Pseudomonas pp 113-138 | Cite as

The Genome of Pseudomonas syringae Tomato DC3000 and Functional Genomic Studies to Better Understand Plant Pathogenesis

  • Yashitola Jamir
  • Xiaoyan Tang
  • James R. Alfano


Pseudomonas syringae is a member of the gamma subgroup of the Proteobacteria and a plant pathogen that infects many different plants30, Certain P syringae strains can infect only one or a few plant species, and on this basis, P syringae has been separated into greater than 50 pathovars106. While P syringae will eventually kill plant cells (i.e., it is necrogenic), it is typically considered a biotrophic pathogen and it can live on plant leaves as an epiphyte3, 49. The host specificity that P syringae displays is at least partly due to pathogen avirulence genes that encode proteins (i.e., Avr proteins) that trigger the disease resistance (R)-gene-based plant innate immune system in resistant plants53, One of the plant defense responses triggered by Avr proteins is the hypersensitive response (HR), which is a programmed cell death of plant tissue that is associated with successful defense against pathogens. P syringae mutants unable to elicit an HR led to the discovery of hrp genes—the genes that encode the P syringae type III proteins secretion system (TT88) 63. P syringae pathogenesis relies on the TT88 and the effector proteins it translocates into host cells similar to most of the animal and plant pathogens that possess TT88s27.


Yersinia Enterocolitica Xanthomonas Campestris Avirulence Gene Plant Pathogenic Bacterium Tomato DC3000 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abramovitch R.B., Kim Y.I, Chen S., Dickman M.B., and Martin G.B., 2003, Pseudomonas type III effector AvrPtoB induces plant disease susceptibility by inhibition of host programmed cell death. EMBO J., 22:60–69.PubMedGoogle Scholar
  2. 2.
    Alfano J.R., Charkowski A.O., Deng W, Badel J.L., Petnicki-Ocwieja T., van Dijk K., and Collmer A., 2000, The Pseudomonas syringae Hrp pathogenicity island has a tripartite mosaic structure composed of a cluster of type III secretions genes bounded by exchangeable effector and conserved effector loci that contribute to parasitic fitness and pathogenicity in plants. Proc. Natl. Acad. Sci. USA, 97:4856–4861.PubMedGoogle Scholar
  3. 3.
    Alfano J.R. and Collmer A., 1996, Bacterial pathogens in plants: Life up against the wall. Plant Cell, 8:1683–1698.PubMedGoogle Scholar
  4. 4.
    Alfano J.R. and Collmer A., 1997, The type III (Hrp) secretion pathway of plant pathogenic bacteria: Trafficking harpins, Avr proteins, and death. J. Bacteriol., 179:5655–5662.PubMedGoogle Scholar
  5. 5.
    Alfano J.R. and Guo M., 2002, The Pseudomonas syringae Hrp (type III) protein secretion system: Advances in the new millenium, In G. Stacey and N.T. Keen (ed.), Plant-Microbe Interactions, Vol. 6, pp. 227–258. APS Press St. Paul, MN.Google Scholar
  6. 6.
    Arrieta J., Hernandez L., Coego A., Suarez V., Balmori E., Menendez C., Petit-Glatron M.E, Chambert R., and Selman-Housein G., 1996, Molecular characterization of the levansucrase gene from the endophytic sugarcane bacterium Acetobacter diazotrophicus SRT4. Microbiology, 142:1077–1085.PubMedGoogle Scholar
  7. 7.
    Asai T., Tena G., Plotnikova J., Willmann M.R., Chiu W-L., Gomez-Gomez L., Boller T., Ausubel EM., and Sheen J., 2002, MAP kinase signalling cascade in Arabidopsis innate immunity. Nature, 415:977–983.PubMedGoogle Scholar
  8. 8.
    Axtell MJ., Chisholm S.T., Dahlbeck D., and Staskawicz BJ., 2003, Genetic and molecular evidence that the Pseudomonas syringae type III effector protein AvrRpt2 is a cysteine protease. Mol. Microbiol., 49:1537–1546.PubMedGoogle Scholar
  9. 9.
    Axtell M.J. and Staskawicz B.J., 2003, Initiation of RPS2-specified disease resistance in Arabidopsis is coupled to the AvrRpt2-directed elimination of RIN4. Cell, 112:369–377.PubMedGoogle Scholar
  10. 10.
    Badel J.L., Charkowski A.O., Deng W.-L., and Collmer A., 2002, A gene in the Pseudomonas syringae pv. tomato Hrp pathogenicity island conserved effector locus, hopPtoA1, contributes to efficient formation of bacterial colonies in planta and is duplicated elsewhere in the genome. Mol. Plant-Microbe Interact., 15:1014–1024.PubMedGoogle Scholar
  11. 11.
    Badel IL., Nomura K., Bandyopadhyay S., Shimizu R., Collmer A., and He S.Y., 2003, Pseudomonas syringae pv. tomato DC3000 HopPtoM (CEL ORF3) is important for lesion formation but not growth in tomato and is secreted and translocated by the Hrp type III secretion system in a chaperone-dependent manner. Mol. Microbiol., 49:1239–1251.PubMedGoogle Scholar
  12. 12.
    Bauer D.W. and Collmer A., 1997, Molecular cloning, characterization, and mutagenesis of a pel gene from Pseudomonas syringae pv. lachrymans encoding a member of the Erwinia chrysanthemi PelADE family ofpectate lyases. Mol. Plant-Microbe Interact., 10:369–379.PubMedGoogle Scholar
  13. 13.
    Bell K.S., Avrova A.O., Holeva M.C., Cardle L., Morris W, De Jong W, Toth I.K., Waugh R., Bryan G.J., and Birch P.R., 2002, Sample sequencing of a selected region of the genome of Erwinia carotovora subsp. atroseptica reveals candidate phytopathogenicity genes and allows comparison with itEscherichia coli. Microbiology, 148:1367–1378.PubMedGoogle Scholar
  14. 14.
    Bender C.L., Alarcon-Chaidez F., and Gross D.C., 1999, Pseudomonas syringae phytotoxins: Mode of action, regulation, and biosynthesis by peptide and polyketide synthetases. Microbiol. Mol. Biol. Rev., 63:266–292.PubMedGoogle Scholar
  15. 15.
    Bent A.F., Kunkel B.N., Dahlbeck D., Brown K.L., Schmidt R., Giraudat J., Leung J., and Staskawicz B.J., 1994, RPS2 of Arabidopsis thaliana: A leucine-rich repeat class of plant disease resistance genes. Science, 265:1856–1860.PubMedGoogle Scholar
  16. 16.
    Binet R., Letoffe S., Ghigo J.M., Delepelaire P., and Wandersman C., 1997, Protein secretion by gram-negative bacterial ABC exporters. Gene, 192:7–11.PubMedGoogle Scholar
  17. 17.
    Boch J., Joardar V., Gao L., Robertson T.L., Lim M., and Kunkel B.N., 2002, Identification of Pseudomonas syringae pv. tomato genes induced during infection of Arabidopsis thaliana. Mol. Microbiol., 44:73–88.PubMedGoogle Scholar
  18. 18.
    Boller T., 1995, Chemoperception of microbial signals in plant cells. Annu. Rev. Plant Physiol. Plant Mol. Biol., 46:189–214.Google Scholar
  19. 19.
    Boyd A.P., Lambermont I., and Cornelis G., 2000, Competition between the Yops of Yersinia enterocolitica for delivery into eukaryotic cells: Role of the SycE chaperone binding domain of YopE. J. Bacteriol., 182:4811–4821.PubMedGoogle Scholar
  20. 20.
    Braun V. and Braun M., 2002, Iron transport and signaling in Escherichia coli. FEBS Lett., 529:78–85.PubMedGoogle Scholar
  21. 21.
    Bretz J.R., Mock N.M., Charity J.C., Zeyad S., Baker C.J., and Hutcheson S.W., 2003, A translocated protein tyrosine phosphatase of Pseudomonas syringae pv. tomato DC3000 modulates plant defence response to infection. Mol. Microbiol., 49:389–400.PubMedGoogle Scholar
  22. 22.
    Brown I., Mansfield J., and Bonas D., 1995, hrp genes in Xanthomonas campestris pv. vesicatoria determine ability to suppress papilla deposition in pepper mesophyll cells. Mol. Plant-Microbe Interact., 8:825–836.Google Scholar
  23. 23.
    Buell C.R., Joardar V., Lindeberg M., Selengut J., Paulsen I.T., Gwinn M.L., Dodson R.J., Deboy R.T., Durkin A.S., Kolonay J.F. et al., 2003, The complete sequence of the Arabidopsis and tomato pathogen Pseudomonas syringae pv. tomato DC3000. Proc. Natl. Acad. Sci. USA, 100:10181–10186.PubMedGoogle Scholar
  24. 24.
    Bultreys A. and Gheysen I., 2000, Production and comparison of peptide siderophores from strains of distantly related pathovars of Pseudomonas syringae and Pseudomonas viridiflava LMG 2352, Appl. Environ. Microbiol., 66:325–331.PubMedGoogle Scholar
  25. 25.
    Casper-Lindley C., Dahlbeck D., Clark E.T., and Staskawicz B.J., 2002, Direct biochemical evidence for type III secretion-dependent translocation of the AvrBs2 effector protein into plant cells. Proc. Natl. Acad. Sci. USA, 99:8336–8341.PubMedGoogle Scholar
  26. 26.
    Collmer A., Lindeberg M., Petnicki-Ocwieja T., Schneider D., and Alfano J.R., 2002, Genomic mining type III secretion system effectors in Pseudomonas syringae yields new picks for all TTSS prospectors. Trends Microbiol., 10:462–469.PubMedGoogle Scholar
  27. 27.
    Cornelis G. and van Gijsegem F., 2000, Assembly and function of type III secretion systems. Annu. Rev. Microbiol., 54:734–774.Google Scholar
  28. 28.
    Comelis P. and Matthijs S., 2002, Diversity of siderophore-mediated iron uptake systems in fluorescent pseudomonads: not only pyoverdines. Environ. Microbiol., 4:787–798.Google Scholar
  29. 29.
    Coyne M.J., Jr., Russell K.S., Coyle C.L., and Goldberg J.B., 1994, The Pseudomonas aeruginosa algC gene encodes phosphoglucomutase, required for the synthesis of a complete lipopolysaccharide core. J. Bacteriol., 176:3500–3507.PubMedGoogle Scholar
  30. 30.
    Cuppels D.A., 1986, Generation and characterization of Tn5 insertion mutations in Pseudomonas syringae pv. tomato. Appl. Environ. Microbiol., 51:323–327.PubMedGoogle Scholar
  31. 31.
    da Silva A.C., Ferro J.A., Reinach F.C., Farah C.S., Furlan L.R., Quaggio R.B., Monteiro-Vitorello C.B., Van Sluys M.A., Almeida N.F., Alves L.M. et al., 2002, Comparison of the genomes of two Xanthomonas pathogens with differing host specificities. Nature, 417:459–463.PubMedGoogle Scholar
  32. 32.
    Dangl J.L., 1994, The enigmatic avirulence genes of phytopathogenic bacteria. In J.L. Dangl (ed.), Current topics in Microbiology and Immunology: Bacterial Pathogenesis of Plants and Animals—Molecular and Cellular Mechanisms, Vol. 192, pp. 99–118. Springer-Verlag, Berlin.Google Scholar
  33. 33.
    Deng W.L., Rehm A.H., Charkowski A.O., Rojas C.M., and Collmer A., 2003, Pseudomonas syringae exchangeable effector loci: Sequence diversity in representative pathovars and virulence function in P. syringae pv. syringae B728a. J. Bacteriol., 185:2592–2602.PubMedGoogle Scholar
  34. 34.
    Espinosa A., Guo M., Tam V.C., Fu Z.Q., and Alfano J.R., 2003, The Pseudomonas syringae type III-secreted protein HopPtoD2 possesses protein tyrosine phosphatase activity and suppresses programmed cell death in plants. Mol. Microbiol., 49:377–387.PubMedGoogle Scholar
  35. 35.
    Feldman M.F. and Cornelis G.R., 2003, The multitalented type III chaperones: All you can do with 15 kDa. FEMS Microbiol. Lett., 219:151–158.PubMedGoogle Scholar
  36. 36.
    Fett W.E and Dunn M.F., 1989, Exopolysaccharides produced by phytopathogenic Pseudomonas syringae pathovars in infected leaves of susceptible hosts. Plant Physiol., 89:5–9.PubMedGoogle Scholar
  37. 37.
    Feys BJ.E, Benedetti C.E., Penfold C.N., and Turner IG., 1994, Arabidopsis mutants selected for resistance to the phytotoxin coronatine are male sterile, insensitive to methyl jasmonate, and resistant to a bacterial pathogen. Plant Cell, 6:751–759.PubMedGoogle Scholar
  38. 38.
    Fouts D.E., Abramovitch R.B., Alfano J.R., Baldo A.M., Buell C.R., Cartinhour S., Chatterjee A.K., D’Ascenzo M., Gwinn M., Lazarowitz S.G. et al., 2002, Genomewide identification of Pseudomonas syringae pv. tomato DC3000 promoters controlled by the HrpL alternative sigma factor. Proc. Natl.Acad. Sci. USA, 99:2275–2280.PubMedGoogle Scholar
  39. 39.
    Gacesa P, 1998, Bacterial alginate biosynthesis—recent progress and future prospects. Microbiology, 144:1133–1143.PubMedGoogle Scholar
  40. 40.
    Gaudriault S., Paulin J P., and Barny M. A., 2002, The DspB/F protein of Erwinia amylovora is a type III secretion chaperone ensuring efficient intrabacterial production of the Hrp-secreted DspA/E pathogenicity factor. Mol. Plant Pathol., 3:313–320.PubMedGoogle Scholar
  41. 41.
    Glickmann E., Gardan L., Jacquet S., Hussain S., Elasri M., Petit A., and Dessaux Y., 1998, Auxin production is a common feature of most pathovars of Pseudomonas syringae. Mol. Plant-Microbe Interact., 11:156–162.PubMedGoogle Scholar
  42. 42.
    Gomez-Gomez L. and Boller T., 2000, FLS2: An LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Mol. Cell, 5:1003–1011.PubMedGoogle Scholar
  43. 43.
    Goodner B., Hinkle G., Gattung S., Miller N., Blanchard M., Qurollo B., Goldman B.S., Cao Y., Askenazi M., Halling C. et al., 2001, Genome sequence of the plant pathogen and biotechnology agent Agrobacterium tumefaciens C58. Science, 294:2323–2328.PubMedGoogle Scholar
  44. 44.
    Greenberg J.T. and Vinatzer B.A., 2003: Identifying type III effectors of plant pathogens and analyzing their interaction with plant cells. Curr. Opin. Microbiol., 6:20–28.PubMedGoogle Scholar
  45. 45.
    Guttman D.S., Vinatzer B.A., Sarkar S.E, Ranall M.V, Kettler G., and Greenberg J.T., 2002, A functional screen for the type III (Hrp) secretome of the plant pathogen Pseudomonas syringae. Science, 295:1722–1726.PubMedGoogle Scholar
  46. 46.
    Hauck P., Thilmony R., and He S.Y., 2003, A Pseudomonas syringae type III effector suppresses cell wall-based extracellular defense in susceptible Arabidopsis plants. Proc. Natl. Acad. Sci. USA, 100:8577–8582.PubMedGoogle Scholar
  47. 47.
    Heath M.C., 2000, Hypersensitive response-related death. Plant Mol. Biol., 44:321–334.PubMedGoogle Scholar
  48. 48.
    Heithoff D.M., Conner C.P., and Mahan M.J., 1997, Dissecting the biology of a pathogen during infection. Trends Microbiol., 5:509–513.PubMedGoogle Scholar
  49. 49.
    Hirano S.S. and Upper C.D., 2000, Bacterial in the leaf ecosystem with emphasis on Pseudomonas syringae—a pathogen, ice nucleus, and epiphyte. Microbiol. Mol. Biol. Rev., 64:624–653.PubMedGoogle Scholar
  50. 50.
    Innes R.W., 2001, Targeting the targets of type III effector proteins secreted by phytopathogenic bacteria. Mol. Plant Pathol., 2:109–115.PubMedGoogle Scholar
  51. 51.
    Innes R.W., Bent A.F., Kunkel B.N., Bisgrove S.R., and Staskawicz B.J., 1993, Molecular analysis of avirulence gene avrRpt2 and identification of a putative regulatory sequence common to all known Pseudomonas syringae avirulence genes. J. Bacteriol., 175:4859–4869.PubMedGoogle Scholar
  52. 52.
    Jack D.L., Paulsen I.T., and Saier M.H., 2000, The amino acid/polyamine/organocation (APC) superfamily of transporters specific for amino acids, polyamines and organocations. Microbiology, 146:1797–1814.PubMedGoogle Scholar
  53. 53.
    Keen N.T., 1990, Gene-for-gene complementarity in plant-pathogen interactions. Annu. Rev. Genet., 24:447–463.PubMedGoogle Scholar
  54. 54.
    Kim J.E, Charkowski A.O., Alfano J.R., Collmer A., and Beer S.V., 1998,Transposable elements and bacteriophage sequences flanking Pseudomonas syringae avirulence genes. Mol. Plant-Microbe Interact., 11:1247–1252.Google Scholar
  55. 55.
    Kim J.E, Ham J.H., Bauer D.W, Collmer A., and Beer S.V:, 1998, The hrpC and hrpN operons of Erwinia chrysanthemi EC16 are flanked by plcA and homologs of hemolysin/adhesin genes and accompanying activator/transporter genes. Mol. Plant-Microbe Interact., 11:563–567.PubMedGoogle Scholar
  56. 56.
    Kim, Y.C., Miller C.D., and Anderson A.J., 1999, Transcriptional regulation by iron and role during plant pathogenesis of genes encoding iron-and manganese-superoxide dismutase of Pseudomonassyringae pv.syringae B728a. Physiol. Mol. Plant Pathol., 55:327–339.Google Scholar
  57. 57.
    Kim Y.J., Lin N.-C., and Martin G.B., 2002, Two distinct Pseudomonas effector proteins interact with the Pto kinase and activate plant immunity. Cell, 109:589–598.PubMedGoogle Scholar
  58. 58.
    Kiraly Z., El-Zahaby H., Galal A., Abdou S., and Adam A., 1993, Effect of oxygen free radicals on plant pathogenic bacteria and fungi and on some plant diseases, In G. Mozsik, J. Emerit, J. Feher, B. Matkovics, and A. Vincze (ed.), Oxygen Free Radicals and Scavengers in the Natural Sciences, pp. 9–19. Akademiai Kiado Budapest.Google Scholar
  59. 59.
    Kloek A.P., Verbsky M.L., Sharma S.B., Schoelz JE., Vogel J., Klessig D.F., and Kunkel B.N., 2001, Resistance to Pseudomonas syringae conferred by an Arabidopsis thaliana coronatine-insensitive (coil) mutation occurs through two distinct mechanisms. Plant J., 26:509–522.PubMedGoogle Scholar
  60. 60.
    Klotz M.G. and Hutcheson S.W., 1992, Multiple periplasmic catalases in phytopathogenic strains of Pseudomonassyringae. Appl. Environ. Microbiol., 58:2468–2473.PubMedGoogle Scholar
  61. 61.
    Leach J.E. and White F.F., 1996, Bacterial avirulence genes. Annu. Rev. Phytopathol., 34:153–179.PubMedGoogle Scholar
  62. 62.
    Li H. and Ullrich M.S., 2001, Characterization and mutational analysis of three allelic lsc genes encoding levansucrase in Pseudomonas syringae. J. Bacteriol., 183:3282–3292.PubMedGoogle Scholar
  63. 63.
    Lindgren P.B., Peet R.C., and Panopoulos N.J.;1986, Genecluster of Pseudomonas syringae pv.phaseolicola controls pathogenicity of bean plants and hypersensitivity on nonhost plants. J. Bacteriol., 168:512–522.PubMedGoogle Scholar
  64. 64.
    Lloyd S.A., Norman M., Rosqvist R., and Wolf-Watz H., 2001, Yersinia YopE is targeted for type III secretion by N-terminal, not mRNA, signals. Mol. Microbiol., 39:520–531.PubMedGoogle Scholar
  65. 65.
    Lloyd S.A., Sjostrom M., Andersson S., and Wolf-Watz H., 2002, Molecular characterization of type III secretion signals via analysis of synthetic N-terminal amino acid sequences. Mol. Microbiol., 43:51–59.PubMedGoogle Scholar
  66. 66.
    Locht C., Antoine R., and Jacob-Dubuisson F., 2001, Bordetella pertussis, molecular pathogenesis under multiple aspects. Curr. Opin. Microbiol., 4:82–89.PubMedGoogle Scholar
  67. 67.
    Ma Q., Zhai Y., Schneider J.C., Ramseier T.M., and Saier M.H., Jr., 2003, Protein secretion systems of Pseudomonas aeruginosa and P. fluorescens. Biochim. Biophys. Acta, 1611:223–233.PubMedGoogle Scholar
  68. 68.
    Mackey D., Belkhadir Y., Alonso J.M., Ecker J.R., and Dangl J.L., 2003, Arabidopsis RIN4 is a target of the type III virulence effect or AvrRpt2 and modulates RPS2-mediated resistance. Cell, 112:379–389.PubMedGoogle Scholar
  69. 69.
    Mahan M.J., Slauch J.M., and Mekalanos J.J., 1993, Selection of bacterial virulence genes that are specifically induced in host tissues. Science, 259:686–688.PubMedGoogle Scholar
  70. 70.
    Mazzola M. and White F.F., 1994, A mutation in the indole-3-acetic acid biosynthesis pathway of Pseudomonas syringae pv. syringae affects growth in Phaseolus vulgaris and syringomycin production. J. Bacteriol., 176:1374–1382.PubMedGoogle Scholar
  71. 71.
    Medzhitov R. and Janeway C.A., Jr., 1997, Innate immunity: The virtues of a nonclonal system of recognition. Cell, 91:295–298.PubMedGoogle Scholar
  72. 72.
    Miller D.A., Luo L., Hillson N., Keating T.A., and Walsh C.T., 2002, Yersiniabactin synthetase: a four-protein assembly line producing the non ribosomal peptide/polyketide hybrid siderophore of Yersinia pestis. Chem. Biol., 9:333–344.PubMedGoogle Scholar
  73. 73.
    Mindrinos M., Katagiri E, Yu G.-L., and Ausubel F.M., 1994, The A. thaliana disease resistance gene RPS2 encodes a protein containing a nucleotide-binding site and leucine-rich repeats. Cell, 78:1089–1099.PubMedGoogle Scholar
  74. 74.
    Mittler R., 2002, Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci., 7:405–410.PubMedGoogle Scholar
  75. 75.
    Moore R.A., Starratt A.N., Ma S.-W, Morris V.L., and Cuppels D.A., 1989, Identification of a chromosomal region required for biosynthesis of the phytoxin coronatine by Pseudomonas syringae pv. tomato. Can. J. Microbiol., 35:910–917.Google Scholar
  76. 76.
    Nelson K.E., Weinel C., Paulsen I.T., Dodson RJ., Hilbert H., Martins dos Santos V.A., Fouts D.E., Gill S.R., Pop M., Holmes M. et al., 2002, Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. Environ. Microbiol., 4:799–808.Google Scholar
  77. 77.
    Nurnberger T. and Scheel D., 2001, Signal transmission in the plant immune response. Trends Plant Sci., 6:372–379.PubMedGoogle Scholar
  78. 78.
    Osbourn A.E., Barber C.E., and Daniels MJ., 1987, Identification of plant-induced genes of the bacterial pathogen Xanthomonas campestris pathovar campestris using a promoter-probe plasmid. EMBO, 6:23–28.Google Scholar
  79. 79.
    Overmyer K., Brosche M., and Kangasjarvi J., 2003, Reactive oxygen species and hormonal control of cell death. Trends Plant Sci., 8:335–342.PubMedGoogle Scholar
  80. 80.
    Parsot C., Hamiaux C., and Page A.L., 2003, The various and varying roles of specific chaperones in type III secretion systems. Curr. Opin. Microbiol., 6:7–14.PubMedGoogle Scholar
  81. 81.
    Petnicki-Ocwieja T., Schneider DJ., Tam V.C., Chancey S.T., Shan L., Jamir Y., Schechter L.M., Janes M.D., Buell C.R., Tang X. et al., 2002, Genomewide identification of proteins secreted by the Hrp type III protein secretion system of Pseudomonas syringae pv. tomato DC3000. Proc. Natl. Acad. Sci. USA, 99:7652–7657.PubMedGoogle Scholar
  82. 82.
    Rainey P.B. and Preston G.M., 2000, In vivo expression technology stratagies: valuable tools for biotechnology. Curr. Opin. Microbiol., 11:440–444.Google Scholar
  83. 83.
    Reymond P and Farmer E.E., 1998, Jasmonate and salicylate as global signals for defense gene expression. Curr. Opin. Plant Biol., 1:404–411.PubMedGoogle Scholar
  84. 84.
    Roine E., Raineri D.M., Romantschuk M., Wilson M., and Nunn D.N., 1998, Characterization of type IV pilus genes in Pseudomonas syringae pv. tomato DC3000. Mol. Plant-Microbe Interact., 11:1048–1056.PubMedGoogle Scholar
  85. 85.
    Rojas C.M., Ham J.H., Deng WL., Doyle J.J., and Collmer A., 2002, HecA, a member of a class of adhesins produced by diverse pathogenic bacteria, contributes to the attachment, aggregation, epidermal cell killing, and virulence phenotypes of Erwinia chrysanthemi EC16 on Nicotiana clevelandii seedlings. Proc. Natl. Acad. Sci. USA, 99: 13142–13147.PubMedGoogle Scholar
  86. 86.
    Romantschuk M., 1992, Attachment of plant pathogenic bacteria to plant surfaces. Annu. Rev. Phytopathol., 30:225–243.PubMedGoogle Scholar
  87. 87.
    Salanoubat M., Genin S., Artiguenave F., Gouzy J., Mangenot S., Arlat M., Billault A., Brottier P., Camus J.C., Cattolico L. et al. 2002, Genome sequence of the plant pathogen Ralstonia solanacearum. Nature, 415:497–502.PubMedGoogle Scholar
  88. 88.
    Salmond G.P.C., 1994, Secretion of extracellular virulence factors by plant pathogenic bacteria. Annu. Rev. Phytopathol., 32:181–200.Google Scholar
  89. 89.
    Sandkvist M., 2001, Biology of type II secretion. Mol. Microbiol., 40:271–283.PubMedGoogle Scholar
  90. 90.
    Santos R., Franza T., Laporte M.L., Sauvage C., Touati D., and Expert D., 2001, Essential role of superoxide dismutase on the pathogenicity of Erwinia chrysanthemi strain 3937. Mol. Plant-Microbe Interact., 14:758–767.PubMedGoogle Scholar
  91. 91.
    Shao E, Golstein C., Ade J., Stoutemyer M., Dixon J.E., and Innes R.W, 2003, Cleavage of Arabidopsis PBS1 by a bacterial type III effector. Science, 301:1230–1233.PubMedGoogle Scholar
  92. 92.
    Shao F., Merritt P.M., Bao Z., Innes R.W, and Dixon J.E., 2002, A Yersinia effector and a Pseudomonas avirulence protein define a family of cysteine proteases functioning in bacterial pathogenesis. Cell, 109:575–588.PubMedGoogle Scholar
  93. 93.
    Shen H. and Keen N.T., 1993, Characterization of the promoter of avirulence gene D from Pseudomonas syringae pv. tomato. J. Bacteriol., 175:5916–5924.PubMedGoogle Scholar
  94. 94.
    Simpson A.J.G., Reinach F.C., Arruda P., Abreu F.A., Acencio M., Alvarenga R., Alves L.M.C., Araya J.E., Baia G.S., Baptista C.S. et al., 2000, The genome sequence of the plant pathogen Xylella fastidiosa. Nature, 406: 151–157.PubMedGoogle Scholar
  95. 95.
    Solomon P.S. and Oliver R.P., 2001, The nitrogen content of the tomato leaf apoplast increases during infection by Cladosporium fulvum. Planta, 213:241–249.PubMedGoogle Scholar
  96. 96.
    Sory M.P. and Cornelis G.R., 1994, Translocation of a hybrid YopE-adenylate cyclase from Yersinia enterocolitica into HeLa cells. Mol. Microbiol., 14:583–594.PubMedGoogle Scholar
  97. 97.
    Stover C.K., Pham X.Q., Erwin A.L., Mizoguchi S.D., Warrener P., Hickey M.J., Brinkman F.S., Hufnagle WO., Kowalik D.J., Lagrou M. et al., 2000, Complete genome sequence of Pseudomonas aeruginosa PA01, an opportunistic pathogen. Nature, 406:959–964.PubMedGoogle Scholar
  98. 98.
    Thomas N.A. and Finlay B.B., 2003, Establishing order for type III secretion substrates—a hierarchical process. Trends Microbiol., 11:398–403.PubMedGoogle Scholar
  99. 99.
    van Dijk K., Tam V.C., Records A.R., Petnicki-Ocwieja T., and Alfano J.R., 2002, The ShcA protein is a molecular chaperone that assists in the secretion of the HopPsyA effector from the type III (Hrp) protein secretion system of Pseudomonas syringae. Mol. Microbiol., 44: 1469–1481.PubMedGoogle Scholar
  100. 100.
    Wall D. and Kaiser D., 1999, Type IV pili and cell motility. Mol. Microbiol., 32:1–10.PubMedGoogle Scholar
  101. 101.
    Whalen M.C., Innes R.W., Bent A.F., and Staskawicz B.J., 1991, Identification of Pseudomonas syringae pathogens of Arabidopsis and a bacterial locus determining avirulence on both Arabidopsis and soybean. Plant Cell, 3:49–59.PubMedGoogle Scholar
  102. 102.
    Wood D.W, Setubal J.C., Kaul R., Monks D.E., Kitajima J.P., Okura V.K., Zhou Y., Chen L., Wood G.E., Almeida N.F. et al., 2001, The genome of the natural genetic engineer Agrobacterium tumefaciens C58. Science, 294:2317–2323.PubMedGoogle Scholar
  103. 103.
    Xiao Y., Heu S., Yi J., Lu Y., and Hutcheson S.W, 1994, Identification of a putative alternate sigma factor and characterization of a multicomponent regulatory cascade controlling the expression of Pseudomonas syringae pv. syringae Pss61 hrp and hrmA genes. J Bacteriol., 176:1025–1036.PubMedGoogle Scholar
  104. 104.
    Xiao Y. and Hutcheson S.W., 1994, A single promoter sequence recognized by a newly identified alternate sigma factor directs expression of pathogenicity and host range determinants in Pseudomonas syringae. J. Bacteriol., 176:3089–3091.PubMedGoogle Scholar
  105. 105.
    Xu X.Q. and Pan S.Q., 2000, An Agrobacterium catalase is a virulence factor involved in tumorigenesis. Mol. Microbiol., 35:407–414.PubMedGoogle Scholar
  106. 106.
    Young J.M., Saddler G.S., Takikawa Y., De Boer S.H., Vauterin L., Gardan L., Gvozdyak R.I., and Stead D.E., 1996, Names of plant pathogenic bacteria 1864–1995. Rev. Plant Pathol., 75:721–763.Google Scholar
  107. 107.
    Yu J., Penaloza-Vazquez A., Chakrabarty A.M., and Bender C.L., 1999, Involvement of the exopolysaccharide alginate in the virulence and epiphytic fitness of Pseudomonas syringae pv. syringae. Mol. Microbiol., 33:712–720.PubMedGoogle Scholar
  108. 108.
    Zwiesler-Vollick J., Plovanich-Jones A.E., Nomura K., Bandyopadhyay S., Joardar V., Kunkel B.N., and He S.Y., 2002, Identification of novel hrp-regulated genes through functional genomic analysis of the Pseudomonas syringae pv. tomato DC3000 genome. Mol. Microbiol., 45:1207–1218.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Yashitola Jamir
    • 1
  • Xiaoyan Tang
    • 2
  • James R. Alfano
    • 1
  1. 1.Plant Science Initiative and Department of Plant PathologyUniversity of NebraskaLincolnUSA
  2. 2.Department of Plant PathologyKansas State UniversityManhattanUSA

Personalised recommendations