolic genes in Acinetobacter sp. strain ADP1. J. Bacteriol., 182:2018–2025.PubMedCrossRefGoogle Scholar
  151. 151.
    Kahng, H.Y., Malinverni, J.C., Majko, M.M., and Kukor, J.J., 2001, Genetic and functional analysis of the tbc operons for catabolism of alkyl-and chloroaromatic compounds in Burkholderia sp. strain JS150. Appl. Environ. Microbiol., 67:4805–4816.PubMedCrossRefGoogle Scholar
  152. 152.
    Kaphammer, B., Kukor, J.J., and Olsen, R.H., 1990, Regulation of tfdCDEF by tdfR of the 2,4-dichlorophenoxyacetic acid degradation plasmid pJP4. J. Bacteriol., 172:2280–2286.PubMedGoogle Scholar
  153. 153.
    Karlson, U., Rojo, F., van Elsas, J.D., and Moore, E., 1996, Genetic and serological evidence for the recognition of four pentachlorophenol-degrading bacterial strains as a species of the genus Sphingomonas. Syst. Appl Microbiol., 18:539–548.CrossRefGoogle Scholar
  154. 154.
    Kasberg, T., Scibert, V., Schlömann, M., and Reineke, W., 1997, Cloning, characterization, and sequence analysis of the clcE gene encoding the maleylacetate reductase of Pseudomonas sp. strain B13. J. Bacteriol., 179:3801–3803.PubMedGoogle Scholar
  155. 155.
    Kaschabek, S.R., Kasberg, T., Müller, D., Mars, A.E., Janssen, D.B., and Reineke, W., 1998, Degradation of chloroaromatics: Purification and characterization of a novel type of chloro-catechol 2,3-dioxygenase of Pseudomonas putida GJ31. J. Bacteriol., 180:296–302.PubMedGoogle Scholar
  156. 156.
    Kaschabek, S.R. and Reineke, W., 1992, Maleylacetate reductase of Pseudomonas sp. strain B13: Dechlorination of chloromaleylacetates, metabolites in the degradation of chloroaro-matic compounds. Arch. Microbiol., 158:412–417.PubMedCrossRefGoogle Scholar
  157. 157.
    Kaschabek, S.R. and Reineke, W., 1995, Maleylacetate reductase of Pseudomonas sp. strain B13: Specificity of substrate conversion and halide elimination. J. Bacteriol., 177:320–325.PubMedGoogle Scholar
  158. 158.
    Kasuga, K., Habe, H., Chung, J.S., Yoshida, T., Nojiri, H., Yamane, H., and Omori, T., 2001, Isolation and characterization of the genes encoding a novel oxygenase component of angular dioxygenase from the Gram-positive dibenzofuran-degrader Terrabacter sp. strain DBF63. Biochem. Biophys. Res. Commun., 283:195–204.PubMedCrossRefGoogle Scholar
  159. 159.
    Kaulmann, U., Kaschabek, S.R., and Schlömann, M., 2001, Mechanism of chloride elimination from 3-chloro-and 2,4-dichloro-cis,cis-muconate: New insight obtained from analysis of muconate cycloisomerase variant CatB-K169A. J. Bacteriol., 183:4551–4561.PubMedCrossRefGoogle Scholar
  160. 160.
    Kersten, P.J., Chapman, P.J., and Dagley, S., 1985, Enzymatic release of halogens or methanol from some substituted protocatechuic acids. J. Bacteriol., 162:693–697.PubMedGoogle Scholar
  161. 161.
    Kersten, P.J., Dagley, S., Whittaker, J.W., Arciero, D., and Lipscomb, J.D., 1982, 2-Pyrone-4,6-dicarboxylic acid, a catabolite of gallic acids in Pseudomonas species. J. Bacteriol., 152:1154–1162.PubMedGoogle Scholar
  162. 162.
    Kersters, K., Ludwig, W., Vancanneyt, M., de Vos, P., Gillis, M., and Schleifer, K.H., 1996, Recent change in the classification of the pseudomonads: An overview. Syst. Appl. Microbiol., 19:465–477.CrossRefGoogle Scholar
  163. 163.
    Khan, A. and Walia, S., 1989, Cloning of bacterial genes specifying degradation of 4-chloro-biphenyl from Pseudomonas putida OU83. Appl. Environ. Microbiol., 55:798–805.PubMedGoogle Scholar
  164. 164.
    Kilbane, J.J., Daram, A., Abbasian, I, and Kayser, K.J., 2002, Isolation and characterization of Sphingomonas sp. GTIN11 capable of carbazole metabolism in petroleum. Biochem. Biophys. Res. Commun., 297:242–248.PubMedCrossRefGoogle Scholar
  165. 165.
    Kimura, N., Nishi, A., Goto, M., and Furukawa, K., 1997, Functional analyses of a variety of chimeric dioxygenases constructed from two biphenyl dioxygenases that are similar structurally but different functionally. J. Bacteriol., 179:3936–3943.PubMedGoogle Scholar
  166. 166.
    Kitagawa, W., Miyauchi, K., Masai, E., and Fukuda, M., 2001, Cloning and characterization of benzoate catabolic genes in the gram-positive polychlorinated biphenyl degrader Rhodococcus sp. strain RHA1. J. Bacteriol., 183:6598–6606.PubMedCrossRefGoogle Scholar
  167. 167.
    Kitayama, A., Achioku, T., Yanagawa, T., Kanou, K., Kikuchi, M., Ueda, H., Suzuki, E., Nishimura, H., Nagamune, T., and Kawakami, Y., 1996, Cloning and characterization of extradiol aromatic ring-cleavage dioxygenases from Pseudomonas aeruginosa JI104. J. Ferm. Bioeng., 82:217–223.CrossRefGoogle Scholar
  168. 168.
    Kitayama, A., Suzuki, E., Kawakami, Y., and Nagamune, T., 1996, Gene organization and low regioselectivity in aromatic-ring hydroxylation of a benzene monooxygenase of Pseudomonas aeruginosa JI104. J. Ferm. Bioeng., 82:421–425.CrossRefGoogle Scholar
  169. 169.
    Klages, U. and Lingens, F., 1979, Degradation of 4-chlorobenzoic acid by a Nocardia species. FEMS Microbiol. Lett., 6:201–203.CrossRefGoogle Scholar
  170. 170.
    Klages, U. and Lingens, E, 1980, Degradation of 4-chlorobenzoic acid by a Pseudomonas sp. Zbl. Bakteriol. Parasit. Infekt. Hyg 1. Abt. Orig., C:215–223.Google Scholar
  171. 171.
    Klages, U., Markus, A., and Lingens, F., 1981, Degradation of 4-chlorophenylacetic acid by a Pseudomonas species. J. Bacteriol., 146:64–68.PubMedGoogle Scholar
  172. 172.
    Klecka, G.M. and Gibson, D.T., 1981, Inhibition of catechol 2,3-dioxygenase from Pseudomonasputida by 3-chlorocatechol. Appl. Environ. Microbiol., 41:1159–1165.PubMedGoogle Scholar
  173. 173.
    Klecka, G.M. and Gibson, D.T., 1981, Metabolism of dibenzo-p-dioxin and chlorinated dibenzo-p-dioxins by a Beijerinckia species. Appl Environ. Microbiol., 39:288–296.Google Scholar
  174. 174.
    Klecka, G.M. and Gibson, D.T., 1979, Metabolism of dibenzo(1,4)dioxin by a Pseudomonas species. Biochem. J., 180:639–645.PubMedGoogle Scholar
  175. 175.
    Klemba, M., Jakobs, B., Wittich, R., and Pieper, D., 2000, Chromosomal integration of the tcb chlorocatechol degradation pathway genes as a means of expanding the growth substrate range of bacteria to include haloaromatics. J. Bacteriol., 182:3255–3261.Google Scholar
  176. 176.
    Knackmuss, H.-J. and Hellwig, M., 1978, Utilization and cooxidation of chlorinated phenols by Pseudomonas sp. B13. Arch. Microbiol., 117:1–7.PubMedCrossRefGoogle Scholar
  177. 177.
    Kobayashi, K., Katayama-Hirayama, K., and Tobita, S., 1997, Hydrolytic dehalogenation of 4-chlorobenzoic acid by an Acinetobacter sp. J. Gen. Appl. Microbiol., 43:105–108.PubMedCrossRefGoogle Scholar
  178. 178.
    Kohler, H.-P.E., Schmid, A., and van der Maarel, M., 1993, Metabolism of 2,2′-dihydroxy-biphenyl by Pseudomonas sp. strain HBP1: Production and consumption of 2,2′,3-trihydroxybiphenyl. J. Bacteriol., 175:1621–1628.PubMedGoogle Scholar
  179. 179.
    Koiv, V., Marks, R., and Heinaru, A., 1996, Sequence analysis of the 2,4-dichlorophenol hydroxylase gene tfdB and 3,5-dichlorocatechol 1,2-dioxygenase gene tfdC of 2,4-dichlorophenoxyacetic acid degrading plasmid pEST4011. Gene, 174:293–297.PubMedCrossRefGoogle Scholar
  180. 180.
    Kozlovsky, S.A., Zaitsev, G.M., Kunc, F., Gabriel, X, and Boronin, A.M., 1993, Degradation of 2-chlorobenzoic and 2,5-dichlorobenzoic acids in pure culture by Pseudomonas stutzeri. Folia Microbiol., 38:371–375.CrossRefGoogle Scholar
  181. 181.
    Krooneman, J., Moore, E.R.B., van Velzen, J.C.L., Prins, R.A., Forney, L.J., and Gottschal, J.C., 1998, Competition for oxygen and 3-chlorobenzoate between two aerobic bacteria using different degradation pathways. FEMS Microbiol. Ecol., 26:171–179.CrossRefGoogle Scholar
  182. 182.
    Krooneman, J., Sliekers, A.O., Gomes, T.M.P., Forney, L.J., and Gottschal, J.C., 2000, Characterization of 3-chlorobenzoate degrading aerobic bacteria isolated under various environmental conditions. FEMS Microbiol. Ecol., 32:53–59.PubMedCrossRefGoogle Scholar
  183. 183.
    Krooneman, J., Wieringa, E.B.A., Moore, E.R.B., Gerritse, J., Prins, R.A., and Gottschal, J.C., 1996, Isolation of Alcaligenes sp. strain L6 at low oxygen concentrations and degradation of 3-chlorobenzoate via a pathway not involving (chloro)catechols. Appl. Environ. Microbiol., 62:2427–2434.PubMedGoogle Scholar
  184. 184.
    Kuhm, A.E., Schlömann, M., Knackmuss, H.-J., and Pieper, D.H., 1990, Purification and characterization of dichloromuconate cycloisomerase from Alcaligenes eutrophus JMP134. Biochem. J., 266:877–883.PubMedGoogle Scholar
  185. 185.
    Kukor, J.J. and Olsen, R.H., 1996, Catechol 2,3-dioxygenases functional in oxygen-limited (hypoxic) environments. Appl. Environ. Microbiol., 62:1728–1740.PubMedGoogle Scholar
  186. 186.
    Kukor, J.J. and Olsen, R.H., 1990, Complete nucleotide sequence of tbuD, the gene encoding phenol/cresol hydroxylase from Pseudomonas pickettii PKO1, and functional analysis of the encoded enzyme. J. Bacteriol., 174:6518–6526.Google Scholar
  187. 187.
    Kukor, J.J. and Olsen, R.H., 1990, Molecular cloning, characterization, and regulation of a Pseudomonas pickettii PKO1 gene encoding phenol hydroxylase and expression of the gene in Pseudomonas aeruginosa PAO 1c. J. Bacteriol., 172:4624–4630.PubMedGoogle Scholar
  188. 188.
    Latorre, X, Reineke, W., and Knackmuss, H.-X, 1984, Microbial metabolism of chloroanilines: Enhanced evolution by natural genetic exchange. Arch. Microbiol., 140:159–165.CrossRefGoogle Scholar
  189. 189.
    Latus, M., Seitz, H.-G., Eberspächer, X, and Lingens, F., 1995, Purification and characterization of hydroquinol 1,2-dioxygenase from Azotobacter sp. strain GP1. Appl. Environ. Microbiol., 61:2453–2460.PubMedGoogle Scholar
  190. 190.
    Lee, X, Min, K.R., Kim, Y.-C., Kim, C.-K., Lim, J.-Y., Yoon, H., Min, K.-H., Lee, K.-S., and Kim, Y., 1995, Cloning of salicylate hydroxylase gene and catechol 2,3-dioxygenase gene and sequencing of an intergenic sequence between the two genes of Pseudomonas putida KF715. Biochem. Biophys. Res. Commun., 211:382–388.PubMedCrossRefGoogle Scholar
  191. 191.
    Lee, J.Y. and Xun, L.Y., 1997, Purification and characterization of 2,6-dichloro-p-hydro-quinone chlorohydrolase from Flavobacterium sp. strain ATCC 39723. J. Bacteriol., 179:1521–1524.PubMedGoogle Scholar
  192. 192.
    Lee, N., Nielsen, P.H., Andreasen, K.H., Juretschko, S., Nielsen, J.L., Schleifer, K.H., and Wagner, M., 1999, Combination of fluorescent in situ hybridization and microautoradiography —a new tool for structure-function analyses in microbial ecology. Appl. Environ. Microbiol., 65:1289–1297.PubMedGoogle Scholar
  193. 193.
    Lee, S.G., Yoon, B.D., Park, Y.H., and Oh, H.M., 1998, Isolation of a novel pentachlorophenol-degrading bacterium, Pseudomonas sp. Bu34. J. Appl. Microbiol., 85:1–8.PubMedCrossRefGoogle Scholar
  194. 194.
    Leesong, M., Henderson, B.S., Gillig, J.R., Schwab, J.M., and Smith, J.L., 1996, Structure of a dehydratase-isomerase from the bacterial pathway for biosynthesis of unsaturated fatty acids: Two catalytic activities in one active site. Structure, 4:253–264.PubMedCrossRefGoogle Scholar
  195. 195.
    Lehrbach, PR., Zeyer, J., Reineke, W., Knackmuss, H.-J., and Timmis, K.N., 1984, Enzyme recruitment in vitro: Use of cloned genes to extend the range of haloaromatics degraded by Pseudomonas sp. strain B13. J. Bacteriol., 158:1025–1032.PubMedGoogle Scholar
  196. 196.
    Leung, K.T., Campbell, S., Gan, YD., White, D.C., Lee, H., and Trevors, J.T., 1999, The role of the Sphingomonas species UG30 pentachlorophenol-4-monooxygenase in p-nitrophenol degradation. FEMS Microbiol. Lett., 173:247–253.PubMedCrossRefGoogle Scholar
  197. 197.
    Leveau, J.H.J., Konig, F., Fuchslin, H., Werlen, C., and van der Meer, J.R., 1999, Dynamics of multigene expression during catabolic adaptation of Ralstonia eutropha JMP134 (pJP4) to the herbicide 2,4-dichlorophenoxyacetate. Mol. Microbiol., 33:396–406.PubMedCrossRefGoogle Scholar
  198. 198.
    Leveau, J.H.J. and van der Meer, J.R., 1996, The tfdR gene product can successfully take over the role of the insertion element-inactivated TfdT protein as a transcriptional activator of the tfdCDEF gene cluster, which encodes chlorocatechol degradation in Ralstonia eutropha JMP134(pJP4). J. Bacteriol., 178:6824–6832.PubMedGoogle Scholar
  199. 199.
    Liang, P.-H., Yang, G., and Dunaway-Mariano, D., 1993, Specificity of 4-chlorobenzoyl coenzyme A dehalogenase catalyzed dehalogenation of a halogenated aromatics. Biochemistry, 32:12245–12250.PubMedCrossRefGoogle Scholar
  200. 200.
    Liu, R.-Q., Liang, P.-H., Scholten, J., and Dunaway-Mariano, D., 1995, Transient state kinetic analysis of the chemical intermediates formed in the enzymatic dehalogenation of 4-chlorobenzoyl coenzyme A. J. Am. Chem. Soc., 117:5003–5004.CrossRefGoogle Scholar
  201. 201.
    Liu, S., Ogawa, N., and Miyashita, K., 2001, The chlorocatechol degradative genes, tfdT-CDEF, of Burkholderia sp. strain NK8 are involved in chlorobenzoate degradation and induced by chlorobenzoates and chlorocatechols. Gene, 268:207–214.PubMedCrossRefGoogle Scholar
  202. 202.
    Liu, T. and Chapman, P.J., 1984, Purification and properties of a plasmid-encoded 2,4-dichlorophenol hydroxylase. FEBSLett., 173:314–318.CrossRefGoogle Scholar
  203. 203.
    Löffler, F. Lingens, F., and Müller, R., 1995, Dehalogenation of 4-chlorobenzoate. Characterisation of 4-chlorobenzoyl-coenzyme A dehalogenase from Pseudomonas sp. CBS3. Biodegradation, 6:203–212.PubMedCrossRefGoogle Scholar
  204. 204.
    Löffler, F., and Müller, R., 1991, Identification of 4-chlorobenzoyl-coenzyme A as intermediate in the dehalogenation catalyzed by 4-chlorobenzoate dehalogenase from Pseudomonas sp. CBS3. FEBS Lett., 290:224–226.PubMedCrossRefGoogle Scholar
  205. 205.
    Löffler, F., Müller, R., and Lingens, F., 1991, Dehalogenation of 4-chlorobenzoate by 4-chlorobenzoate dehalogenase from Pseudomonas sp. CBS3: An ATP/coenzyme A dependent reaction. Biochem. Biophys. Res. Commun., 176:1106–1111.PubMedCrossRefGoogle Scholar
  206. 206.
    Löffler, F., Müller, R., and Lingens, F., 1992, Purification and properties of 4-halobenzoate-coenzyme A ligase from Pseudomonas sp. CBS3. Biol. Chem. Hoppe Seyler, 373: 1001–1007.PubMedCrossRefGoogle Scholar
  207. 207.
    Lorenz, P., Liebeton, K., Niehaus, F., and Eck, J., 2002, Screening for novel enzymes for biocatalytic processes: Accessing the metagenome as a resource of novel functional sequence space. Curr. Opin. Biotechnol., 13:572–577.PubMedCrossRefGoogle Scholar
  208. 208.
    Louie, T.M., Webster, CM., and Xun, L.Y., 2002, Genetic and biochemical characterization of a 2,4,6-trichlorophenol degradation pathway in Ralstonia eutropha JMP134. J. Bacteriol., 184:3492–3500.PubMedCrossRefGoogle Scholar
  209. 209.
    Lünsdorf, H., Erb, R.W., Abraham, W.R., and Timmis, K.N., 2000, “Clay hutches”: A novel interaction between bacteria and clay minerals. Environ. Microbiol., 2:161–168.PubMedCrossRefGoogle Scholar
  210. 210.
    Makdessi, K. and Lechner, U., 1997, Purification and characterization of 2,4-dichlorophenol hydroxylase isolated from a bacterium of the alpha-2 subgroup of the proteobacteria. FEMS Microbiol. Lett., 157:95–101.PubMedCrossRefGoogle Scholar
  211. 211.
    Manefield, M., Whiteley, A.S., Griffiths, R.I., and Bailey, M.J., 2002, RNA stable isotope probing, a novel means of linking microbial community function to phylogeny. Appl. Environ. Microbiol., 68:5367–5373.PubMedCrossRefGoogle Scholar
  212. 212.
    Männistö, M.K., Tiirola, M.A., Salkinoja-Salonen, M.S., Kulomaa, M.S., and Puhakka, J.A., 1999, Diversity of chlorophenol-degrading bacteria isolated from contaminated boreal groundwater. Arch. Microbiol., 171:189–197.PubMedCrossRefGoogle Scholar
  213. 213.
    Markus, A., Klages, U., Krauss, S., and Lingens, F., 1984, Oxidation and dehalogenation of 4-chlorophenylacetate by a two-component enzyme system from Pseudomonas sp. strain CBS3. J. Bacteriol., 160:618–621.PubMedGoogle Scholar
  214. 214.
    Markus, A., Krekel, D., and Lingens, F., 1986, Purification and some properties of component A of the 4-chlorophenylacetate 3,4-dioxygenase from Pseudomonas species strain CBS. J. Biol. Chem., 261:12883–12888.PubMedGoogle Scholar
  215. 215.
    Mars, A.E., Kasberg, T., Kaschabek, S.R., van Agteren, M.H., Janssen, D.B., and Reineke, W., 1997, Microbial degradation of chloroaromatics: Use of the meta-cleavage pathway for mineralization of chlorobenzene. J. Bacteriol., 179:4530–4537.PubMedGoogle Scholar
  216. 216.
    Mars, A.E., Kingma, J., Kaschabek, S.R., Reineke, W., and Janssen, D.B., 1999, Conversion of 3-chlorocatechol by various catechol 2,3-dioxygenases and sequence analysis of the chlorocatechol dioxygenase region of Pseudomonas putida GJ31. J. Bacteriol., 181:1309–1318.PubMedGoogle Scholar
  217. 217.
    Masai, E., Shinohara, S., Hara, H., Nishikawa, S., Katayama, Y., and Fukuda, M., 1999, Genetic and biochemical characterization of a 2-pyrone-4,6-dicarboxylic acid hydrolase involved in the protocatechuate 4,5-cleavage pathway of Sphingomonas paucimobilis SYK-6. J. Bacteriol., 181:55–62.PubMedGoogle Scholar
  218. 218.
    McClure, N.C. and Venables, W.A., 1987, pTDNl, a catabolic plasmid involved in aromatic amine metabolism in Pseudomonas putida mt-2. J. Gen. Microbiol., 133:2073–2077.Google Scholar
  219. 219.
    McCullar, M.V, Brenner, V., Adams, R.H., and Focht, D.D., 1994, Construction of a novel polychlorinated biphenyl-degrading bacterium: Utilization of 3,4-dichlorobiphenyl by Pseudomonas acidovorans M3GY. Appl Environ. Microbiol., 60:3833–3839.PubMedGoogle Scholar
  220. 220.
    McFall, S.M., Parsek, M.R., and Chakrabarty, A.M., 1997, 2-Chloromuconate and ClcR-mediated activation of the clcABD operon: In vitro transcriptional and DNase I footprint analyses. J. Bacteriol., 179:3655–3663.PubMedGoogle Scholar
  221. 221.
    McGowan, C., Fulthorpe, R., Wright, A., and Tiedje, J.M., 1998, Evidence for interspecies gene transfer in the evolution of 2,4-dichlorophenoxyacetic acid degraders. Appl. Environ. Microbiol., 64:4089–4092.PubMedGoogle Scholar
  222. 222.
    McKay, D.B., Prucha, M., Reineke, W., Timmis, K.N., and Pieper, D.H., 2003, Substrate specificity and expression of three 2,3-dihydroxybiphenyl 1,2-dioxygenases from Rhodococcus globerulus strain P6. J. Bacteriol., 185:2944–2951.PubMedCrossRefGoogle Scholar
  223. 223.
    McKay, D.B., Seeger, M., Zielinski, M., Hofer, B., and Timmis, K.N., 1997, Heterologous expression of biphenyl dioxygenase-encoding genes from a gram-positive broad-spectrum polychlorinated biphenyl degrader and characterization of chlorobiphenyl oxidation by the gene products. J. Bacteriol., 179:1924–1930.PubMedGoogle Scholar
  224. 224.
    Milne, G.W.A., Goldman, P., and Holtzman, J.L., 1968, The metabolism of 2-fluorobenzoic acid. II. Studies with 18O2. J. Biol. Chem., 243:5374–5376PubMedGoogle Scholar
  225. 225.
    Mitchell, K.H., Studts, J.M., and Fox, B.G., 2002, Combined participation of hydroxylase active site residues and effector protein binding in a para to ortho modulation of toluene 4-monooxygenase regiospecificity. Biochemistry, 41:3176–3188.PubMedCrossRefGoogle Scholar
  226. 226.
    Miyauchi, K., Adachi, Y., Nagata, Y., and Takagi, M., 1999, Cloning and sequencing of a novel meta-cleavage dioxygenase gene whose product is involved in degradation of γ-hexa-chlorocyclohexane in Sphingomonas paucimobilis. J. Bacteriol., 181:6712–6719.PubMedGoogle Scholar
  227. 227.
    Mohn, W.W. and Tiedje, J.M., 1991, Evidence for chemiosmotic coupling of reductive dechlorination and ATP synthesis in Desulfomonile tiedjei. Arch. Microbiol., 157:1–6CrossRefGoogle Scholar
  228. 228.
    Mohn, W.W. and Tiedje, J.M., 1990, Strain DCB-1 conserves energy for growth from reductive dechlorination coupled to formate oxidation. Arch. Microbiol., 153:267–271.PubMedCrossRefGoogle Scholar
  229. 229.
    Moiseeva, O.V, Solyanikova, I.P., Kaschabek, S.R., Groning, J., Thiel, M., Golovleva, L.A., and Schlömann, M., 2002, A new modified ortho cleavage pathway of 3-chlorocatechol degradation by Rhodococcus opacus 1CP: Genetic and biochemical evidence. J. Bacteriol., 184:5282–5292.PubMedCrossRefGoogle Scholar
  230. 230.
    Mokross, H., Schmidt, E., and Reineke, W., 1990, Degradation of 3-chlorobiphenyl by in vivo constructed hybrid pseudomonads. FEMS Microbiol. Lett., 71:179–186.CrossRefGoogle Scholar
  231. 231.
    Mondello, F.J., Turcich, M.P., Lobos, J.H., and Erickson, B.D., 1997, Identification and modification of biphenyl dioxygenase sequences that determine the specificity of polychlorinated biphenyl degradation. Appl. Environ. Microbiol., 63:3096–3103.PubMedGoogle Scholar
  232. 232.
    Moore, E., Mau, M., Arnscheidt, A., Böttger, E., Hutson, R., Collins, M., van de Peer, Y., de Wachter, R., and Timmis, K.N., 1996, The determination and comparison of the 16S rRNA gene sequences of species of the genus Pseudomonas (sensu stricto) and estimation of the natural intrageneric relationship. Syst. Appl. Microbiol., 19:478–492.CrossRefGoogle Scholar
  233. 233.
    Müller, D., Schlömann, M., and Reineke, W., 1996, Maleylacetate reductases in chloroaromatic-degrading bacteria using the modified ortho pathway: Comparison of catalytic properties. J. Bacteriol., 178:298–300.PubMedGoogle Scholar
  234. 234.
    Müller, R., Oltmanns, R.H., and Lingens, F., 1988, Enzymatic dehalogenation of 4-chlorobenzoate by extracts from Arthrobacter sp. SU DSM 20407. Biol. Chem. Hoppe Seyler, 369:567–571.PubMedCrossRefGoogle Scholar
  235. 235.
    Müller, R., Thiele, J., Klages, U., and Lingens, F., 1984, Incorporation of [18O] water into 4-hydroxybenzoic acid in the reaction of 4-chlorobenzoate dehalogenase from Pseudomonas spec CBS3. Biochem. Biophys. Res. Commun., 124:669–674.CrossRefGoogle Scholar
  236. 236.
    Müller, T.A., Werlen, C., Spain, J.C., and van der Meer, J.R., 2003, Evolution of a chlorobenzene degradative pathway among bacteria in a contaminated groundwater mediated by a genomic island in Ralstonia. Environ. Microbiol., 5:163–173.PubMedCrossRefGoogle Scholar
  237. 237.
    Murakami, S., Okuno, T., Matsumura, E., Takenaka, S., Shinke, R., and Aoki, K., 1999, Cloning of a gene encoding hydroxyquinol 1,2-dioxygenase that catalyzes both intradiol and extradiol ring cleavage of catechol. Biosci. Biotechnol. Biochem., 63:859–865.PubMedCrossRefGoogle Scholar
  238. 238.
    Murakami, S., Takemoto, J., Takashima, A., Shinke, R., and Aoki, K., 1998, Purification and characterization of two muconate cycloisomerase isozymes from aniline-assimilating Frateuria species ANA-18. Biosci. Biotechnol. Biochem., 62:1129–1133.PubMedCrossRefGoogle Scholar
  239. 239.
    Murray, K., Duggleby, C.J., Sala-Trepat, J.M., and Williams, P.A., 1972, The metabolism of benzoate and methylbenzoates via the meta-cleavage by Pseudomonas arvilla mt-2. Eur. J. Biochem., 28:301–310.PubMedCrossRefGoogle Scholar
  240. 240.
    Nakatsu, C. and Wyndham, R.C., 1993, Cloning and expression of the transposable chlorobenzoate-3,4-dioxygenase genes of Alcaligenes sp. BR60. Appl Environ. Microbiol., 59:3625–3633.PubMedGoogle Scholar
  241. 241.
    Nakatsu, C.H., Fulthorpe, R.R., Holland, B.A., Peel, M.C., and Wyndham, R.C., 1995, The phylogenetic distribution of a transposable dioxygenase from the Niagara river watershed. Mol. Ecol., 4:593–603.PubMedCrossRefGoogle Scholar
  242. 242.
    Nakatsu, C.H., Providenti, M., and Wyndham, R.C., 1997, The cis-diol dehydrogenase cbaC gene of Tn5271 is required for growth on 3-chlorobenzoate but not 3,4-dichlorobenzoate. Gene, 196:209–218.PubMedCrossRefGoogle Scholar
  243. 243.
    Nakatsu, C.H., Straus, N.A., and Wyndham, R.C., 1995, The nucleotide sequence of the Tn5271 3-chlorobenzoate 3,4-dioxygenase genes (cbaAB) unites the class IA oxygenase in a single lineage. Microbiology, 141:485–495.PubMedCrossRefGoogle Scholar
  244. 244.
    Nam, J.W., Nojiri, H., Yoshida, T., Habe, H., Yamane, H., and Omori, T., 2001, New classification system for oxygenase components involved in ring-hydroxylating oxygenations. Biosci. Biotechnol. Biochem., 65:254–263.PubMedCrossRefGoogle Scholar
  245. 245.
    Nelson, K.E., Weinel, C., Paulsen, LT., Dodson, R.J., Hilbert, H., dos Santos, V., Fouts, D.E., Gill, S.R., Pop, M., Holmes, M., Brinkac, L., Beanan, M., DeBoy, R.T., Daugherty, S., Kolonay, J., Madupu, R., Nelson, W., White, O., Peterson, J., Khouri, H., Hance, L, Lee, P.C., Holtzapple, E., Scanlan, D., Tran, K., Moazzez, A., Utterback, T., Rizzo, M., Lee, K., Kosack, D., Moestl, D., Wedler, H., Lauber, I, Stjepandic, D., Hoheisel, J., Straetz, M., Heim, S., Kiewitz, C., Eisen, J., Timmis, K.N., Dusterhoft, A., Tümmler, B., and Fraser, CM., 2002, Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. Environ. Microbiol., 4:799–808.PubMedCrossRefGoogle Scholar
  246. 246.
    Newby, D.T., Gentry, T., and Pepper, I.L., 2000, Comparison of 2,4-dichlorophenoxyacetic acid degradation and plasmid transfer in soil resulting from bioaugmentation with two different pJP4 donors. Appl. Environ. Microbiol., 66:3399–3407.PubMedCrossRefGoogle Scholar
  247. 247.
    Newman, L.M. and Wackett, L.P., 1995, Purification and characterization of toluene 2-monooxygenase from Burkholderia cepacia G4. Biochemistry, 34:14066–14076.PubMedCrossRefGoogle Scholar
  248. 248.
    Nielsen, A.T., Tolker-Nielsen, T., Barken, K.B., and Molin, S., 2000, Role of commensal relationships on the spatial structure of a surface-attached microbial consortium. Environ. Microbiol., 2:59–68.PubMedCrossRefGoogle Scholar
  249. 249.
    Nishi, A., Tominaga, K., and Furukawa, K., 2000, A 90-kilobase conjugative chromosomal element coding for biphenyl and salicylate catabolism in Pseudomonas putida KF715. J.Bacteriol., 182:1949–1955.PubMedCrossRefGoogle Scholar
  250. 250.
    Noda, Y., Nishikawa, S., Shiozuka, K.-I., Kadokuda, H., Nakajima, H., Yoda, K., Katayama, Y., Morohoshi, N., Haraguchi, T., and Yamasaki, M., 1990, Molecular cloning of the protocatechuate 4,5-dioxygenase genes of Pseudomonas paucimobilis. J. Bacteriol., 172:2704–2709.PubMedGoogle Scholar
  251. 251.
    Nohynek, L.J., Nurmiaho-Lassila, E.L., Suhonen, E.L., Busse, HJ., Mohammadi, M., Hantula, J., Rainey, F., and Salkinoja-Salonen, M.S., 1996, Description of chlorophenol-degrading Pseudomonas sp. strains KF1(T), KF3, and NKF1 as a new species of the genus Sphingomonas, Sphingomonas subarctica sp. nov. Int. J. Syst. Bacteriol., 46:1042–1055.PubMedCrossRefGoogle Scholar
  252. 252.
    Nurk, A., Kasak, L., and Kivisaar, M., 1991, Sequence of the gene (pheA) encoding phenol monooxygenae from Pseudomonas sp. EST 1001: Expression in Escherichia coli and Pseudomonas putida. Gene, 102:13–18.PubMedCrossRefGoogle Scholar
  253. 253.
    Ogawa, N., McFall, S.M., Klem, T.J., Miyashita, K., and Chakrabarty, A.M., 1999, Transcriptional activation of the chlorocatechol degradative genes of Ralstonia eutropha NH9. J. Bacteriol., 181:6697–6705.PubMedGoogle Scholar
  254. 254.
    Ogawa, N. and Miyashita, K., 1999, The chlorocatechol-catabolic transposon Tn5707 of Alcaligenes eutrophus NH9, carrying a gene cluster highly homologous to that in the 1,2,4-trichlorobenzene-degrading bacterium Pseudomonas sp. strain P51, confers the ability to grow on 3-chlorobenzoate. Appl. Environ. Microbiol., 65:724–731.PubMedGoogle Scholar
  255. 255.
    Ohtsubo, Y., Miyauchi, K., Kanda, K., Hatta, T., Kiyohara, H., Senda, T., Nagata, Y., Mitsui, Y., and Takagi, M., 1999, PcpA, which is involved in the degradation of pentachlorophenol in Sphingomonas chlorophenolica ATCC39723, is a novel type of ring-cleavage dioxygenase. FEBS Lett., 459:395–398.PubMedCrossRefGoogle Scholar
  256. 256.
    Olsen, R.H., Kukor, J.J., and Kaphammer, B., 1994, A novel toluene-3-monooxygenase pathway cloned from Pseudomonas pickettii PKO1. J. Bacteriol., 176:3749–3756.PubMedGoogle Scholar
  257. 257.
    Oltmanns, R.H., Müller, R., Otto, M.K., and Lingens, F., 1989, Evidence for a new pathway in the bacterial degradation of 4-fluorobenzoate. Appl Environ. Microbiol., 55:2499–2504.PubMedGoogle Scholar
  258. 258.
    Oltmanns, R.H., Rast, H.G., and Reineke, W., 1988, Degradation of 1,4-dichlorobenzene by enriched and constructed bacteria. Appl. Microbiol. Biotechnol., 28:609–616.CrossRefGoogle Scholar
  259. 259.
    Orser, C.S., Dutton, J., Lange, C., Jablonski, P., Xun, L., and Hargis, M., 1993, Characterization of a Flavobacterium glutathione S-transferase gene involved in reductive dechlorination. J. Bacteriol., 175:2640–2644.PubMedGoogle Scholar
  260. 260.
    Orser, C.S., Lange, C.C., Xun, L., Zahrt, T.C., and Schneider, B.J., 1993, Cloning, sequence analysis, and expression of the Flavobacterium pentachlorophenol-4-monooxygenase gene in Escherichia coli. J. Bacteriol., 175:411–416.PubMedGoogle Scholar
  261. 261.
    Ouchiyama, N., Miyachi, S., and Omori, T., 1998, Cloning and nucleotide sequence of carbazole catabolic genes from Pseudomonas stutzeri strain OM1, isolated from activated sludge. J. Gen. Appl. Microbiol., 44:57–63.PubMedCrossRefGoogle Scholar
  262. 262.
    Padilla, L., Matus, V., Zenteno, P., and Gonzalez, B., 2000, Degradation of 2,4,6-trichlorophenol via chlorohydroxyquinol in Ralstonia eutropha JMP134 and JMP222. J. Basic Microbiol., 40:243–249.PubMedCrossRefGoogle Scholar
  263. 263.
    Palleroni, N.J. and Bradbury, J.F., 1993, Stenotrophomonas, a new bacterial genus for Xanthomonas maltophilia (Hugh 1980) Swings et al., 1983. Int. J. Syst. Bacteriol., 43:606–609.PubMedCrossRefGoogle Scholar
  264. 264.
    Palleroni, N.J., Kunisawa, R., Contopoulou, R., and Douderoff, M., 1973, Nucleic acid homologies in the genus Pseudomonas. Int. J. Syst. Microbiol., 23:333–339.Google Scholar
  265. 265.
    Parales, J.V., Parales, R.E., Resnick, S.M., and Gibson, D.T., 1998, Enzyme specificity of 2-nitrotoluene 2,3-dioxygenase from Pseudomonas sp. strain JS42 is determined by the C-terminal region of the alpha subunit of the oxygenase component. J. Bacteriol., 180:1194–1199.PubMedGoogle Scholar
  266. 266.
    Park, H.S. and Kim, H.S., 2000, Identification and characterization of the nitrobenzene catabolic plasmids pNBl and pNB2 in Pseudomonas putida HS12. J. Bacteriol., 182:573–580.PubMedCrossRefGoogle Scholar
  267. 267.
    Pavlu, L., Vosahlova, J., Klierova, H., Prouza, M., Demnerova, K., and Brenner, V., 1999, Characterization of chlorobenzoate degraders isolated from polychlorinated biphenyl-contaminated soil and sediment in the Czech Republic. J. Appl Microbiol., 87:381–386.PubMedCrossRefGoogle Scholar
  268. 268.
    Peel, M.C. and Wyndham, R.C., 1999, Selection of clc, cba, and fcb chlorobenzoate-catabolic genotypes from groundwater and surface waters adjacent to the Hyde Park, Niagara Falls, chemical landfill. Appl Environ. Microbiol., 65:1627–1635.PubMedGoogle Scholar
  269. 269.
    Pelz, O., Chatzinotas, A., Andersen, N., Bernasconi, S.M., Hesse, C., Abraham, W.R., and Zeyer, J., 2001, Use of isotopic and molecular techniques to link toluene degradation in denitrifying aquifer microcosms to specific microbial populations. Arch. Microbiol., 175:270–281.PubMedCrossRefGoogle Scholar
  270. 270.
    Pelz, O., Tesar, M., Wittich, R.M., Moore, E.R.B., Timmis, K.N., and Abraham, W.R., 1999, Towards elucidation of microbial community metabolic pathways: Unravelling the network of carbon sharing in a pollutant-degrading bacterial consortium by immunocapture and isotopic ratio mass spectrometry. Environ. Microbiol., 1:167–174.PubMedCrossRefGoogle Scholar
  271. 271.
    Perez-Pantoja, D., Ledger, T., Pieper, D.H., and Gonzalez, B., 2003, Efficient turnover of chlorocatechols is essential for growth of Ralstonia eutropha JMP134(pJP4) in 3-chlorobenzoic acid. J. Bacteriol., 185:1534–1542.PubMedCrossRefGoogle Scholar
  272. 272.
    Perkins, E.J., Gordon, M.P., Caceres, O., and Lurquin, PR, 1990, Organization and sequence analysis of the 2,4-dichlorophenol hydroxylase and dichlorocatechol oxidative operons of plasmid pJP4. J. Bacteriol., 172:2351–2359.PubMedGoogle Scholar
  273. 273.
    Pieper, D.H., Knackmuss, H.-J., and Timmis, K.N., 1993, Accumulation of 2-chloromuconate during metabolism of 3-chlorobenzoate by Alcaligenes eutrophus JMP134. Appl. Microbiol. Biotechnol., 39:563–567.CrossRefGoogle Scholar
  274. 274.
    Pieper, D.H., Kuhm, A.E., Stadler-Fritzsche, K., Fischer, P., and Knackmuss, H.-J., 1991, Metabolization of 3,5-dichlorocatechol by Alcaligenes eutrophus JMP 134. Arch. Microbiol., 156:218–222.CrossRefGoogle Scholar
  275. 275.
    Pieper, D.H. and Reineke, W., 2000, Engineering bacteria for bioremediation. Curr. Opin. Biotechnol., 11:262–270.PubMedCrossRefGoogle Scholar
  276. 276.
    Pikus, J.D., Studts, J.M., McClay, K., Steffan, R.J., and Fox, B.G., 1997, Changes in the regiospecificity of aromatic hydroxylation produced by active site engineering in the diiron enzyme toluene 4-monooxygenase. Biochemistry, 36:9283–9289.PubMedCrossRefGoogle Scholar
  277. 277.
    Pinyakong, O., Habe, H., Yoshida, T., Nojiri, H., and Omori, T., 2003, Identification of three novel salicylate 1-hydroxylases involved in the phenanthrene degradation by Sphingobium sp. strain P2. Biochem. Biophys. Res. Commun., 301:350–357.PubMedCrossRefGoogle Scholar
  278. 278.
    Plumeier, I., Perez-Pantoja, D., Heim, S., Gonzalez, B., and Pieper, D.H., 2002, Importance of different tfd genes for degradation of chloroaromatics by Ralstonia eutropha JMP134. J. Bacteriol., 184:4054–4064.PubMedCrossRefGoogle Scholar
  279. 279.
    Pollmann, K., Kaschabek, S., Wray, V., Reineke, W., and Pieper, D.H., 2002, Metabolism of dichloromethylcatechols as central intermediates in the degradation of dichlorotoluenes by Ralstonia sp. strain PS12. J. Bacteriol., 184:5261–5274.PubMedCrossRefGoogle Scholar
  280. 280.
    Pollmann, K., Wray, V., Hecht, HJ., and Pieper, D.H., 2003, Rational engineering of the regioselectivity of TecA tetrachlorobenzene dioxygenase for the transformation of chlorinated toluenes. Microbiology, 149:903–913.PubMedCrossRefGoogle Scholar
  281. 281.
    Potrawfke, T., Armengaud, J., and Wittich, R.M., 2001, Chlorocatechols at positions 4 and 5 are substrates of the broad-spectrum chlorocatechol 1,2-dioxygenase of Pseudomonas chlororaphis RW71. J. Bacteriol., 183:997–1011.PubMedCrossRefGoogle Scholar
  282. 282.
    Powlowski, J., Sealy, J., Shingler, V., and Cadieux, E., 1997, On the role of DmpK, an auxiliary protein associated with multicomponent phenol hydroxylase from Pseudomonas sp. CF600. J. Biol. Chem., 272:945–951.PubMedCrossRefGoogle Scholar
  283. 283.
    Providenti, M.A. and Wyndham, R.C., 2001, Identification and functional characterization of CbaR, a MarR-like modulator of the cbaABC-encoded chlorobenzoate catabolism pathway. Appl. Environ. Microbiol., 67:3530–3541.PubMedCrossRefGoogle Scholar
  284. 284.
    Prucha, M., Peterseim, A., Timmis, K.N., and Pieper, D.H., 1996, Muconolactone isomerase of the 3-oxoadipate pathway catalyzes dechlorination of 5-chloro-substituted muconolactones. Eur. J. Biochem., 237:350–356.PubMedCrossRefGoogle Scholar
  285. 285.
    Prucha, M., Wray, V., and Pieper, D.H., 1996, Metabolism of 5-chlorosubstituted muconolactones. Eur. J. Biochem., 237:357–366.PubMedCrossRefGoogle Scholar
  286. 286.
    Radehaus, P. and Schmidt, S., 1992, Characterization of a new Pseudomonas sp. that mineralizes high concentrations of pentachlorophenol. Appl. Environ. Microbiol., 58:2879–2885.PubMedGoogle Scholar
  287. 287.
    Ravatn, R., Studer, S., Springael, D., Zehnder, A.J.B., and van der Meer, J.R., 1998, Chromosomal integration, tandem amplification, and deamplification in Pseudomonas putida Fl of a 105-kilobase genetic element containing the chlorocatechol degradative genes from Pseudomonas sp. strain B13. J. Bacteriol., 180:4360–4369.PubMedGoogle Scholar
  288. 288.
    Ravatn, R., Studer, S., Zehnder, A.J.B., and van der Meer, J.R., 1998, Int-B13, an unusual site-specific recombinase of the bacteriophage P4 integrase family, is responsible for chromosomal insertion of the 105-kilobase clc element of Pseudomonas sp. strain B13. J. Bacteriol., 180:5505–5514.PubMedGoogle Scholar
  289. 289.
    Ravatn, R., Zehnder, A.J.B., and van der Meer, J.R., 1998, Low-frequency horizontal transfer of an element containing the chlorocatechol degradation genes from Pseudomonas sp. strain B13 to Pseudomonas putida Fl and to indigenous bacteria in laboratory-scale activated-sludge microcosms. Appl Environ. Microbiol., 64:2126–2132.PubMedGoogle Scholar
  290. 290.
    Reineke, W., 2001, Aerobic and anaerobic biodegradation potentials of microorganisms. In O. Hutzinger (ed.), The Handbook of Environmental Chemistry, vol. 2K, pp. 1–161. The Natural Environment and Biogeochemical Cycles. Springer Verlag, Berlin.Google Scholar
  291. 291.
    Reineke, W., 1998, Development of hybrid strains for the mineralization of chloroaromatics by patchwork assembly. Annu. Rev. Microbiol., 52:287–331.PubMedCrossRefGoogle Scholar
  292. 292.
    Reineke, W., Jeenes, DJ., Williams, P.A., and Knackmuss, H.-J., 1982, TOL plasmid pWW0 in constructed halobenzoate-degrading Pseudomonas strains: Prevention of meta pathway. J.Bacteriol., 150:195–201.PubMedGoogle Scholar
  293. 293.
    Reineke, W. and Knackmuss, H.-J., 1978, Chemical structure and biodegradability of halogenated aromatic compounds. Substituent effects on 1,2-dioxygenation of benzoic acid. Biochim. Biophys. Acta, 532:412–423.CrossRefGoogle Scholar
  294. 294.
    Reineke, W. and Knackmuss, H.-J., 1978, Chemical structure and biodegradability of halo-genated aromatic compounds. Subtituent effects on dehydrogenation of 3,5-cyclohexadiene-1,2-diol-l-carboxylic acid. Biochim. Biophys. Acta, 542:424–429.PubMedCrossRefGoogle Scholar
  295. 295.
    Reineke, W. and Knackmuss, H.-J., 1979, Construction of haloaromatics utilising bacteria. Nature, 277:385–386.PubMedCrossRefGoogle Scholar
  296. 296.
    Resnick, S.M. and Chapman, P.J., 1994, Physiological properties and substrate specificity of a pentachlorophenol degrading Pseudomonas species. Biodegradation, 5:47–54.PubMedGoogle Scholar
  297. 297.
    Resnick, S.M. and Gibson, D.T., 1996, Regio-and stereospecific oxidation of fluorene, dibenzofuran, and dibenzothiophene by naphthalene dioxygenase from Pseudomonas sp. strain NCIB 9816-4. Appl. Environ. Microbiol., 62:4073–4080.PubMedGoogle Scholar
  298. 298.
    Romanov, V and Hausinger, R.P., 1994, Pseudomonas aeruginosa 142 uses a three-component ortho-halobenzoate 1,2-dioxygenase for the metabolism of 2,4-dichloro-and 2-chlorobenzoate. J. Bacteriol., 176:3368–3374.PubMedGoogle Scholar
  299. 299.
    Romanov, VP, Grechkina, G.M., Adanin, VM., and Starovoitov, I.I., 1993, Oxidative dehalogenation of 2-chloro-and 2,4-dichlorobenzoates by Pseudomonas aeruginosa. Microbiology, 62:532–536.Google Scholar
  300. 300.
    Romine, M.F., Stillwell, L.C., Wong, K.K., Thurston, S.J., Sisk, E.C., Sensen, C., Gaasterland, T., Fredrickson, J.K., and Saffer, J.D., 1999, Complete sequence of a 184-kilobase catabolic plasmid from Sphingomonas aromaticivorans F199. J. Bacteriol., 181:1585–1602.PubMedGoogle Scholar
  301. 301.
    Rondon, M.R., August, PR., Bettermann, A.D., Brady, S.F., Grossman, T.H., Liles, M.R., Loiacono, K.A., Lynch, B.A., MacNeil, I.A., Minor, C., Tiong, C.L., Gilman, M., Osburne, M.S., Clardy, J., Handelsman, J., and Goodman, R.M., 2000, Cloning the soil metagenome: A strategy for accessing the genetic and functional diversity of uncultured microorganisms. Appl. Environ. Microbiol., 66:2541–2547.PubMedCrossRefGoogle Scholar
  302. 302.
    Rossello-Mora, R.A., Lalucat, J., and Garcia-Valdes, E., 1994, Comparative biochemical and genetic analysis of naphthalene degradation among Pseudomonas stutzeri strains. Appl. Environ. Microbiol., 6:966–972.Google Scholar
  303. 303.
    Rubio, M.A., Engesser, K.-H., and Knackmuss, H.-J., 1986, Microbial metabolism of chlorosalicylates: Accelerated evolution by natural genetic exchange. Arch. Microbiol., 145:116–122.PubMedCrossRefGoogle Scholar
  304. 304.
    Ruisinger, S., Klages, U., and Lingens, F., 1976, Abbau der 4-Chlorbenzoesäure durch eine Arthrobacter species. Arch. Microbiol., 110:253–256.PubMedCrossRefGoogle Scholar
  305. 305.
    Saber, D.L. and Crawford, R.L., 1985, Isolation and characterization of Flavobacterium strains that degrade pentachlorophenol. Appl Environ. Microbiol., 50:1512–1518.PubMedGoogle Scholar
  306. 306.
    Saboo, V.M. and Gealt, M.A., 1998, Gene sequences of the pcpB gene of pentachlorophenol-degrading Sphingomonas chlorophenolica found in nondegrading bacteria. Can. J. Microbiol., 44:667–675.PubMedGoogle Scholar
  307. 307.
    Saint, C.P., McClure, N.C., and Venables, W.A., 1990, Physical map of the aromatic amine and m-toluate catabolic plasmid pTDNl in Pseudomonas putida: Location of a unique meta-cleavage pathway. J. Gen. Microbiol., 136:615–625.PubMedCrossRefGoogle Scholar
  308. 308.
    Sakai, M., Masai, E., Asami, H., Sugiyama, K., Kimbara, K., and Fukuda, M., 2002, Diversity of 2,3-dihydroxybiphenyl dioxygenase genes in a strong PCB degrader, Rhodococcus sp. strain RHA1. J. Biosci. Bioeng., 93:421–427.PubMedGoogle Scholar
  309. 309.
    Sander, P., Wittich, R.-M., Fortnagel, P., Wilkes, H., and Francke, W., 1991, Degradation of 1,2,4-trichloro-and 1,2,4,5-tetrachlorobenzene by Pseudomonas strains. Appl Environ. Microbiol., 57:1430–1440.PubMedGoogle Scholar
  310. 310.
    Sanford, R.A., Cole, J.R., Löffler, F.E., and Tiedje, J.M., 1996, Characterization of Desulfitobacterium chlororespirans sp. nov., which grows by coupling the oxidation of lactate to the reductive dechlorination of 3-chloro-4-hydroxybenzoate. Appl. Environ. Microbiol., 62:3800–3808.PubMedGoogle Scholar
  311. 311.
    Sato, S.I., Nam, J.W., Kasuga, K., Nojiri, H., Yamane, H., and Omori, T., 1997, Identification and characterization of genes encoding carbazole l,9a-dioxygenase in Pseudomonas sp. strain CA10. J. Bacteriol., 179:4850–4858.PubMedGoogle Scholar
  312. 312.
    Savard, P., Charest, H., Sylvestre, M., Shareck, F., Scholten, J.D., and Dunaway-Mariano, D., 1992, Expression of the 4-chlorobenzoate dehalogenase genes from Pseudomonas sp. CBS3 in Eschericia coli and identification of the gene translation products. Can. J. Microbiol., 38:1074–1083.PubMedCrossRefGoogle Scholar
  313. 313.
    Schell, U., Helin, S., Kajander, T., Schlömann, M., and Goldman, A., 1999, Structural basis for the activity of two muconate cycloisomerase variants toward substituted muconates. Prot. Struct. Funct. Genet., 34:125–136.CrossRefGoogle Scholar
  314. 314.
    Schennen, U., Braun, K., and Knackmuss, H.-J., 1985, Anaerobic degradation of 2-fluorobenzoate by benzoate-degrading, denitrifying bacteria. J. Bacteriol., 161:321–325.PubMedGoogle Scholar
  315. 315.
    Schlömann, M., 1994, Evolution of chlorocatechol catabolic pathways. Conclusions to be drawn from comparisons of lactone hydrolases. Biodegradation, 5:301–321.PubMedCrossRefGoogle Scholar
  316. 316.
    Schlömann, M., Fischer, P., Schmidt, E., and Knackmuss, H.-J., 1990, Enzymatic formation, stability, and spontaneous reactions of 4-fluoromuconolactone, a metabolite of the bacterial degradation of 4-fluorobenzoate. J. Bacteriol., 172:5119–5129.PubMedGoogle Scholar
  317. 317.
    Schlömann, M., Schmidt, E., and Knackmuss, H.-J., 1990, Different types of dienelactone hydrolase in 4-fluorobenzoate-utilizing bacteria. J. Bacteriol., 172:5112–5118.PubMedGoogle Scholar
  318. 318.
    Schmidt, E. and Knackmuss, H.-J., 1980, Chemical structure and biodegradability of halogenated aromatic compounds. Conversion of chlorinated muconic acids into maleoylacetic acid. Biochem. J., 192:339–347.PubMedGoogle Scholar
  319. 319.
    Schmidt, E., Remberg, G., and Knackmuss, H.-J., 1980, Chemical structure and biodegradability of halogenated aromatic compounds. Halogenated muconic acids as intermediates. Biochem. J., 192:331–337.PubMedGoogle Scholar
  320. 320.
    Schmidt, S. and Kirby, G.W., 2001, Dioxygenative cleavage of C-methylated hydroquinones and 2,6-dichlorohydroquinone by Pseudomonas sp. HH35. Biochim. Biophys. Acta, 1568:83–89.PubMedCrossRefGoogle Scholar
  321. 321.
    Schmidt, S., Wittich, R.-M., Erdmann, D., Wilkes, H., Francke, W., and Fortnagel, P., 1992, Biodegradation of diphenyl ether and its monohalogenated derivatives by Sphingomonas sp. strain SS3. Appl Environ. Microbiol., 58:2744–2750.PubMedGoogle Scholar
  322. 322.
    Schmitz, A., Gartemann, K.-H., Fiedler, J., Grund, E., and Eichenlaub, R., 1992, Cloning and sequence analysis of genes for dehalogenation of 4-chlorobenzoate from Arthrobacter sp. strain SU. Appl Environ. Microbiol., 58:4068–4071.PubMedGoogle Scholar
  323. 323.
    Scholten, J.D., Chang, K.-H., Babbitt, P.C., Charest, H., Sylvestre, M., and Dunaway-Mariano, D., 1991, Novel enzymic hydrolytic dehalogenation of a chlorinated aromatic. Science, 253:182–185.PubMedCrossRefGoogle Scholar
  324. 324.
    Schraa, G., Boone, M.L., Jeten, M.S.M., van Neerven, A.R.W., Colberg, P.J., and Zehnder, A.J.B., 1986, Degradation of 1,4-dichlorobenzene by Alcaligenes sp. strain Al75. Appl. Environ. Microbiol., 52:1374–1381.PubMedGoogle Scholar
  325. 325.
    Schreiber, A., Hellwig, M., Dorn, E., Reineke, W., and Knackmuss, H.-J., 1980, Critical reactions in fluorobenzoic acid degradation by Pseudomonas sp. B13. Appl. Environ. Microbiol., 39:58–67.PubMedGoogle Scholar
  326. 326.
    Schweigert, N., Zehnder, A.J.B., and Eggen, R.I.L., 2001, Chemical properties of catechols and their molecular modes of toxic action in cells, from microorganisms to mammals. Environ. Microbiol., 3:81–91.PubMedCrossRefGoogle Scholar
  327. 327.
    Schweizer, D., Markus, A., Seez, M., Ruf, H., and Lingens, F., 1987, Purification and some properties of component B of the 4-chlorophenylacetate 3,4-dioxygenase from Pseudomonas species strain CBS 3. J. Biol. Chem., 262:9340–9346.PubMedGoogle Scholar
  328. 328.
    Schwien, U. and Schmidt, E., 1982, Improved degradation of monochlorophenols by a constructed strain. Appl. Environ. Microbiol., 44:33–39.PubMedGoogle Scholar
  329. 329.
    Seah, S.Y.K., Labbe, G., Kaschabek, S.R., Reifenrath, E, Reineke, W., and Eltis, L.D., 2001, Comparative specificities of two evolutionarily divergent hydrolases involved in microbial degradation of polychlorinated biphenyls. J. Bacteriol., 183:1511–1516.PubMedCrossRefGoogle Scholar
  330. 330.
    Seah, S.Y.K., Labbe, G., Nerdinger, S., Johnson, M.R., Snieckus, V., and Eltis, L.D., 2000, Identification of a serine hydrolase as a key determinant in the microbial degradation of polychlorinated biphenyls. J. Biol Chem., 275:15701–15708.PubMedCrossRefGoogle Scholar
  331. 331.
    Seegal, B.C. and Holden, M., 1945, The antibiotic activity of extracts of Ranunculaceae. Science, 101:413–414.PubMedCrossRefGoogle Scholar
  332. 332.
    Seeger, M., Timmis, K.N., and Hofer, B., 1997, Bacterial pathways for the degradation of polychlorinated biphenyls. Marine Chem., 58:327–333.CrossRefGoogle Scholar
  333. 333.
    Seeger, M., Timmis, K.N., and Hofer, B., 1995, Degradation of chlorobiphenyls catalyzed by the bph-encoded biphenyl-2,3-dioxygenase and biphenyl-2,3-dihydrodiol-2,3-dehydrogenase of Pseudomonas sp. LB400. FEMS Microbiol. Lett., 133:259–264.PubMedCrossRefGoogle Scholar
  334. 334.
    Seeger, M., Zielinski, M., Timmis, K.N., and Hofer, B., 1999, Regiospecificity of dioxygenation of di-to pentachlorobiphenyls and their degradation to chlorobenzoates by the bph-encoded catabolic pathway of Burkholderia sp. strain LB400. Appl. Environ. Microbiol., 65:3614–3621.PubMedGoogle Scholar
  335. 335.
    Segers, P., Vancanneyt, M., Pot, B., Torck, U., Hoste, B., Dewettinck, D., Felsen, E., Kersters, K., and de Vos, P., 1994, Classification of Pseudomonas diminuta Leifson and Hugh 1954 and Pseudomonas vesticularis Büsing, Döll, and Freytag in Brevundimonas gen. nov as Brevundimonas diminuta comb. nov. and Brevundimonas vesticularis comb, nov, respectively. Int. J. Syst. Microbiol., 44:499–510.Google Scholar
  336. 336.
    Selifonov, S.A., Slepen’kin, A.V, Adanin, V.M., Nefedova, M.Y., and Starovoitov, 1992, Oxidation of dibenzofuran by Pseudomonas harboring plasmids for naphthalene degradation. Mikrobiologiya, 60:67–71.Google Scholar
  337. 337.
    Shepherd, J.M. and Lloyd-Jones, G., 1998, Novel carbazole degradation genes of Sphingomonas CB3: Sequence analysis, transcription, and molecular ecology. Biochem. Biophys. Res. Commun., 247:129–135.PubMedCrossRefGoogle Scholar
  338. 338.
    Shields, M.S., Montgomery, S.O., Chapman, P.J., Cuskey, S.M., and Pritchard, P.H., 1989, Novel pathway of toluene catabolism in the trichloroethylene-degrading bacterium G4. Appl. Environ. Microbiol., 55:1624–1629.PubMedGoogle Scholar
  339. 339.
    Shingler, V., Powlowski, J., and Marklund, U., 1992, Nucleotide sequence and functional analysis of the complete phenol/3,4-dimethylphenol catabolic pathway of Pseudomonas sp. strain CF600. J. Bacteriol., 174:711–724.PubMedGoogle Scholar
  340. 340.
    Shirtliff, M.E., Mader, J.T., and Camper, A.K., 2002, Molecular interactions in biofilms. Chem. Biol., 9:859–871.PubMedCrossRefGoogle Scholar
  341. 341.
    Skiba, A., Hecht, V., and Pieper, D.H., 2002, Formation of protoanemonin from 2-chloro-cis,cis-muconate by the combined action of muconate cycloisomerase and muconolactone isomerase. J. Bacteriol., 184:5402–5409.PubMedCrossRefGoogle Scholar
  342. 342.
    Solyanikova, I.P., Malteva, O.V, Vollmer, M.D., Golovleva, L.A., and Schlömann, M., 1995, Characterization of muconate and chloromuconate cycloisomerase from Rhodococcus erythropolis 1CP: Indications for functionally convergent evolution among bacterial cycloisomerases. J. Bacteriol., 177:2821–2826.PubMedGoogle Scholar
  343. 343.
    Song, B., Kerkhof, L.J., and Häggblom, M.M., 2002, Characterization of bacterial consortia capable of degrading 4-chlorobenzoate and 4-bromobenzoate under denitrifying conditions. FEMS Microbiol. Lett., 213:183–188.PubMedCrossRefGoogle Scholar
  344. 344.
    Song, B., Palleroni, N., Kerkhof, L.J., and Häggblom, M.M., 2001, Characterization of halobenzoate-degrading, denitrifying Azoarcus and Thauera isolates and description of Thauera chlorobenzoica sp. nov. Int. J. Syst. Evol. Microbiol., 51:589–602.PubMedGoogle Scholar
  345. 345.
    Song, B.K., Palleroni, N.J., and Häggblom, M.M., 2000, Isolation and characterization of diverse halobenzoate-degrading denitrifying bacteria from soils and sediments. Appl. Environ. Microbiol., 66:3446–3453.PubMedCrossRefGoogle Scholar
  346. 346.
    Springael, D., Kreps, S., and Mergeay, M., 1993, Identification of a catabolic transposon, Tn4371, carrying biphenyl and 4-chlorobiphenyl degradation genes in Alcaligenes eutrophus A5. J. Bacteriol., 175:1674–1681.PubMedGoogle Scholar
  347. 347.
    Springael, D., Peys, K., Ryngaert, A., van Roy, S., Hooyberghs, L., Ravatn, R., Heyndrickx, M., van der Meer, J.R., Vandecasteele, C., Mergeay, M., and Diels, L., 2002, Community shifts in a seeded 3-chlorobenzoate degrading membrane biofilm reactor: Indications for involvement of in situ horizontal transfer of the clc-element from inoculum to contaminant bacteria. Environ. Microbiol., 4:70–80.PubMedCrossRefGoogle Scholar
  348. 348.
    Stanier, R.Y., Palleroni, N., and Doudoroff, M., 1966, The aerobic Pseudomonas: A taxonomic study. J. Gen. Microbiol., 43:159–271.PubMedCrossRefGoogle Scholar
  349. 349.
    Stanier, R.Y. and Ornston, L.N., 1973, The β-ketoadipate pathway. In A.H. Rose and D.W. Tempest (eds), Advances in Microbial Physiology, vol. 9, pp. 89–151. Academic press, London.Google Scholar
  350. 350.
    Stickler, D., 1999, Biofilms. Curr. Opin. Microbiol., 2:270–275.PubMedCrossRefGoogle Scholar
  351. 351.
    Stover, C.K., Pham, X.Q., Erwin, A.L., Mizoguchi, S.D., Warrener, P., Hickey, M.J., Brinkman, F.S.L., Humagle, W.O., Kowalik, DJ., Lagrou, M., Garber, R.L., Goltry, L., Tolentino, E., Westbrock-Wadman, S., Yuan, Y., Brody, L.L., Coulter, S.N., Folger, K.R., Kas, A., Larbig, K., Lim, R., Smith, K., Spencer, D, Wong, G.K.S., Wu, Z., Paulsen, I.T., Reizer, J., Saier, M.H., Hancock, R.E.W., Lory, S., and Olson, M.V, 2000, Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature, 406:959–964.PubMedCrossRefGoogle Scholar
  352. 352.
    Strubel, V., Engesser, K.-H., Fischer, P., and Knackmuss, H.-J., 1991, 3-(2-Hydroxyphenyl) catechol as substrate for proximal meta ring cleavage in dibenzofuran degradation by Brevibacterium sp. strain DPO 1361. J. Bacteriol., 173:1932–1937.PubMedGoogle Scholar
  353. 353.
    Suenaga, H., Nishi, A., Watanabe, T., Sakai, M., and Furukawa, K., 1999, Engineering a hybrid pseudomonad to acquire 3,4-dioxygenase activity for polychlorinated biphenyls. J. Biosci. Bioeng., 87:430–435.PubMedCrossRefGoogle Scholar
  354. 354.
    Suzuki, K., Ogawa, N., and Miyashita, K., 2001, Expression of 1,2-halobenzoate dioxygenase genes (cbdSABC) involved in the degradation of benzoate and 2-halobenzoate in Burkholderia sp. TH2. Gene, 262:137–145.PubMedCrossRefGoogle Scholar
  355. 355.
    Taira, K., Hirose, J., Hayashida, S., and Furukawa, K., 1991, Analysis of bph operon from the polychlorinated biphenyl-degrading strain of Pseudomonas pseudoalcaligenes KF707. J. Biol. Chem., 267:4844–4853.Google Scholar
  356. 356.
    Takeuchi, M., Hamana, K., and Hiraishi, A., 2001, Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses. Int. J. Syst. Evol. Microbiol., 51:1405–1417.PubMedGoogle Scholar
  357. 357.
    Takizawa, N., Yokoyama, H., Yanagihara, K., Hatta, T., and Kiyohara, H., 1995, A locus of Pseudomonas pickettii DTP0602, had, that encodes 2,4,6-trichlorophenol-4-dechlorinase with hydroxylase activity, and hydroxylation of various chlorophenols by the enzyme. J. Ferm. Bioeng., 80:318–326.CrossRefGoogle Scholar
  358. 358.
    Tamaoka, J., Ha, D., and Komagata, K., 1987, Reclassification of Pseudomonas acidovorans den Dooren de Jong 1926 and Pseudomonas testosteroni Marcus and Talalay 1956 as Comamonas acidovorans com. nov. and Comamonas testosteroni comb, nov., with an emended description of the genus Comamonas. Int. J. Syst. Microbiol., 37:52–59.Google Scholar
  359. 359.
    Tan, H.-M. and Cheong, C.-M., 1994, Substitution of the ISP a subunit of biphenyl dioxygenase from Pseudomonas results in a modification of the enzyme activity. Biochem. Biophys. Res. Commun., 204:912–917.PubMedCrossRefGoogle Scholar
  360. 360.
    Teramoto, M., Futamata, H., Harayama, S., and Watanabe, K., 1999, Characterization of a high-affinity phenol hydroxylase from Comamonas testosteroni R5 by gene cloning, and expression in Pseudomonas aeruginosa PAO 1c. Mol. Gen. Genet, 262:552–558.PubMedCrossRefGoogle Scholar
  361. 361.
    Thiele, J., Müller, R., and Lingens, F., 1988, Enzymatic dehalogenation of 4-chlorobenzoate by 4-chlorobenzoate dehalogenase from Pseudomonas sp. CBS3 in organic solvents. Appl. Microbiol. Biotechnol., 27:577–580.Google Scholar
  362. 362.
    Tiedje, J.M., Duxbury, J.M., Alexander, M., and Dawson, J.E., 1969, 2,4-D Metabolism: Pathway of degradation of chlorocatechols by Arthrobacter sp. J. Agric. Food Chem., 17:1021–1026.PubMedCrossRefGoogle Scholar
  363. 363.
    Tiirola, M.A., Mannisto, M.K., Puhakka, J.A., and Kulomaa, M.S., 2002, Isolation and characterization of Novosphingobium sp. strain MT1, a dominant polychlorophenol-degrading strain in a groundwater bioremediation system. Appl Environ. Microbiol., 68:173–180.PubMedCrossRefGoogle Scholar
  364. 364.
    Tiirola, M.A., Wang, H., Paulin, L., and Kulomaa, M.S., 2002, Evidence for natural horizontal transfer of the pcpB gene in the evolution of polychlorophenol-degrading sphin-gomonads. Appl Environ. Microbiol., 68:4495–4501.PubMedCrossRefGoogle Scholar
  365. 365.
    Top, E.M., Holben, W., and Forney, L.J., 1995, Characterization of diverse 2,4-dichlorophe-noxyacetic acid-degradative plasmids isolated from soil by complementation. Appl. Environ. Microbiol., 61:1691–1698.PubMedGoogle Scholar
  366. 366.
    Top, E.M., Springael, D., and Boon, N., 2002, Catabolic mobile genetic elements and their potential use in bioaugmentation of polluted soils and waters. FEMS Microbiol. Ecol., 42:199–208.PubMedCrossRefGoogle Scholar
  367. 367.
    Topp, E. and Akhtar, M.H., 1991, Identification and characterization of a Pseudomonas strain capable of metabolizing phenoxybenzoates. Appl Environ. Microbiol., 57:1294–1300.PubMedGoogle Scholar
  368. 368.
    Tsoi, T.V, Plotnikova, E.G., Cole, J.R., Guerin, W.E, Bagdasarian, M., and Tiedje, J.M., 1999, Cloning, expression, and nucleotide sequence of the Pseudomonas aeruginosa 142 ohb genes coding for oxygenolytic ortho dehalogenation of halobenzoates. Appl Environ. Microbiol., 65:2151–2162.PubMedGoogle Scholar
  369. 369.
    Vaillancourt, F.H., Haro, M.A., Drouin, N.M., Karim, Z., Maaroufi, H., and Eltis, L.D., 2003, Characterization of extradiol dioxygenases from a poly chlorinated biphenyl-degrading strain that possess higher specificities for chlorinated metabolites. J. Bacteriol., 185:1253–1260.PubMedCrossRefGoogle Scholar
  370. 370.
    Vaillancourt, F.H., Labbe, G., Drouin, N.M., Fortin, P.D., and Eltis, L.D., 2002, The mechanism-based inactivation of 2,3-dihydroxybiphenyl 1,2-dioxygenase by catecholic substrates. J. Biol. Chem., 277:2019–2027.PubMedCrossRefGoogle Scholar
  371. 371.
    Vallaeys, T., Fulthorpe, R.R., Wright, A.M., and Soulas, G., 1996, The metabolic pathway of 2,4-dichlorophenoxyacetic acid degradation involves different families of tfdA and tfdB genes according to PCR-RFLP analysis. FEMS Microbiol. Ecol., 20:163–172.CrossRefGoogle Scholar
  372. 372.
    van den Tweel, W.J.J., Kok, J.B., and de Bont, J.A.M., 1987, Reductive dechlorination of 2,4-dichlorobenzoate to 4-chlorobenzoate and hydrolytic dehalogenation of 4-chloro-, 4-bromo-, and 4-iodobenzoate by Alcaligenes denitriflcans NTB1. Appl Environ. Microbiol., 53:810–815.PubMedGoogle Scholar
  373. 373.
    van der Meer, J.R., van Neerven, A.R.W., de Vries, E.J., de Vos, W.M., and Zehnder, A.J.B., 1991, Cloning and characterization of plasmid-encoded genes for the degradation of 1,2-dichloro-, 1,4-dichloro-, and 1,2,4-trichlorobenzene of Pseudomonas sp. strain P51. J. Bacteriol., 173:6–15.PubMedGoogle Scholar
  374. 374.
    van der Meer, J.R., Ravatn, R., and Sentchilo, V., 2001, The clc element of Pseudomonas sp. strain B13 and other mobile degradative elements employing phage-like integrases. Arch. Microbiol., 175:79–85.PubMedCrossRefGoogle Scholar
  375. 375.
    van der Meer, J.R., Roelofsen, W., Schra, G., and Zehnder, A.J.B., 1987, Degradation of low concentrations of dichlorobenzenes and 1,2,4-trichlorobenzene by Pseudomonas sp. strain P51 in nonsterile soil columns. FEMS Microbiol. Ecol., 45:333–341.CrossRefGoogle Scholar
  376. 376.
    Vargas, C., Song, B., Camps, M., and Häggblom, M.M., 2000, Anaerobic degradation of fluorinated aromatic compounds. Appl. Microbiol. Biotechnol., 53:342–347.PubMedCrossRefGoogle Scholar
  377. 377.
    Vollmer, M.D., Hoier, H., Hecht, HJ., Schell, U., Groning, I, Goldman, A., and Schlömann, M., 1998, Substrate specificity of and product formation by muconate cycloisomerases: An analysis of wild-type enzymes and engineered variants. Appl. Environ. Microbiol., 64:3290–3299.PubMedGoogle Scholar
  378. 378.
    Vollmer, M.D., Schell, U., Seibert, V., Lakner, S., and Schlömann, M., 1999, Substrate speci-ficities of the chloromuconate cycloisomerases from Pseudomonas sp. B13, Ralstonia eutropha JMP134 and Pseudomonas sp. P51. Appl. Microbiol. Biotechnol., 51:598–605.PubMedCrossRefGoogle Scholar
  379. 379.
    Vollmer, M.D. and Schlömann, M., 1995, Conversion of 2-chloro-cis-cis-muconate and its metabolites 2-chloro-and S-chloromuconolactone by chloromuconate cycloisomerase of pJP4 and pAC27. J. Bacteriol., 177:2938–2941.PubMedGoogle Scholar
  380. 380.
    Vollmer, M.D., Stadler-Fritzsche, K., and Schlömann, M., 1993, Conversion of 2-chloroma-leylacetate in Alcaligenes eutrophus JMP134. Arch. Microbiol., 159:182–188.PubMedCrossRefGoogle Scholar
  381. 381.
    Vollmer, M.D., Fischer, P., Knackmuss, H.-J., and Schlömann, M., 1994, Inability of muconate cycloisomerases to cause dehalogenation during conversion of 2-chloro-cis,cis-muconate. J. Bacteriol., 176:4366–4375.PubMedGoogle Scholar
  382. 382.
    Weisshaar, M.P., Franklin, F.C., and Reineke, W., 1987, Molecular cloning and expression of the 3-chlorobenzoate-degrading genes from Pseudomonas sp. strain B13. J. Bacteriol., 169:394–402.PubMedGoogle Scholar
  383. 383.
    Wen, A., Fegan, M., Hayward, C., Chakraborty, S., and Sly, L., 1999, Phylogenetic relationships among members of the Comamonadaceae, and description of Delftia acidovorans (den Dooren de Jong 1926 and Tamaoka et al, 1987) gen. nov, comb. nov. Int. J. Syst. Bacteriol., 49:567–576.PubMedCrossRefGoogle Scholar
  384. 384.
    Werlen, C., Kohler, H.P.E., and van der Meer, J.R., 1996, The broad substrate chlorobenzene dioxygenase and cis-chlorobenzene dihydrodiol dehydrogenase of Pseudomonas sp. strain P51 are linked evolutionarily to the enzymes for benzene and toluene degradation. J. Biol. Chem., 271:4009–4016.PubMedCrossRefGoogle Scholar
  385. 385.
    Whited, G.M. and Gibson, D.T., 1991, Toluene-4-monooxygenase, a three-component enzyme system that catalyzes the oxidation of toluene to p-cresol in Pseudomonas mendocina KR1. J. Bacteriol., 173:3010–3016.PubMedGoogle Scholar
  386. 386.
    Wieser, M., Wagner, B., Eberspächer, I, and Lingens, E, 1997, Purification and characterization of 2,4,6-trichlorophenol-4-monooxygenase, a dehalogenating enzyme from Azotobacter sp. strain GP1. J. Bacteriol., 179:202–208.PubMedGoogle Scholar
  387. 387.
    Wilkes, H., Wittich, R.M., Timmis, K.N., Fortnagel, P., and Francke, W., 1996, Degradation of chlorinated dibenzofurans and dibenzo-p-dioxins by Sphingomonas sp. strain RWL Appl. Environ. Microbiol., 62:367–371.Google Scholar
  388. 388.
    Willems, A., Goor, M., Thielemans, S., Gillis, M., Kersters, K., and de Ley, J., 1992, Transfer of several phytopathogenic Pseudomonas species to Acidovorax as Acidovorax avenae subsp. avenae subsp. nov., comb, nov, Acidovorax avenae subsp. citrulli, Acidovorax avenae subsp. cattleyae, and Acidovorax konjaci. Int. J. Syst. Microbiol., 42:107–119.Google Scholar
  389. 389.
    Williams, P.A., Jones, R.M., and Shaw, L.E., 2002, A third transposable element, ISPpul2, from the toluene-xylene catabolic plasmid pWWO of Pseudomonas putida mt-2. J. Bacteriol., 184:6572–6580.PubMedCrossRefGoogle Scholar
  390. 390.
    Wittich, R.-M., Schmidt, S., and Fortnagel, P., 1990, Bacterial degradation of 3-and 4-carboxybiphenyl ether by Pseudomonas sp. NSS2. FEMS Microbiol. Lett., 67:157–160.CrossRefGoogle Scholar
  391. 391.
    Wittich, R.-M., Wilkes, H., Sinnwell, V., Francke, W., and Fortnagel, P., 1992, Metabolism of dibenzo-p-dioxin by Sphingomonas sp. strain RWL Appl. Environ. Microbiol., 58:1005–1010.Google Scholar
  392. 392.
    Wittich, R.M., Strömpl, C., Moore, E.R.B., Blasco, R., and Timmis, K.N., 1999, Interaction of Sphingomonas and Pseudomonas strains in the degradation of chlorinated dibenzofurans. J. Ind. Microbiol. Biotechnol., 23:353–358.PubMedCrossRefGoogle Scholar
  393. 393.
    Wolgel, S.A., Dege, J.E., Perkins-Olson, P.E., Juarez-Garcia, C.H., Crawford, R.L., Münck, E., and Lipscomb, J.D., 1993, Purification and characterization of protocatechuate 2,3-dioxygenase from Bacillus macerans: A new extradiol catecholic dioxygenase. J. Bacteriol., 175:4414–4426.PubMedGoogle Scholar
  394. 394.
    Worsey, M. and Williams, P.A., 1975, Metabolism of toluene and xylenes by Pseudomonas putida (arvilla) mt-2: Evidence for a new function of the TOL plasmid. J. Bacteriol., 124:7–13.PubMedGoogle Scholar
  395. 395.
    Xiang, H., Luo, L.S., Taylor, K.L., and Dunaway-Mariano, D., 1999, Interchange of catalytic activity within the 2-enoyl-coenzyme a hydratase isomerase superfamily based on a common active site template. Biochemistry, 38:7638–7652.PubMedCrossRefGoogle Scholar
  396. 396.
    Xu, L., Resing, K., Lawson, S.L., Babbitt, P.C., and Copley, S.D., 1999, Evidence that pcpA encodes 2,6-dichlorohydroquinone dioxygenase, the ring cleavage enzyme required for pentachlorophenol degradation in Sphingomonas chlorophenolica strain ATCC 39723. Biochemistry, 38:7659–7669.PubMedCrossRefGoogle Scholar
  397. 397.
    Xun, L. and Orser, C.S., 1991, Purification and properties of pentachlorophenol hydroxylase, a flavoprotein from Flavobacterium sp. strain ATCC 39723. J. Bacteriol., 173:4447–4453.PubMedGoogle Scholar
  398. 398.
    Xun, L., Topp, E., and Orser, C.S., 1992, Purification and characterization of a tetrachloro-p-hydroquinone reductive dehalogenase from a Flavobacterium sp. J. Bacteriol., 174:8003–8007.PubMedGoogle Scholar
  399. 399.
    Xun, L.Y., 1996, Purification and characterization of chlorophenol 4-monooxygenase from Burkholderia cepacia AC1100. J. Bacteriol., 178:2645–2649.PubMedGoogle Scholar
  400. 400.
    Xun, L.Y., Bohuslavek, J., and Cai, M.A., 1999, Characterization of 2,6-dichloro-p-hydroquinone 1,2-dioxygenase (PcpA) of Sphingomonas chlorophenolica ATCC 39723. Biochem. Biophys. Res. Commun., 266:322–325.PubMedCrossRefGoogle Scholar
  401. 401.
    Yabuuchi, E., Kosako, Y., Oyaizu, H., Yano, I., Hotta, H., Hashimoto, Y., Ezaki, T., and Arakawa, M., 1992, Proposal of Burkholderia gen. nov. and transfer of seven species of the genus Pseudomonas homology group II to the new genus, with the type species Burkholderia cepacia (Palleroni and Holmes 1981) comb. nov. Microbiol. Immunol., 36:1251–1275.PubMedGoogle Scholar
  402. 402.
    Yabuuchi, E., Kosako, Y., Yano, I., Hotta, H., and Nishiuchi, Y., 1995, Transfer of two Burkholderia and an Alcaligenes species to Ralstonia gen. nov.; proposal of Ralstonia pickettii (Ralston, Palleroni, and Douderoff, 1973) comb, nov, Ralstonia solanacearum (Smith, 1896) comb. nov. and Ralstonia eutropha (Davis, 1969) comb. nov. Microbiol. Immunol., 39:897–904.PubMedGoogle Scholar
  403. 403.
    Yamamoto, S., Katagiri, M., Maeno, H., and Hayaishi, O., 1965, Salicylate hydroxylase, a monooxygenase requiring flavin adenin dinucleotide. I. Purification and general properties. J. Biol. Chem., 240:3408–3413.PubMedGoogle Scholar
  404. 404.
    Yang, G., Liang, P.-H., and Dunaway-Mariano, D., 1994, Evidence of nucleophilic catalysis in the aromatic substitution reaction catalyzed by (4-chlorobenzoyl) coenzyme A dehalogenase. Biochemistry, 33:8527–8531.PubMedCrossRefGoogle Scholar
  405. 405.
    Yeh, W.K., Gibson, D.T., and Liu, T.-N., 1977, Toluene dioxygenase: A multicomponent enzyme system. Biochem. Biophys. Res. Commun., 78:401–411.PubMedCrossRefGoogle Scholar
  406. 406.
    Yen, K.-M. and Karl, M.R., 1992, Identification of a new gene, tmoF, in the Pseudomonas mendocina KR1 gene cluster encoding toluene-4-monooxygenase. J. Bacteriol., 174:7253–7261.PubMedGoogle Scholar
  407. 407.
    Yen, K.-M., Karl, M.R., Blatt, L.M., Simon, M.J., Winter, R.B., Fausset, P.R., Lu, H.S., Harcourt, A.A., and Chen, K.K., 1991, Cloning and characterization of a Pseudomonas mendocina KR1 gene cluster encoding toluene-4-monooxygenase. J. Bacteriol., 173:5315–5327.PubMedGoogle Scholar
  408. 408.
    Yen, K.M. and Gunsalus, I.C., 1982, Plasmid gene organization: Naphthalene/salicylate oxidation. Proc. Natl. Acad. Sci. USA, 79:874–878.PubMedCrossRefGoogle Scholar
  409. 409.
    You, I.-S., Ghosal, D., and Gunsalus, I.C., 1991, Nucleotide sequence analysis of the Pseudomonas putida PpG7 salicylate hydroxylase gene (nahG) and its 3′-flanking region. Biochemistry, 30:1635–1641.PubMedCrossRefGoogle Scholar
  410. 410.
    Zaborina, O., Daubaras, D.L., Zago, A., Xun, L.Y., Saido, K., Klem, T., Nikolic, D., and Chakrabarty, A.M., 1998, Novel pathway for conversion of chlorohydroxyquinol to maleylacetate in Burkholderia cepacia AC1100. J. Bacteriol., 180:4667–4675.PubMedGoogle Scholar
  411. 411.
    Zaitsev, G.M. and Karasevich, Y.N., 1984, Utilization of 2-chlorobenzoic acid by Pseudomonas cepacia. Mikrobiologiya, 53:75–80.Google Scholar
  412. 412.
    Zhou, J. and Tiedje, J.M., 1995, Gene transfer from a bacterium injected into an aquifer to an indigenous bacterium. Mol. Ecol., 4:613–618.PubMedCrossRefGoogle Scholar
  413. 413.
    Zielinski, M., Backhaus, S., and Hofer, B., 2002, The principal determinants for the structure of the substrate-binding pocket are located within a central core of a biphenyl dioxygenase alpha subunit. Microbiology, 148:2439–2448.PubMedGoogle Scholar
  414. 414.
    Zylstra, G.J., McCombie, W.R., Gibson, D.T., and Finette, B.A., 1988, Toluene degradation by Pseudomonas putida Fl: Genetic organization of the tod operon. Appl. Environ. Microbiol., 54:1498–1503.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Dietmar H. Pieper
    • 1
  • Walter Reineke
    • 2
  1. 1.Department of Environmental MicrobiologyGBF-German Research Center for BiotechnologyBraunschweigGermany
  2. 2.Chemical MicrobiologyBergische Universität WuppertalWuppertalGermany

Personalised recommendations