Advertisement

Pseudomonas pp 165-195 | Cite as

Genomics of Catabolic Plasmids

  • Peter A. Williams
  • Rheinallt M. Jones
  • Gerben Zylstra

Abstract

Catabolic plasmids were discovered in the early 1970s by Chakrabarty, working in the laboratory of Gunsalus. These first plasmids were named SAL, OCT and CAM and encoded the catabolism ofsalicylate14, octane and other short chain linear alkanes15, and camphor73 respectively and were all found in strains of Pseudomonas. Shortly after, a naphthalene catabolic plasmid NAH was reported by Dunn from the same laboratory22 and then the TOL plasmid, now known as pWW0,was independently discovered and reported by Nakazawa and Yokota56 Williams and Murray97, and Wong and Dunn101, both also in Pseudomonas host strains. Given the remarkable taxonomic schisms that have more recently taken place within the genus of Pseudomonas since the advent of 16S rRNA gene sequences, all the host strains for these primary catabolic plasmids have remained solidly within the now much more narrowly defined genus of Pseudomonas. But however much the initial breakthrough owes to Pseudomonas, it is now clear three decades later that catabolic plasmids are comprehensively distributed across a very broad range of saprophytic soil bacteria.

Keywords

Pseudomonas Putida Cyanuric Acid Catabolic Gene Polycyclic Aromatic Hydrocarbon Degradation Salicylate Hydroxylase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aemprapa S. and Williams P.A., 1998, Implications of the xylQ gene of TOL plasmid pWW102 for the evolution of aromatic catabolic pathways. Microbiology, 144:1387–1396.PubMedGoogle Scholar
  2. 2.
    Assinder S.J. and Williams P.A., 1990, The TOL plasmids: Determinants of the catabolism of toluene and the xylenes. Adv. Microbial. Physiol., 31:1–69.Google Scholar
  3. 3.
    Bayley S.A., Duggleby C.J., Worsey M.J., Williams P.A., Hardy K.G., and Broda P., 1977, Two modes of loss of the Tol function from Pseudomonas putida mt-2. Molec. Gen. Genet., 154:203–204.PubMedGoogle Scholar
  4. 4.
    Barnsley E.A., 1976, Role of regulation of the ortho and meta pathways of catechol metabolism in Pseudomonads metabolizing naphthalene and salicylate. J. Bacteriol., 125:404–408.PubMedGoogle Scholar
  5. 5.
    Beil S., Timmis K.N., and Pieper D.H., 1999, Genetic and biochemical analyses of the tec operon suggest a route for evolution of chlorobenzene degradation genes. J. Bacteriol., 181:341–346.PubMedGoogle Scholar
  6. 6.
    Benjamin R.C., Voss J.A., and Kunz D.A., 1991, Nucleotide sequence of xylE from the TOL plasmid pDK1 and structural comparison with the isofunctional catechol 2,3-dioxygenases from TOL pWW0 and NAH7. J. Bacteriol., 173:2724–2728.PubMedGoogle Scholar
  7. 7.
    Boronin A.M., Kochetkov V.V., and Skryabin G.K., 1980, Incompatibility groups of napthalene degradative plasmids in Pseudomonas. FEMS Microbial. Lett., 7:249–252.Google Scholar
  8. 8.
    Bosch R., Garcia-Valdes E., and Moore E.R., 1999, Genetic characterization and evolutionary implications of a chromosomally encoded naphthalene-degradation upper pathway from Pseudomonas stutzeri AN10. Gene., 236:149–157.PubMedGoogle Scholar
  9. 9.
    Bosch R., Garcia-Valdes E., and Moore E.R., 2000, Complete nucleotide sequence and evolutionary significance of a chromosomally encoded naphthalene-degradation lower pathway from Pseudomonas stutzeri AN10. Gene., 245:65–74.PubMedGoogle Scholar
  10. 10.
    Boundy-Mills K.L., de Souza M.L., Mandelbaum R.T., Wackett L.P., and Sadowsky M.J., 1997, The atzB gene of Pseudomonas sp. strain ADP encodes the second enzyme of a novel atrazine degradation pathway. Appl. Environ. Microbiol., 63:916–923.PubMedGoogle Scholar
  11. 11.
    Cane P.A. and Williams P.A., 1982, The plasmid-coded metabolism of naphthalene and 2-methylnaphthalene in Pseudomonas strains: Phenotypic changes correlated with structural modification of plasmid pWW60-1. J. Gen. Microbiol., 128:2281–2290.Google Scholar
  12. 12.
    Cane P.A. and Williams P.A., 1986, A restriction map of naphthalene catabolic plasmid pWW60-1 and the location of some of its catabolic genes. J. Gen. Microbiol., 132:2919–2929.Google Scholar
  13. 13.
    Cebolla A., Sousa C., and de Lorenzo V., 1997, Effector specificity mutants of the transcriptional activator NahR of naphthalene degrading Pseudomonas define protein sites involved in binding of aromatic inducers. J. Biol. Chem., 272:3986–3992.PubMedGoogle Scholar
  14. 14.
    Chakrabarty A.M., 1972, Genetic basis of the biodegradation of salicylate. J. Bacteriol., 112:815–823.PubMedGoogle Scholar
  15. 15.
    Chakrabarty A.M., Chou G., and Gunsalus I.C., 1973, Genetic regulation of octane dissimilation plasmid in Pseudomonas. Proc. Nat. Acad. Sci. USA, 70:1137–1140.PubMedGoogle Scholar
  16. 16.
    Connors M.A. and Barnsley E.A., 1982, Naphthalene plasmids in pseudomonads. J. Bacteriol., 149:1096–1101.PubMedGoogle Scholar
  17. 17.
    Davies J.I. and Evans W.C., 1964, Oxidative metabolism of naphthalene by soil pseudomonads. Biochem. J. 91:251–261.PubMedGoogle Scholar
  18. 18.
    Denome S.A., Stanley D.C., Olson E.S., and Young K.D., 1993, Metabolism of dibenzothiophene and naphthalene in Pseudomonas strains: Complete DNA sequence of upper naphthalene catabolic pathway. J. Bacteriol., 175:6890–6901.PubMedGoogle Scholar
  19. 19.
    de Souza M.L., Sadowsky M.J., Seffernick J., Martinez B., and Wackett L.P., 1998, The atrazine catabolism genes are widespread and highly conserved. J. Bacteriol., 180:1951–1954.PubMedGoogle Scholar
  20. 20.
    de Souza M.L., Wackett L.P., and Sadowsky M.J., 1998, The atzABC genes encoding atrazine catabolism are located on a self-transmissible plasmid in Pseudomonas sp. strain ADP. Appl. Environ. Microbiol., 64:2323–2326.PubMedGoogle Scholar
  21. 21.
    de Souza M.L., Wackett L.P., Boundy-Mills K.L., Mandelbaum R.T., and Sadowsky M.J., 1995, Cloning, characterization, and expression of a gene region from Pseudomonas sp. strain ADP involved in the dechlorination of atrazine. Appl. Environ. Microbiol., 61:3373–3378.PubMedGoogle Scholar
  22. 22.
    Dunn N.W and Gunsalus I.C., 1973, Transmissible plasmid coding early enzymes of naphthalene oxidation in Pseudomonas putida J. Bacteriol., 114:974–979.PubMedGoogle Scholar
  23. 23.
    Eaton R.W, 1996, p-Cumate catabolic pathway in Pseudomonas putida F1: Cloning and characterization of DNA carrying the cmt operon. J. Bacteriol., 178:1351–1362.PubMedGoogle Scholar
  24. 24.
    Eaton R.W. and Chapman A.I, 1992, Bacterial metabolism of naphthalene: Construction and use of recombinant bacteria to study ring cleavage of 1,2-dihydronaphthalene and subsequent reactions. J. Bacteriol., 174:7542–7554.PubMedGoogle Scholar
  25. 25.
    Ensley B.D., Gibson D.T., and Laborde A.L., 1982, Oxidation of naphthalene by a multicomponent enzyme system from Pseudomonas sp. strain NCIB 9816. J. Bacteriol. 149:948–954.PubMedGoogle Scholar
  26. 26.
    Ensley B.D. and Gibson D.T., 1983, Naphthalene dioxygenase: Purification and properties of a terminal oxygenase component. J. Bacteriol., 155:505–511.PubMedGoogle Scholar
  27. 27.
    Evans W.C., Fernley H.N., and Griffiths E., 1965, Oxidative metabolism of phenanthrene and anthracene by soil pseudomonads. Biochem. J., 95:819–831.PubMedGoogle Scholar
  28. 28.
    Favaro R., Bernasconi C., Passini N., Bertoni G., Bestetti G., Galli E., and Deho G., 1996, Organisation of the tmb catabolic operons of Pseudomonas putida TMB and evolutionary relationship with the xyl operons of the TOL plasmid pWW0. Gene, 182:189–193.PubMedGoogle Scholar
  29. 29.
    Fuenmayor S.L., Wild M., Boyes A.L., and Williams P.A., 1998, A gene cluster encoding steps in the conversion of naphthalene to gentisate. J. Bacteriol., 180:2522–2530.PubMedGoogle Scholar
  30. 30.
    Greated A., Lambertsen L., Williams P.A., and Thomas C.M., 2002, Complete sequence of the IncP-9 TOL plasmid pWW0 from Pseudomonas putida. Environ. Microbiol., 4:856–871.PubMedGoogle Scholar
  31. 31.
    Grimm A.C. and Harwood C.S., 1997, Chemotaxis of Pseudomonas spp. to the polyaromatic hydrocarbon naphthalene. Appl. Environ. Microbiol., 63:4111–4115.PubMedGoogle Scholar
  32. 32.
    Grimm A.C. and Harwood C.S., 1999, NahY, a catabolic plasmid-encoded receptor required for chemotaxis of Pseudomonas putida to the aromatic hydrocarbon naphthalene. J. Bacteriol., 181:3310–3316.PubMedGoogle Scholar
  33. 33.
    Habe H., Kimura T., Nojori H., Yamane H., and Omori T., 1996, Cloning and nucleotide sequence of the genes involved in the meta cleavage pathway for cumene degradation in Pseudomonas fluorescens IP01. J. Fermentation. Bioeng., 81:247–254.Google Scholar
  34. 34.
    Habe H., Chung J.-S., Lee I-H., Kasuga K., Yoshida T., Nojiri H., and Omori T., 2001, Degradation of chlorinated dibenzofurans and dibenzo-p-dioxins by two types of bacteria having angular dioxygenases with different features. App. Environ. Microbiol., 67:3610–3617.Google Scholar
  35. 35.
    Haigler B.E. and Gibson D.T., 1990, Purification and properties of NADH-ferredoxinNAP reductase, a component of naphthalene dioxygenase from Pseudomonas sp. strain NCIB 9816. J. Bacteriol., 172:457–464.PubMedGoogle Scholar
  36. 36.
    Haigler B.E. and Gibson D.T., 1990, Purification and properties of ferredoxinNAP, a component of naphthalene dioxygenase from Pseudomonas sp. strain NCIB 9816. J. Bacteriol., 172:465–468.PubMedGoogle Scholar
  37. 37.
    Harayama S. and Rekik M., 1990, The meta cleavage operon of TOL degradative plasmid pWW0 comprises 13 genes. Mol. Gen. Genet., 221:113–20.PubMedGoogle Scholar
  38. 38.
    Harayama S. and Rekik M., 1993, Comparison of the meta-cleavage pathway of TOL plasmid from Pseudomonas putida with other meta-cleavage genes suggests that both single and multiple nucleotide substitutions contribute to enzyme evolution. Mol. Gen. Genet., 231:81–89.Google Scholar
  39. 39.
    Hofer B., Backhaus S., and Timmis K.N., 1994, The biphenyl/polychlorinated biphenyl locus (bph) of Pseudomonas sp. LB400 encodes four additional metabolic enzymes. Gene, 144:9–16.PubMedGoogle Scholar
  40. 40.
    Huang J.Z. and Schell M.A., 1991, In vivo interactions of the NahR transcriptional activator with its target sequences. Inducer-mediated changes resulting in transcription activation. J. Biol. Chem., 266:10830–10838.PubMedGoogle Scholar
  41. 41.
    Hughes M.A. and Williams P.A., 2001, Cloning and characterization of the pnb genes encoding enzymes for nitrobenzoate catabolism in Pseudomonas putida TW3. J. Bacteriol., 183:1225–1232.PubMedGoogle Scholar
  42. 42.
    James K.D., Hughes M.A., and Williams P.A., 2000, Cloning and expression of ntnD, encoding a novel NAD(P+)-independent 4-nitrobenzyl alcohol dehydrogenase from Pseudomonas sp. strain TW3. J. Bacteriol., 182:3136–3142.PubMedGoogle Scholar
  43. 43.
    Jeffrey W.H., Cuskey S.M., Chapman P.I, Resnick S., and Olsen R.H., 1992, Characterization of Pseudomonas putida mutants unable to catabolize benzoate: Cloning and characterization of Pseudomonas genes involved in benzoate catabolism and isolation of a chromosomal DNA fragment able to substitute for xylS in activation of the TOL lower-pathway promoter. J. Bacteriol., 174:4986–4996.PubMedGoogle Scholar
  44. 44.
    Johnston J.B. and Gunsalus. I.C., 1977, Isolation of metabolic plasmid DNA from Pseudomonas putida. Biochem. Biophys. Res. Commun. 75:13–19.PubMedGoogle Scholar
  45. 45.
    Kauppi B., Lee K., Carredano E., Parales R.E., Gibson D.T., Eklund H., and Ramaswamy S., 1998, Structure of an aromatic-ring-hydroxylating dioxygenase-naphthalene 1,2-dioxygenase. Structure., 6:571–586.PubMedGoogle Scholar
  46. 46.
    Kiyohara H., Torigoe S., Kaida N., Asaki T., Iida T., Hayashi H., and Takizawa N., 1994, Cloning and characterization of a chromosomal gene cluster, pah, that encodes the upper pathway for phenanthrene and naphthalene utilization by Pseudomonas putida OUS82. J. Bacteriol., 176:2439–2443.PubMedGoogle Scholar
  47. 47.
    Kunz D.A. and Chapman P.J., 1981, Isolation and characterization of spontaneously occurring TOL plasmid mutants of Pseudomonas putida HS1. J. Bacteriol., 146:952–964.PubMedGoogle Scholar
  48. 48.
    Lessner D.J., Johnson G.R., Parales R.E., Spain J.C., and Gibson D.T., 2002, Molecular characterization and substrate specificity of nitrobenzene dioxygenase from Comamonas sp. strain JS765. Appl. Environ. Microbiol., 68:634–641.PubMedGoogle Scholar
  49. 49.
    Maeda K., Nojiri H., Shintani M., Yoshida T., Habe H., and Omori T.J., 2003, Complete nucleotide sequence of carbazole/dioxin-degrading plasmid pCAR1 in Pseudomonas resinovorans strain CA10 indicates its mosaicity and the presence of large catabolic transposon Tn4676. J. Mol. Biol., 326:21–33.PubMedGoogle Scholar
  50. 50.
    Mandelbaum R.T., Allan D.L., and Wackett L.P., 1995, Isolation and characterization of a Pseudomonas sp. that mineralizes the s-triazine herbicide atrazine. Appl. Environ. Microbiol., 61:1451–1457.PubMedGoogle Scholar
  51. 51.
    Martinez B., Tomkins J., Wackett L.P., Wing R., and Sadowsky M.J., 2001, Complete nucleotide sequence and organization of the atrazine catabolic plasmid pADP-1 from Pseudomonas sp. strain ADP. J. Bacteriol., 183:5684–5697.PubMedGoogle Scholar
  52. 52.
    Menn E, Applegate B.M., and Sayler G.S., 1993, NAH plasmid-mediated catabolism of anthracene and phenanthrene to naphthoic acids. Appl. Environ. Microbiol., 59:1938–1942.PubMedGoogle Scholar
  53. 53.
    Merlin C., Springael D., and Toussaint A., 1999, Tn4371: A modular structure encoding a phage-like integrase, a Pseudomonas-like catabolic pathway, and RP4/Ti-like transfer functions. Plasmid, 41:40–54.PubMedGoogle Scholar
  54. 54.
    Müller T.A., Werlen C., Spain J., and van der Meer J.R., 2003, Evolution of a chlorobenzene degradative pathway among bacteria in a contaminated groundwater mediated by a genomic island in Ralstonia. Environ. Microbiol., 5:163–173.PubMedGoogle Scholar
  55. 55.
    Nakazawa T., 2002, Travels of a Pseudomonas from Japan around the world. Environ. Micro., 4:782–786.Google Scholar
  56. 56.
    Nakazawa T. and Yokota T., 1973, Conjugal transfer of benzoate pathway genes in Pseudomonas arvilla mt-2 (in Japanese). Jap. J. Bacteriol., 28:46.Google Scholar
  57. 57.
    Nam J.-W, Nojiri H., Noguchi H., Uchimura H., Yoshida T., Habe H., Yamane H., and Omori T., 2002, Purification and characterization of carbazole 1,9a-dioxygenase, a three-component dioxygenase system of Pseudomonas resinovorans strain CA10. Appl. Environ. Microbiol., 68:5882–5890.PubMedGoogle Scholar
  58. 58.
    Neidle E.L., Hartnett C., Omston L.N., Bairoch A., Rekikm M., and Harayama S., 1991, Nucleotide sequences of the Acinetobacter calcoaceticus benABC genes for benzoate 1,2-dioxygenase reveal evolutionary relationships among multi component oxygenases. J. Bacteriol., 173:5385–5395.PubMedGoogle Scholar
  59. 59.
    Nelson K.E., Weinel C., Paulsen I.T., Dodson R.I., Hilbert H., Martins dos Santos V.A., Fouts D.E., Gill S.R., Pop M., Holmes M., Brinkac L., Beanan M., DeBoy R.T., Daugherty S., Kolonay J., Madupu R., Nelson W., White O., Peterson J., Khouri H., Hance I., Chris Lee P., Holtzapple E., Scanlan D., Tran K., Moazzez A., Utterback T., Rizzo M., Lee K., Kosack D., Moestl D., Wedler H., Lauber J., Stjepandic D., Hoheisel J., Straetz M., Heim S., Kiewitz C., Eisen J., Timmis K.N., Dusterhoft A., Tummler B., and Fraser C.M., 2002, Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. Environ. Microbiol., 4:799–808.PubMedGoogle Scholar
  60. 60.
    Nishi A., Tominaga K., and Furukawa K., 2000, A 90-kilobase conjugative chromosomal element coding for biphenyl and salicylate catabolism in Pseudomonas putida KF715. J. Bacteriol., 182:1949–1955.PubMedGoogle Scholar
  61. 61.
    Nojiri H., Sekiguchi H., Maeda K., Urata M., Nakai S.-E., Yoshida T., Habe H., and Omori T., 2001, Genetic characterization and evolutionary implications of a car gene cluster in the carbazole degrader Pseudomonas sp. strain CAI0. J. Bacteriol., 183:3663–3679.PubMedGoogle Scholar
  62. 62.
    Nojiri H. and Omori T., 2002, Molecular bases of aerobic bacterial degradation of dioxins: Involvement of angular dioxygenastion. Biosci. Biotechnol. Biochem., 66:2001–2016.PubMedGoogle Scholar
  63. 63.
    Nozaki M., Kagiyama H., and Hayaishi O, 1963, Metapyrocatechase. I. Purification, crystallization and some properties. Biochem. Zeit., 338:582–590.Google Scholar
  64. 64.
    O’Donnell KJ. and Williams P.A., 1991, Duplication of both xyl operons on TOL plasmid pWWI5. J. Gen. Microbiol., 137:2831–2838.PubMedGoogle Scholar
  65. 65.
    Osborne D.J., Pickup R.W, and Williams P.A., 1988, The presence of two homologous meta pathway operons on TOL plasmid pWW53. J. Gen. Microbiol., 134:2965–2975.PubMedGoogle Scholar
  66. 66.
    Parales J.V., Kumar A., Parales R.E., and Gibson D.T., 1996, Cloning and sequencing of the genes encoding 2-nitrotoluene dioxygenase from Pseudomonas sp. JS42. Gene, 181:57–61.PubMedGoogle Scholar
  67. 67.
    Parales R.E., Lee K., Resnick S.M., Jiang H., Lessner D.J., and Gibson D.T., 2000, Substrate specificity of naphthalene dioxygenase: Effect of specific amino acids at the active site of the enzyme. J. Bacteriol., 182:1641–1649.PubMedGoogle Scholar
  68. 68.
    Park H.S. and Kim H.S., 2000, Identification and characterization of the nitrobenzene catabolic plasmids pNBl and pNB2 in Pseudomonas putida HS12. J. Bacteriol., 182:573–580.PubMedGoogle Scholar
  69. 69.
    Powlowski J. and Shingler V., 1994, Genetics and biochemistry of phenol degradation by Pseudomonas sp. CF600. Biodegradation, 5:219–236.PubMedGoogle Scholar
  70. 70.
    Ramos J.-L., Marques S., and Timmis K.N., 1997, Transcriptional control of the Pseudomonas TOL plasmid catabolic operons is achieved through an interplay of host factors and plasmid-encoded regulators. Annu. Rev. Microbiol., 51:341–373.PubMedGoogle Scholar
  71. 71.
    Reddy B.R., Shaw L.E., Sayers J.R., and Williams P.A., 1994, Two identical copies of IS1246, a 1275 bp sequence related to other bacterial insertion sequences, enclose the xyl genes on the TOL plasmid pWW0. Microbiology, 140:2305–2307.PubMedGoogle Scholar
  72. 72.
    Regenhardt D., Heuer H., Heim S., Fernandez D.D., Strompl C., Moore E.R., and Timmis, K.N., 2002, Pedigree and taxonomic credentials of Pseudomonas putida strain KT2440. Environ. Microbiol., 4:912–915.PubMedGoogle Scholar
  73. 73.
    Rheinwald IG., Chakrabarty A.M., and Gunsalus I.C., 1973, A transmissible plasmid controlling camphor oxidation in Pseudomonas putida. Proc. Nat. Acad. Sci. USA, 70:885–889.PubMedGoogle Scholar
  74. 74.
    Romine M.P., Stillwell L.C., Wong K.K., Thurston S.J., Sisk E.C., Sensen C., Gaasterland T., Fredrickson J.K., and Saffer J.D., 1999, Complete sequence of a 184-kilobase catabolic plasmid from Sphingomonas aromaticivorans F199. J. Bacteriol., 181:1585–1602PubMedGoogle Scholar
  75. 75.
    Sadowsky M.J., Tong Z., de Souza M., and Wackett L.P., 1998, AtzC is a new member of the amidohydrolase protein superfamily and is homologous to other atrazine-metabolizing enzymes. J. Bacteriol., 180:152–158PubMedGoogle Scholar
  76. 76.
    Sarand I., Skarfstad E., Forsman M., Romantschuk M., and Shingler V., 2001, Role of the DmpR-mediated regulatory circuit in bacterial biodegradation properties in methylphenolamended soils. Appl. Environ. Microbiol., 67:162–171.PubMedGoogle Scholar
  77. 77.
    Schell M.A. and Poser E.P., 1989, Demonstration, characterization, and mutational analysis of NahR protein binding to nah and sal promoters. J Bacteriol., 171:837–846.PubMedGoogle Scholar
  78. 78.
    Sentchilo V.S., Perebituk A.N., Zehnder A.J.B., and van der Meer J.R., 2000, Molecular diversity of plasmids bearing genes that encode toluene and xylene metabolism in Pseudomonas strains isolated from different contaminated sites in Belarus. Appl. Environ. Microbiol., 66:2842–2852.PubMedGoogle Scholar
  79. 79.
    Serdar C.M. and Gibson D.T., 1989, Isolation and characterizationof altered plasmids in mutant strains of Pseudomonas putida NCIB 9816. Biochem. Biophys. Res. Commun., 164:764–771.PubMedGoogle Scholar
  80. 80.
    Serdar C.M. and Gibson D.T., 1989, Studies of nucleotide sequence homology between naphthalene-utilizing strains of bacteria. Biochem. Biophys. Res. Commun., 164:772–779.PubMedGoogle Scholar
  81. 81.
    Simon M.J., Osslund T.D., Saunders R., Ensley B.D., Suen W.-C., Cruden D.L., Gibson D.T., and Zylstra G.J., 1993, Sequences of genes encoding naphthalene dioxygenase in Pseudomonas putida strains G7 and NCIB 9816-4. Gene, 127:31–37.PubMedGoogle Scholar
  82. 82.
    Suen W.-C., Haigler B., and Spain J.C., 1996, 2,4-Dinitrotoluene dioxygenase from Burkholderia sp. strain DNT: Similarity to naphthalene dioxygenases. J. Bacteriol., 178:4926–4934.PubMedGoogle Scholar
  83. 83.
    Toussaint A., Merlin C., Monchy S., Abderrafi Benotmane M., Leplae R., Mergeay M., and Springael D., 2003, The biphenyl/4-chlorobiphenyl catabolic transposon Tn4371, a member of a new family of genomic islands related to IncP and Ti plasmids. Appl. Environ. Microbiol., 69:4837–4845.PubMedGoogle Scholar
  84. 84.
    Tsuda M. and lino T., 1987, Genetic analysis of a transposon carrying toluene degrading genes on TOL plasmid pWW0. Mol. Gen. Genet., 213:72–77.Google Scholar
  85. 85.
    Tsuda M. and Iino T., 1988, Identification and characterization of Tn4653, a transposon covering the toluene transposon Tn4651 on TOL plasmid pWW0. Mol. Gen. Genet., 210:270–276.Google Scholar
  86. 86.
    Tsuda M. and Iino T., 1990, Naphthalene degrading genes on plasmid NAH7 are on a defective transposon. Mol. Gen. Genet., 223:33–39.PubMedGoogle Scholar
  87. 87.
    Tsuda M., Minegishi K.-I., and Iino T., 1989, Toluene transposons Tn4651 and Tn4653 are class II transposons. J. Bacteriol., 171:1386–1393.PubMedGoogle Scholar
  88. 88.
    van der Meer J.R., 1997, Evolution of novel metabolic pathways for the degradation of chloroaromatic compounds. Ant. Van. Leeuwen., 71:159–178.Google Scholar
  89. 89.
    van der Meer J.R., 2002, Evolution of metabolic pathways for degradation of environmental pollutants, In G. Bitton (ed.), Encyclopaedia of Environmental Microbiology, pp. 1194–1207. John Wiley & Sons, New York.Google Scholar
  90. 90.
    van der Meer J.R., Zehnder A.J.B., and de Vos W.M., 1991, Identification of a novel composite transposable element, Tn5280, carry chlorobenzene dioxygenase genes of Pseudomonas sp. strain P51. J. Bacteriol., 173:7077–7083.PubMedGoogle Scholar
  91. 91.
    van der Meer J.R., Ravatn R., and Sentchilo V., 2001, The clc element of Pseudomonas sp. strain B13 and other mobile degradative elements employing phage-like integrases. Arch. Microbiol., 175:79–85.PubMedGoogle Scholar
  92. 92.
    van der Meer J.R., Vos W.M., Harayama S., and Zehnder A.J.B., 1992, Molecular mechanisms of genetic adaptation to xenobiotic compounds. Microbiol. Rev., 56:677–694.PubMedGoogle Scholar
  93. 93.
    Wackett L.P. and Hershberger C.D., 2000, Biocatalysis and Biodegradation. ASM Press, Washington.Google Scholar
  94. 94.
    Werlen C., Kohler H.P., and van der Meer J.R., 1996, The broad substrate specific chlorobenzene dioxygenase and cis-chlorobenzene dihydrodiol dehydrogenase of Pseudomonas P51 are linked evolutionarily to the enzymes for benzene and toluene degradation. J. Biol. Chem., 271:4009–4016.PubMedGoogle Scholar
  95. 95.
    Wikstrom P., O’Neill E., Ng L.C., and Shingler V., 2001, The regulatory N-terminal region of the aromatic-responsive transcriptional activator DmpR constrains nucleotide-triggered multimerisation. J. Mol. Biol., 314:971–984.PubMedGoogle Scholar
  96. 96.
    Williams P.A., Catterall F.A., and Murray K. 1975, Metabolism of naphthalene, 2-methylnaphthalene, salicylate, and benzoate by Pseudomonas PG: Regulation of tangential pathways. J. Bacteriol., 124:679–685.PubMedGoogle Scholar
  97. 97.
    Williams P.A., Jones R.M., and Shaw L.E., 2002, A third transposable element, ISPpu12, from the toluene-xylene catabolic plasmid pWW0 of Pseudomonas putida mt-2. J. Bacteriol., 184:6572–6580.PubMedGoogle Scholar
  98. 98.
    Williams P.A. and Murray K., 1974, Metabolism of benzoate and the methylbenzoates by Pseudomonas putida (arvilla) mt-2: Evidence for the existence of a TOL plasmid. J. Bacteriol., 120:416–423.PubMedGoogle Scholar
  99. 99.
    Williams P.A. and Sayers J.R., 1994, The evolution of pathways for aromatic hydrocarbon oxidation. Biodegradation, 5:195–217.PubMedGoogle Scholar
  100. 100.
    Williams P.A., Taylor S.D., and Gibb L.E., 1988, Loss of the toluene-xylene catabolic genes of TOL plasmid pWWO during growth on Pseudomonas putida on benzoate is due to a selective growth advantage of “cured” segregants. J. Gen. Microbiol., 134:2039–2048.PubMedGoogle Scholar
  101. 101.
    Williams P.A. and Worsey M.J., 1976, Ubiquity of plasmids in coding for toluene and xylene metabolism in soil bacteria: Evidence for the existence of new TOL plasmids. J. Bacteriol., 125:818–828.PubMedGoogle Scholar
  102. 102.
    Wong C.L. and Dunn N.W., 1974, Transmissible plasmid coding for the degradation of benzoate and m-toluate in Pseudomonas arvilla mt-2. Genet. Res., 23:227–232.PubMedGoogle Scholar
  103. 103.
    Worsey M.J. and Williams P.A., 1975, Metabolism of toluene and xylenes by Pseudomonas putida (arvilla) mt-2: Evidence for a new function of the TOL plasmid. J. Bacteriol., 124:7–13.PubMedGoogle Scholar
  104. 104.
    You I.S., Ghosal D., and Gunsalus I.C., 1991, Nucleotide sequence analysis of the Pseudomonas putida PpG7 salicylate hydroxylase gene (nahG) and its 3′-flanking region. Biochemistry, 30:1635–1641.PubMedGoogle Scholar
  105. 105.
    Yang Y., Chen R.E, and Shiaris M.P., 1994, Metabolism of naphthalene, fluorene, and phenanthrene: Preliminary characterization of a cloned gene cluster from Pseudomonas putida NCIB 9816. J. Bacteriol., 176:2158–2164.PubMedGoogle Scholar
  106. 106.
    Yen K.-M. and Gunsalus I.C. 1982, Plasmid gene organization: Naphthalene/salicylate oxidation. Proc. Natl. Acad. USA, 79:874–878.Google Scholar
  107. 107.
    Yen K.-M. and Serdar C.M. 1988, Genetics of naphthalene catabolism in pseudomonads. Crit. Rev. Microbiol., 15:247–267.PubMedGoogle Scholar
  108. 108.
    Yen K.-M., Sullivan M. and Gunsalus I.C., 1983, Electron microscope heteroduplex mapping of naphthalene oxidation genes on the NAH7 and SAL1 plasmids. Plasmid, 9:105–111.PubMedGoogle Scholar
  109. 109.
    Zhou N.-Y., Fuenmayor S.L., and Williams P.A., 2001, nag Genes of Ralstonia (formerly Pseudomonas) sp. strain U2 encoding enzymes for gentisate catabolism. J. Bacteriol., 183:700–708.PubMedGoogle Scholar
  110. 110.
    Zylstra G.J. and Gibson D.T., 1989, Toluene degradation by Pseudomonas putida Fl. Nucleotide sequence of the todC1C2BADE genes and their expression in Escherichia coli. J. Biol. Chem., 264:14940–14946.PubMedGoogle Scholar
  111. 111.
    Zylstra G.J., Kim E., and Goyal A.K., 1997, Comparative molecular analysis of genes for polycyclic aromatic hydrocarbon degradation. Genet. Eng., 19:257–269.Google Scholar
  112. 112.
    Zylstra G.J., Wang X.P., Kim E., and Didolkar V.A., 1994, Cloning and analysis of the genes for polycyclic aromatic hydrocarbon degradation. In R.K. Bajpai (ed.), Recombinant DNA Technology II. pp. 386–398. New York Academy of Sciences New York.Google Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Peter A. Williams
    • 1
  • Rheinallt M. Jones
  • Gerben Zylstra
    • 2
  1. 1.School of Biological SciencesUniversity of WalesBangorUK
  2. 2.Biotechnology Center for Agriculture and the EnvironmentRutgers UniversityNew BrunswickUSA

Personalised recommendations