Skip to main content

Genomic Features of Pseudomonas putida Strain KT2440

  • Chapter
Pseudomonas

Abstract

Pseudomonas putida strains are rapidly growing bacteria, frequently isolated from most temperate soils and waters, particularly polluted soils. They are nutritional opportunists par excellence and a paradigm of metabolically versatile microorganisms that recycle organic wastes in aerobic and microaerophilic compartments of the environment, and that plays a key role in the maintenance of environmental quality. P putida strain KT24402, 53 is probably the best-characterized saprophytic laboratory Pseudomonad that has retained its ability to survive and function in the environment. The bacterium is a plasmid-free derivative of a toluene-degrading bacterium, originally designated Pseudomonas arvilla strain mt-246 and subsequently reclassified as P putida mt-243, 68. It is the first Gram-negative soil bacterium to be certified by the Recombinant DNA Advisory Committee (RAC) of the United States National Institutes of Health as the host strain of a host-vector biosafety (HV1) system for gene cloning in Gram-negative soil bacteria21. An extensive spectrum of versatile genetic tools, in particular mini-transposons and tools based on these, have been developed for its analysis, manipulation and use as a host for cloned genes from other soil organisms 12, 13, 35, 41,. KT2440 is being exploited in the development of a variety of biotechnological applications, including the design of new catabolic pathways for pollutants 19, 51, 56, the production by biocatalysis of intermediates, including chiral synthons for chemical syntheses72, and quality improvement of fossil fuels, for example by desulphurization24. KT2440 is alsi able to colonize the rhizosphere of a variety of crop plants, such as corn plants, wheat, strawberry, sugarcane and spinach 20, and is being used to develop new biopesticides and plant growth promoters that function in the plant rhizosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aranda-Olmedo I., Tobes R., Manzanera M., Ramos J.L. and Marques S., 2002, Speciesspecific repetitive palindromic (REP) sequences in Pseudomonas putida. NucleicAcids Res., 30:1826–1833.

    Article  CAS  Google Scholar 

  2. Bagdasarian M., Lurz R., Rueckert B., Franklin F.C.H., Bagdasarian M.M., Frey J. and Timmis K.N., 1981, Specific-purpose plasmid cloning vectors. II. Broad host range, high copy number, RSFI0I0-derived vectors, and a host-vector system for gene cloning in Pseudomonas. Gene, 16:237–247

    Article  PubMed  CAS  Google Scholar 

  3. Bayley S.A., Duggleby CJ., Worsey MJ., Williams P.A., Hardy K.G., and Broda P., 1977, Two modes of loss of the ToI function from Pseudomonas putida mt-2. Mol. Gen. Genet., 154:203–204.

    Article  PubMed  CAS  Google Scholar 

  4. Bork P and Rohde K., 1991, More von Willebrand factor type A domains? Sequence similarities with malaria thrombospondin-related anonymous protein, dihydropyridine-sensitive calcium channel and inter-alpha-trypsin inhibitor. Biochem. J., 279: 908–910.

    PubMed  CAS  Google Scholar 

  5. Burger M., Woods R.G., McCarthy C. and Beacham I.R., 2000, Temperature regulation of protease in Pseudomonas fiuorescens LS107d2 by an ECF sigma factor and a transmembrane activator. Microbiology, 146:3149–3155

    PubMed  CAS  Google Scholar 

  6. Cao H., Baldini R.L. and Rahme L.G., 2001, Common mechanisms for pathogens of plants and animals. Annu. Rev. Phytopathol., 39: 259–284.

    Article  PubMed  CAS  Google Scholar 

  7. Comelis P and Matthijs S., 2002, Diversity of siderophore-mediated iron uptake systems in fluorescent pseudomonads: not only pyoverdines. Environ. Microbiol., 4:787–798.

    Article  Google Scholar 

  8. Cowles C.E., Nichols N.N. and Harwood C.S., 2000, BenR, a XylS homologue, regulates three different pathways of aromatic acid degradation in Pseudomonas putida. J Bacteriol., 182:6339–6346.

    Article  PubMed  CAS  Google Scholar 

  9. Cucarella C., Solano C., Valle J., Amorena B., Lasa I. and Penades J.R., 2001, Bap, a Staphylococcus aureus surface protein involved in biofilm formation. J Bacteriol., 183: 2888–2896.

    Article  PubMed  CAS  Google Scholar 

  10. Dagley S., 1971, Catabolism of aromatic compounds by micro-organisms. Adv. Microb Physiol., 6:1–46

    Article  PubMed  CAS  Google Scholar 

  11. de Groot A., Heijnen I., de Cock H., Filloux A. and Tommassen J., 1994, Characterization of type IV pilus genes in plant growth-promoting Pseudomonas putida WCS358. J. Bacteriol., 176:642–650.

    PubMed  Google Scholar 

  12. de Lorenzo V., Herrero M., Jakubzik U. and Timmis K.N., 1990, Mini-Tn5 transposon derivatives for insertion mutagenesis, promoter probing, and chromosomal insertion of cloned DNA in gram-negative eubacteria. J. Bacteriol., 172:6568–6572.

    PubMed  Google Scholar 

  13. de Lorenzo V. and Timmis K.N., 1994, Analysis and construction of stable phenotypes in gram-negative bacteria with Tn5-and Tnl0-derived mini-transposons. Methods Enzymol., 235:386–405.

    Article  PubMed  CAS  Google Scholar 

  14. Deicher A.L., Harmon D., Kasif S., White O. and Salzberg S.L., 1999, Improved microbial gene identification with GLIMMER. Nucleic Acids Res., 27:4636–4641.

    Article  Google Scholar 

  15. DiGiandomenico A., Matewish MJ., Bisaillon A., Stehle lR., Lam lS. and Castric P, 2002, Glycosylation of Pseudomonas aeruginosa 1244 pilin: glycan substrate specificity. Mol. Microbiol., 46:519–530.

    Article  PubMed  CAS  Google Scholar 

  16. Dorr L., Hurek T. and Reinhold-Hurek B., 1998, Type IV pili are involved in plant-microbe and fungus-microbe interactions. Mol. Microbiol., 30: 7–17.

    Article  PubMed  CAS  Google Scholar 

  17. Drake S.L., Sandstedt S.A. and Koomey M., 1997, PiIP, a pilus biogenesis lipoprotein in Neisseria gonorrhoeae, affects expression of PilQ as a high-molecular-mass multimer. Mol. Microbiol., 23:657–668.

    Article  PubMed  CAS  Google Scholar 

  18. Dunn N.W and Gunsalus I,C., 1973. Transmissible plasmid coding early enzymes ofnaphthalene oxidation in Pseudomonas putida.J. Bacteriol., 114(3):974–9

    PubMed  CAS  Google Scholar 

  19. Erb R.W., Eichner C.A., Wagner-Dobler I., and Timmis K.N., 1997, Bioprotection of microbial communities from toxic phenol mixtures by a genetically designed pseudomonad. Nat. Biotechnol., 15:378–82

    Article  PubMed  CAS  Google Scholar 

  20. Espinosa-Urgel M., Salido A. and Ramos IL., 2000, Genetic analysis of functions involved in adhesion of Pseudomonas putida to seeds. J Bacteriol., 182:2363–2369.

    Article  PubMed  CAS  Google Scholar 

  21. Federal Register, 1982, Appendix E, Certified host-vector systems 47:17197.

    Google Scholar 

  22. Fouts D.E., Abramovitch R.B., Alfano lR., Baldo A.M., Buell C.R., Cartinhour S. et al., 2002, Genomewide identification of Pseudomonas syringae pv. tomato DC3000 promoters controlled by the HrpL alternative sigma factor. Proc. Natl. Acad. Sci. USA, 99:2275–2280.

    Article  PubMed  CAS  Google Scholar 

  23. Fraser J.A., Davis M.A. and Hynes MJ., 2002, A gene from Aspergillus nidulans with similarity to URE2 of Saccahromyces cerevisiae encodes a glutathione-S-transferase which contriibutes to heavy metal and xenobiotic resistance. Appl. Environm. Microbiol., 68:2802–2808.

    Article  CAS  Google Scholar 

  24. Galan B., Diaz E. and Garcia J.L., 2000, Enhancing desulphurization by engineering a flavin reductase-encoding gene cassette in recombinant biocatalysts. Environ. Microbiol. 2:687–694.

    Article  PubMed  CAS  Google Scholar 

  25. Godoy. P., Ramos-Gonzalez M.I. and Ramos J.L., 2001, Involvement of the TonB system in tolerance to solvents and drugs in Pseudomonas putida DOT-TIE. J. BacterioI183:5285–5292.

    Article  CAS  Google Scholar 

  26. Govan J.R., Fyfe J.A., and Jarman T.R., 1981, Isolation of alginate-producing mutants of Pseudomonas fluorescens, Pseudomonas putida and Pseudomonas mendocina. J. Gen. Microbiol., 125(Pt 1):217–220.

    PubMed  CAS  Google Scholar 

  27. Greated A., Lambertsen L., Williams P.A. and Thomas C.M., 2002, Complete sequence of the IncP-9 TOL plasmid pWWO from Pseudomonas putida. Environ. Microbiol., 4(12):856–871.

    Article  PubMed  CAS  Google Scholar 

  28. Gumley A.W, and Inniss WE., 1996, Cold shock proteins and cold acclimation proteins in the psychrotrophic bacterium Pseudomonas putida Q5 and its transconjugant. Can. J. Microbiol., 42:798-803.

    Google Scholar 

  29. Guttman D.S., Vinatzer B.A., Sarkar S.F., Ranall M.V, Kettler G. and Greenberg IT., 2002, A functional screen for the type III (Hrp) secretome of the plant pathogen Pseudomonas syringae. Science, 295: 1722–1726.

    Article  PubMed  CAS  Google Scholar 

  30. Hallsworth J.E., Heim S. and Timmis K.N., 2003, Chaotropic solutes cause water stress in Pseudomonas putida. Environm. Microbiol., 5:1270–1280.

    Article  CAS  Google Scholar 

  31. Harwood C.S. and Parales R.E., 1996, The B-ketoadipate pathway and the biology of selfidentity. Ann. Rev. Microbiol., 50:553–590.

    Article  CAS  Google Scholar 

  32. Harayama S. and Rekik M., 1993, Comparison of the nucleotide sequences of the metacleavage pathway genes of TOL plasmid pWW0 from Pseudomonas putida with other metacleavage genes suggests that both single and multiple nucleotide substitutions contribute to enzyme evolution. Mol. Gen. Genet., 239:81–9.

    PubMed  CAS  Google Scholar 

  33. Harayama S. and Timmis K.N., 1989, Catabolism of aromatic hydrocarbons by Pseudomonas. In D. A. Hopwood and K. F. Chater (eds), Genetics of Bacterial Diversity. pp. 151–174 Academic Press London.

    Chapter  Google Scholar 

  34. Henry R.L., Mellis C.M. and Petrovic L., 1992, Mucoid Pseudomonas aeruginosa is a marker of poor survival in cystic fibrosis. Pediatr Pulmonol., 12:158–161.

    Article  PubMed  CAS  Google Scholar 

  35. Herrero M., de Lorenzo V and Timmis K.N., 1990, Transposon vectors containing nonantibiotic resistance selection markers for cloning and stable chromosomal insertion of foreign genes in gram-negative bacteria. J Bacteriol., 172:6557–6567.

    PubMed  CAS  Google Scholar 

  36. Jiménez J.I., Miiiambres B., Garcia J.L. and Diaz E., 2002, Genomic analysis of the aromatic catabolic pathways from Pseudomonas putida KT2440. Environ. Microbiol., 4(12): 824–841.

    Article  PubMed  Google Scholar 

  37. Kim K., Lee S., Lee K. and Lim D., 1998, Isolation and characterization of toluene-sensitive mutants from the toluene-resistant bacterium Pseudomonas putida GM73. J Bacteriol., 180:3692–3696.

    PubMed  CAS  Google Scholar 

  38. Lyi S.M., Jafri S. and Winans S.C., 1999, Mannopinic acid and agropinic acid catabolism region of the octopine-type Ti plasmid pTi15955. Mol. Microbiol., 31:339–347.

    Article  PubMed  CAS  Google Scholar 

  39. Martínez-Bueno M.A., Tobes R., Rey M. and Ramos IL., 2002, Detection of multiple extracytoplasmic function (ECF) sigma factors in the genome of Pseudomonas putida KT2440 and their counterparts in Pseudomonas aeruginosa PAO1. Environ. Micro., 4:842–855.

    Article  Google Scholar 

  40. Martin P.R., Hobbs M., Free P.D., Jeske Y. and Mattick IS., 1993, Characterization of pilQ, a new gene required for the biogenesis of type 4 fimbriae in Pseudomonas aeruginosa. Mol. Microbiol., 9:857–868.

    Article  PubMed  CAS  Google Scholar 

  41. Mermod N., Lehrbach P.R., Reineke W. and Timmis K.N., 1984, Transcription of the TOL plasmid toluate catabolic pathway operon of Pseudomonas putida is determined by a pair of co-ordinately and positively regulated overlapping promoters. EMBO J, 3:2461–2466.

    PubMed  CAS  Google Scholar 

  42. Michel V., Lehoux I., Depret G., Anglade P., Labadie J. and Hebraud M., 1997, The cold shock response of the psychotrophic bacterium Pseudomonas fragi involves four low-molecular-mass nucleic acid binding proteins. J Bacteriol., 179:7331–7342.

    PubMed  CAS  Google Scholar 

  43. Nakazawa T., 2002, Travels of a Pseudomonas, from Japan around the world. Environ. Microbiol., 4(12): 782–786.

    Article  PubMed  CAS  Google Scholar 

  44. Nelson K.E., Weinel C., Paulsen I.T., Dodson R.I., Hilbert H., Martins dos Santos. VA., Fouts D.E., Gill S.R., Pop M., Holmes M., Brinkac L., Beanan M., DeBoy R.T., Daugherty S., Kolonay J, Madupu R., Nelson W, White O., Peterson J., Khouri H., Hance I., Chris Lee P., Holtzapple E., Scanlan D., Tran K., Moazzez A., Utterback T., Rizzo M., Lee K., Kosack D., Moestl D., Wedler H., Lauber J, Stjepandic D., Hoheisel J., Straetz M., Heim S., Kiewitz C., Eisen J., Timmis K.N., Diisterhoft A., Tummler B. and Fraser C.M., 2002, Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. Environ. Microbiol., 4:799–808.

    Article  PubMed  CAS  Google Scholar 

  45. Nichols N.N. and Harwood C.S., 1997, PcaK, a high-affinity permease for the aromatic compounds 4-hydroxybenzoate and protocatechuate from Pseudomonas putida. J Bacteriol., 179:5056–5061.

    PubMed  CAS  Google Scholar 

  46. Nozaki M., Kagamiyama H. and Hayaishi O., 1963, Metapyrocatechase. I. Purification, crystallization and some properties. Biochem. Z., 338:582–590.

    PubMed  CAS  Google Scholar 

  47. Nunn D., Bergman S. and Lory S., 1990, Products of three accessory genes, pilB, pilC, and pilD, are required for biogenesis of Pseudomonas aeruginosa pili. J. Bacteriol., 172:2911–2919.

    PubMed  CAS  Google Scholar 

  48. Ohman D.E., Mathee K., McPherson C.I., DeVries C.A., Ma S., Wozniak D.I and Franklin M.I., 1996, Regulation of the alginate (algD) operon in Pseudomonas aeruginosa. In Nakazawa T., Haas D., and Silver S. (eds), Molecular Biology of Pseudomonads. pp. 472–483. Washington, DC: American Society for Microbiology Press.

    Google Scholar 

  49. Olivera E.R., Minambres B., Garcia B., Muniz C., Moreno M.A. and Ferrandez A., 1998, Molecular characterization ofthe phenylacetic acid catabolic pathway in Pseudomonas putida U: The phenylacetyl-CoA catabolon. Proc. Natl. Acad. Sci. USA, 95:6419–6424.

    Article  PubMed  CAS  Google Scholar 

  50. Pieper D.H. and Reineke W., 2000, Engineering bacteria for bioremediation. Curro Opin. Biotechnol., 11:262–270.

    Article  CAS  Google Scholar 

  51. Ramos J.L., Stolz A., Reineke W. and Timmis K.N., 1986, Altered effector specificities in regulators of gene expression: TOL plasmid xylS mutants and their use to engineer expansion of the range of aromatics degraded by bacteria. Proc. Natl. Acad. Sci. USA, 83:8467–8471.

    Article  PubMed  CAS  Google Scholar 

  52. Ramos J.L., Wasserfallen A., Rose K. and Timmis K.N., 1987, Redesigning metabolic routes: Manipulation of TOL plasmid pathway for catabolism of alkylbenzoates. Science, 235:593–596.

    Article  PubMed  CAS  Google Scholar 

  53. Regenhardt D., Heuer H., Heim S., Fernandez U.D., Strompl C., Moore E.R.B. and Timmis K.N., 2002, Pedigree and taxonomic credentials of Pseudomonas putida strain KT2440. Environ. Microbiol., 4(12):912–915.

    Article  PubMed  CAS  Google Scholar 

  54. Reineke W., 1998, Development of hybrid strains for the mineralization of chloroaromatics by patchwork assembly. Annu. Rev. Microbiol., 52:287–331.

    Article  PubMed  CAS  Google Scholar 

  55. Rheinwald J.G., Chakrabarty A.M. and Gunsalus I.C., 1973, A transmissible plasmid controlling camphor oxidation in Pseudomonas putida. Proc. Natl. Acad. Sci. USA, 70(3):885.

    Article  PubMed  CAS  Google Scholar 

  56. Rojo F., Pieper D.H., Engesser K.H., Knackmuss HJ. and Timmis K.N., 1987, Assemblage of ortho cleavage route for simultaneous degradation of chloro-and methylaromatics. Science, 238:1395–1398.

    Article  PubMed  CAS  Google Scholar 

  57. Salanoubat M., Genin S., Artiguenave E., Gouzy J., Mangenot S., Arlat M. et al., 2002, Genome sequence of the plant pathogen Ralstonia solanacearum. Nature, 415:497–502.

    Article  PubMed  CAS  Google Scholar 

  58. Schnider-Keel. U., Seematter A., Maurhofer M., Blumer C., Duffy B., Gigot-Bonnefoy C., Reimmann C., Notz R., Defago G., Haas D. and Keel C., 2000, Autoinduction of 2,4-diacetylphloroglucinol biosynthesis in the biocontrol agent Pseudomonas fluorescens CHAO and repression by the bacterial metabolites salicylate and pyoluteorin J. Bacteriol., 182:1215–1225.

    Article  PubMed  CAS  Google Scholar 

  59. Segura A., Duque E., Hurtado A. and Ramos J.L., 2001, Mutations in genes involved in the flagellar export apparatus ofthe solvent-tolerant Pseudomonas putida DOT-TIE strain impair motility and lead to hypersensitivity to toluene shocks. J. Bacteriol., 183:4127–4133.

    Article  PubMed  CAS  Google Scholar 

  60. Skovgaard M., Jensen LJ., Brunak S., Ussery D. and Krogh A., 2001, On the total number of genes and their length distribution in complete microbial genomes. Trends Genet., 17:425–428.

    Article  PubMed  CAS  Google Scholar 

  61. Starovoitov I.I., Selifonov S.A., Nefedova M.Iu. and Adanin V.M., 1985, Catabolism of biphenyl by Pseudomonas putida BS 893 strain containing the biodegradation plasmid pBS241. Mikrobiologiia, 54(6):914–918.

    PubMed  CAS  Google Scholar 

  62. Thieringer H.A., Jones P.G. and Inouye M., 1998, Cold shock and adaptation. Bioessays, 20:49–57.

    Article  PubMed  CAS  Google Scholar 

  63. Yamanaka K., Fang L. and Inouye M., 1998, The CspA family in Escherichia coli: Multiple gene duplication for stress adaptation. Mol. Microbiol., 27:247–255.

    Article  PubMed  CAS  Google Scholar 

  64. Venturi V., Zennaro E., Degrassi G., Okeke B.C. and Bruschi C.V:, 1998, Genetics of ferulic acid bioconversion to protocatechuic acid in plant-growth-promoting Pseudomonas putida WCS358. Microbiology, 144:965–973.

    Article  PubMed  CAS  Google Scholar 

  65. Visca P., Leoni L., Wilson MJ. and Lamont I.L., 2002, Iron transport and regulation, cell signalling and genomics: Lessons from Escherichia coli and Pseudomonas. Mol Microbiol., 45:1177–1190.

    Article  PubMed  CAS  Google Scholar 

  66. Vuilleumier S. and Pagni M., 2002, The elusive roles of bacterial glutathione S-transferases: New lessons from genomes. Appl. Microbiol. Biotechnol., 58: 138–146.

    Article  PubMed  CAS  Google Scholar 

  67. Weinel C., Ussery D.W., Ohlsson H., Sicheritz-Ponten T., Kiewitz C. and Tummler B., 2002, Comparative Genomics of Pseudomonas aeruginosa PAO1 and Pseudomonas putida KT2440: Orthologs, Codon Usage, REP Elements and Oligonucleotide Motif Signatures. Genome Letters, 1:175–187.

    Article  CAS  Google Scholar 

  68. Weinel C., Nelson K.E. and Tummler B., 2002, Global features of the Pseudomonas putida KT2440 genome sequence. Environ. Microbiol., 4:809–818.

    Article  PubMed  CAS  Google Scholar 

  69. Williams P.A. and Murray K., 1974, Metabolism of benzoate and the methylbenzoates by Pseudomonas putida (arvilla) mt-2: Evidence for the existence of a TOL plasmid. J. Bacteriol., 120:416–423.

    PubMed  CAS  Google Scholar 

  70. Worsey MJ. and Williams P.A., 1975, Metabolism of Toluene and Xylenes by Pseudomonas putida (arvilla) mt-2:Evidence for a New Function of the TOL Plasmid. J. Bacteriol., 124:7–13.

    PubMed  CAS  Google Scholar 

  71. Wong C.L. and Dunn N.W, 1976, Combined chromosomal and plasmid encoded control for the degradation of phenol in Pseudomonas putida. Genet. Res., 27(3):405–412.

    Article  PubMed  CAS  Google Scholar 

  72. Williams P.A. and Worsey MJ., 1976, Ubiquity of plasmids in coding for toluene and xylene metabolism in soil bacteria: Evidence for the existence of new TOL plasmids. J. Bacteriol., 125:818–828.

    PubMed  CAS  Google Scholar 

  73. Wubbolts M.G. and Timmis K.N., 1990, Biotransformation of substituted benzoates to the corresponding cis-diols by an engineered strain of Pseudomonas oleovorans producing the TOL plasmid-specified enzyme toluate-l,2-dioxygenase. Appl. Environ. Microbiol., 56:569–571.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Martins dos Santos, V.A.P., Timmis, K.N., Tümmler, B., Weinel, C. (2004). Genomic Features of Pseudomonas putida Strain KT2440. In: Ramos, JL. (eds) Pseudomonas. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9086-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9086-0_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4788-0

  • Online ISBN: 978-1-4419-9086-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics