Pseudomonas pp 793-815 | Cite as

Chemotaxis in Pseudomonads

  • Rebecca E. Parales
  • Abel Ferrández
  • Caroline S. Harwood

Abstract

All Pseudomonas species are motile by one or more polar flagella and are highly chemotactic. Chemotaxis and motility have been implicated in virulence in Pseudomonas aeruginosa21, and are important for plant root associations in Pseudomonas fluorescens17. The chemotaxis machinery has not been studied in detail in any Pseudomonas species and the range of attractants and environmental conditions to which Pseudomonads can respond behaviorally remains largely unexplored. However, the availability of four Pseudomonas genome sequences has allowed the identification of numerous potential chemotaxis genes. Experiments in P. aeruginosa and Pseudomonas putida indicate that the general chemotaxis machinery present in these organisms is similar to that of the well-studied enteric bacteria Escherichia coli and Salmonella. The vast array of chemotaxis and receptor genes present in the Pseudomonas genomes suggests that chemotaxis may be more complex and sensory transduction may be more versatile in the Pseudomonads than in enteric bacteria. This chapter will focus primarily on the information gleaned from the complete genome sequences of P. aeruginosa PAOl74, P. putida KT244050, Pseudomonas syringae DC3000 (ref. 8a) and the unfinished P. fluorescens PFOl sequences (http://www.jgi.doe.gov/JGI_microbial/html/index.html), correlating available functional data whenever possible.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adler J., 1973, A method for measuring chemotaxis and use of the method to determine opti mum conditions for chemotaxis by Escherichia coli. J. Gen. Microbiol, 74:77–91.PubMedCrossRefGoogle Scholar
  2. 2.
    Alm R.A. and Mattick J.S., 1997, Genes involved in the biogenesis and function of type-4 fimbriae in Pseudomonas aeruginosa. Gene, 192:89–98.PubMedCrossRefGoogle Scholar
  3. 3.
    Armstrong J.B., Adler J., and Dahl M.M., 1967, Nonchemotactic mutants of Escherichia coli. J. Bacteriol, 93:390–398.PubMedGoogle Scholar
  4. 4.
    Ausmees N., Jonsson H., Hoglund S., Ljunggren H., and Lindberg M., 1999, Structural and putative regulatory genes involved in cellulose synthesis in Rhizobium leguminosarum bv. trifolii. Microbiology; 145:1253–1262.PubMedCrossRefGoogle Scholar
  5. 5.
    Bespalov V.A., Zhulin I.B., and Taylor B.L., 1996, Behavioral responses of Escherichia coli to changes in redox potential. Proc. Natl. Acad. Sci. USA, 93:10084–10089.PubMedCrossRefGoogle Scholar
  6. 6.
    Bhaya D., Takahashi A., and Grossman A.R., 2001, Light regulation of type IV pilus-dependent motility by chemosensor-like elements in Synechocystis PCC6803. Proc. Natl Acad. Sci. USA, 98:7540–7545.PubMedCrossRefGoogle Scholar
  7. 7.
    Bibikov S.I., Biran R., Rudd K.E., and Parkinson J.S., 1997, A signal transducer for aerotaxis in Escherichia coli. J. Bacteriol, 179:4075–4079.PubMedGoogle Scholar
  8. 8.
    Brown D.A. and Berg H.C., 1974, Temporal stimulation of chemotaxis in Escherichia coli. Proc. Natl Acad. Sci. USA, 71:1388–1392.PubMedCrossRefGoogle Scholar
  9. 8a.
    Buell C.R., Joardar V., Lindeberg M., Selengut J., Paulsen L.T., Gwinn M.L., Dodson R.J., Deboy R.T., Durkin A.S., Kolonay J.F., Madupu R., Daugherty S., Brinkac L., Beanan M.J., Haft D.H., Nelson W.C., Davidsen T., Zafar K., Zhou L., Liu J., Yuan Q., Khouri H., Fedorova N., Tran B., Russell D., Berry K., Utterback T., Van Aken S.E., Feldblyum T.V., D’Ascenzo M., Deng W.L., Ramos A.R., Alfano J.R., Cartinhour S., Chatterjee A.K., Delaney T.R., Lazarowitz S.G., Martin G.B., Schneider D.J., Tang X., Bender C.L., White O., Fraser C.M., and Collmer A., 2003, The complete genome sequence of the Arabidopsis and tomato pathogen Pseudomonas syringae pv. tomato DC3000. Proc. Natl. Acad. Sci. USA., 100:10181–10186.PubMedCrossRefGoogle Scholar
  10. 9.
    Craven R. and Montie T.C., 1985, Regulation of Pseudomonas aeruginosa chemotaxis by the nitrogen source. J. Bacteriol, 164:544–549.PubMedGoogle Scholar
  11. 10.
    Craven R.C. and Montie T.C., 1983, Chemotaxis of Pseudomonas aeruginosa: Involvement of methylation. J. Bacteriol, 154:780–786.PubMedGoogle Scholar
  12. 11.
    D’Argenio D.A., Calfee M.W., Rainey P.B., and Pesci E.G., 2002, Autolysis and autoaggregation in Pseudomonas aeruginosa colony morphology mutants. J. Bacteriol, 184:6481–6489.PubMedCrossRefGoogle Scholar
  13. 12.
    D’Argenio D.A., Gallagher L.A., Berg C.A., and Manoil C., 2001, Drosophila as a model host for Pseudomonas aeruginosa infection. J. Bacteriol, 183:1466–1471.PubMedCrossRefGoogle Scholar
  14. 13.
    Darzins A., 1994, Characterization of a Pseudomonas aeruginosa gene cluster involved in pilus biosynthesis and twitching motility: Sequence similarity to the chemotaxis proteins of enterics and the gliding bacterium Myxococcus xanthus. Mol. Microbiol., 11:137–153.PubMedCrossRefGoogle Scholar
  15. 14.
    Darzins A., 1993, The pilG gene product, required for Pseudomonas aeruginosa pilus production and twitching motility, is homologous to the enteric, single-domain response regulator CheY J. Bacterial, 175:5934–5944.Google Scholar
  16. 15.
    Darzins A., 1995, The Pseudomonas aeruginosa pilK gene encodes a chemotactic methyltransferase (CheR) homologue that is translationally regulated. Mol. Microbiol, 15: 703–717.PubMedCrossRefGoogle Scholar
  17. 16.
    Darzins A., and Russell M. A., 1997. Molecular genetic analysis of type-4 pilus biogenesis and twitching motility using Pseudomonas aeruginosa as a model system—a review. Gene, 192:109–115.PubMedCrossRefGoogle Scholar
  18. 17.
    de Weert S., Vermeiren H., Mulders I.H., Kuiper I., Hendrickx N., Bloemberg N., Vanderleyden J., De Mot R., and Lugtenberg B.J., 2002, Flagella-driven chemotaxis towards exudate components is an important trait for tomato root colonization by Pseudomonas fluorescens. Mol. Plant Microbe Interact., 15:1173–1180.PubMedCrossRefGoogle Scholar
  19. 18.
    Ditty J.L., Grimm A.C., and Harwood C.S., 1998, Identification of a chemotaxis gene region from Pseudomonas putida. FEMS Microbiol. Lett, 159:267–273.PubMedCrossRefGoogle Scholar
  20. 19.
    Ditty J.L. and Harwood C.S., 2002, Charged amino acids conserved in the aromatic acid/H+ symporter family of permeases are required for 4-hydroxybenzoate transport by PcaK from Pseudomonas putida. J. Bacteriol, 184:1444–1448.PubMedCrossRefGoogle Scholar
  21. 20.
    Ditty J.L. and Harwood C.S., 1999, Conserved cytoplasmic loops are important for both the transport and chemotaxis functions of PcaK, a protein from Pseudomonas putida with 12-membrane-spanning regions. J. Bacteriol, 181:5068–5074PubMedGoogle Scholar
  22. 21.
    Drake D. and Montie T.C., 1988, Flagella, motility, and invasive virulence of Pseudomonas aeruginosa. J. Gen. Microbiol, 134:43–52.PubMedGoogle Scholar
  23. 22.
    Feng X., Baumgartner J.W., and Hazelbauer G.L., 1997, High-and low-abundance chemoreceptors in Escherichia coli: Differential activities associated with closely related cytoplasmic domains. J. Bacteriol, 179:6714–6720.PubMedGoogle Scholar
  24. 23.
    Ferrández. A., Hawkins A.C., and Harwood C.S., Unpublished data.Google Scholar
  25. 24.
    Ferrández A., Hawkins A.C., Summerfield D.T., and Harwood C.S., 2002, Cluster II genes from Pseudomonas aeruginosa are required for an optimal chemotactic response. J. Bacteriol, 184:4374–4383.PubMedCrossRefGoogle Scholar
  26. 25.
    Fredrick K.L. and Hermann J.D., 1994, Dual chemotaxis sigalling pathways in Bacillus subtilis: A sigma D-dependent gene encodes a novel protein with both CheW and CheY homologous domains. J. Bacteriol., 176:2727–2735.PubMedGoogle Scholar
  27. 26.
    Galibert F., Finan. T.M., Long S.R., Puhler A., Abola P., Ampe F., Barloy-Hubler F., Barnett M.J., Becker A., Boistard P., Bothe G., Boutry M., Bowser L., Buhrmester J., Cadieu E., Capela D., Chain P., Cowie A., Davis R.W., Dreano S., Federspiel NA., Fisher R.F., Gloux S., Godrie T., Goffeau A., Golding B., Gouzy J., Gurjal M., Hernandez-Lucas I., Hong A., Huizar L., Hyman R.W., Jones T., Kahn D., Kahn M.L., Kaiman S., Keating D.H., Kiss E., Komp C., Lelaure V., Masuy D., Palm C., Peck M.C., Pohl T.M., Porteteile D., Purnelle B., Ramsperger U., Surzycki R., Thebault P., Vandenbol M., Vorholter F.J., Weidner S., Wells D.H., Wong K.-K., Yeh K.C., and Batut J., 2001, The composite genome of the legume symbiont SinaRhizobium meliloti. Science, 293:668–672.PubMedCrossRefGoogle Scholar
  28. 27.
    Gosink K.K., Kobayashi R., Kawagishi L., and Hase C.C., 2002, Analyses of the roles of the three cheA homologs in chemotaxis of Vibrio cholera. J. Bacteriol, 184:1767–1771.PubMedCrossRefGoogle Scholar
  29. 28.
    Grimm A.C. and Harwood C.S., 1997, Chemotaxis of Pseudomonas putida to the polyaro-matic hydrocarbon naphthalene. Appl Environ. Microbiol., 63:4111–4115.PubMedGoogle Scholar
  30. 29.
    Grimm A.C. and Harwood C.S., 1999, NahY, a catabolic plasmid-encoded receptor required for chemotaxis of Pseudomonas putida to the aromatic hydrocarbon naphthalene. J. Bacteriol., 181:3310–3316.PubMedGoogle Scholar
  31. 30.
    Harwood C.S., 1989, A methyl-accepting protein is involved in benzoate taxis in Pseudomonas putida. J. Bacteriol, 171:4603–4608.PubMedGoogle Scholar
  32. 31.
    Harwood C.S., Fosnaugh K., and Dispensa M., 1989, Flagellation of Pseudomonas putida and analysis of its motile behavior. J. Bacterial, 171:4063–4066.Google Scholar
  33. 32.
    Harwood C.S., Nichols N.N., Kim M.-K., Ditty J.L., and Parales R.E., 1994, Identification of the pcaRKF gene cluster from Pseudomonas putida: Involvement in chemotaxis, biodegradation, and transport of 4-hydroxybenzoate. J. Bacteriol, 176:6479–6488.PubMedGoogle Scholar
  34. 33.
    Harwood C.S., Parales R.E., and Dispensa M., 1990, Chemotaxis of Pseudomonas putida toward chlorinated benzoates. Appl. Environ. Microbiol, 56:1501–1503.PubMedGoogle Scholar
  35. 34.
    Harwood CS, Rivelli M, and Ornston L.N, 1984, Aromatic acids are chemoattractants for Pseudomonas putida. J. Bacterial, 160:622–628.Google Scholar
  36. 35.
    Hawkins A.C., Alvarez-Ortega C., Schuster M., Tifrea D., and Harwood C.S., 2003, Presented at the 103rd General Meeting of the American Society for Microbiology, Washington, DC.Google Scholar
  37. 36.
    Hecht G.B. and Newton A., 1995, Identification of a novel response regulator required for the swarmer-to-stalked-cell transition in Caulobacter crescentus. J. Bacteriol., 177:6223–6229.PubMedGoogle Scholar
  38. 37.
    Karatan E., Saulmon M.M., Bunn M.W., and Ordal G.W., 2001, Phosphorylation of the response regulator CheV is required for adaptation to attractants during Bacillus subtilis chemotaxis. J. Biol. Chem., 276:43618–43626.PubMedCrossRefGoogle Scholar
  39. 38.
    Kato J., Ito A., Nikata T., and Ohtake H., 1992, Phosphate taxis in Pseudomonas aeruginosa. J. Bacteriol. 174:5149–5151.PubMedGoogle Scholar
  40. 39.
    Kato J., Nakamura T., Kuroda A., and Ohtake H., 1999, Cloning and characterization of chemotaxis genes in Pseudomonas aeruginosa. Biosci. Biotechnol. Biochem., 63: 155–161.PubMedCrossRefGoogle Scholar
  41. 40.
    Kearns D.B., Robinson J., and Shimkets L.J., 2001, Pseudomonas aeruginosa exhibits directed twitching motility up phosphatidylethanolamine gradients. J. Bacteriol, 183:763–767.PubMedCrossRefGoogle Scholar
  42. 41.
    Kelly-Wintenberg K. and Montie T.C., 1994, Chemotaxis to oligopeptides by Pseudomonas aeruginosa. Appl. Environ. Microbiol., 60:363–367.PubMedGoogle Scholar
  43. 42.
    Kirby J.R. and Zusman D.R, 2003, Chemosensory regulation of developmental gene expression in Myxococcus xanthus. Proc. Natl. Acad. Sci. USA, 100:2008–2013.PubMedCrossRefGoogle Scholar
  44. 43.
    Kuroda A., Kumano T., Taguchi K., Nikata T., Kato J., and Ohtake H., 1995, Molecular cloning and characterization of a chemotactic transducer gene in Pseudomonas aeruginosa. J. Bacteriol., 177:7019–7025.PubMedGoogle Scholar
  45. 44.
    Madsduki A., Nakamura J., Ohga T., Umezaki R., Kato J., and Ohtake H., 1995, Isolation and characterization of chemotaxis mutants and genes of Pseudomonas aeruginosa. J. Bacteriol., 177:948–952.Google Scholar
  46. 45.
    Mattick J.S., 2002, Type IV pili and twitching motility. Annu. Rev. Microbiol., 56:298–314.CrossRefGoogle Scholar
  47. 46.
    Mazumder R., Phelos T.J., Krieg N.R., and Benoit R.E., 1999, Determining chemotactic responses by two subsurface microaerophiles using a simplified capillary assay. J. Microbiol. Meth., 37:255–263.CrossRefGoogle Scholar
  48. 47.
    Meyer G., Schneider-Merck T., Böhme S., and Sand W., 2002, A simple method for investigations on the chemotaxis of Acidithiobacillis ferrooxidans and Desulfovibrio vulgaris. Acta Biotechnol., 22:391–399.CrossRefGoogle Scholar
  49. 48.
    Moench T.T. and Konetzka W.A., 1978, Chemotaxis in Pseudomonas aeruginosa. J. Bacteriol, 133:427–429.PubMedGoogle Scholar
  50. 49.
    Moulton R.C. and Montie T.C., 1979, Chemotaxis by Pseudomonas aeruginosa. J. Bacteriol., 137:274–280.PubMedGoogle Scholar
  51. 50.
    Nelson K.E., Weinel C., Paulsen I.T., Dodsen R.J., Hilbert H., Martins dos Santos V.A.P., Fouts D.E., Gill S.R., Pop M., Holmes M., Brinkac L., Beanan M., DeBoy R.T., Daugherty S., Kotonay J., Madupu R., Nelson W., White O., Peterson J., Khouri H., Hance I., Chris Lee P., Holtzapple E., Scanlan D., Tran K., Moazzez A., Utterback T., Rizzo M., Lee K., Kosack D., Moestl D., Wedler H., Lauber J., Stjepandic D., Hoheisel J., Straetz M., Heim S., Kiewitz C., Eisen J., Timmis K.N., Düsterhöft A., Tümmler B., and Fraser C. 2002, Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. Environ. Microbiol, 4:799–808.PubMedCrossRefGoogle Scholar
  52. 51.
    Nichols N.N. and Harwood C.S., 2000, An aerotaxis transducer gene from Pseudomonas putida. FEMS Microbiol Lett., 182:177–183.PubMedCrossRefGoogle Scholar
  53. 52.
    Nichols N.N. and Harwood C.S., 1997, PcaK, a high-affinity permease for the aromatic compounds 4-hydroxybenzoate and protocatechuate from Pseudomonas putida. J. Bacteriol., 179:5056–5061.PubMedGoogle Scholar
  54. 53.
    Nierman W.C., Feldblyum T.V., Laub M.T., Paulsen I.T., Nelson, K.E., Eisen J.A., Heidelberg J.E., Alley M.R., Ohta N., Maddock J.R., Potocka I., Nelson W.C., Newton A., Stephens C., Phadke N.D., Ely B., DeBoy R.T., Dodson R.J., Durkin A.S., Gwinn M.L., Haft D.H., Kolonay J.F., Smit J., Craven M.B., Khouri I.L., Shetty J., Berry K., Utterback T., Tran K., Wolf A., Vamathevan I., Ermolaeva M., White O., Salzberg S.L., Venter J.C., Shapiro L., Fraser C.M., and Eisen I., 2001, Complete genome sequence of Caulobacter crescentus. Proc. Natl. Acad. Sci. USA, 98:4136–4141.PubMedCrossRefGoogle Scholar
  55. 54.
    O’Toole. G.A. and Kolter R., 1998, Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm formation. Mol Microbiol., 30:295–304.PubMedCrossRefGoogle Scholar
  56. 55.
    Ohga T., Masduki A., Kato J.. and Ohtake H., 1993, Chemotaxis away from thiocyanate and isothiocyanate esters in Pseudomoans aeruginosa. FEMS Microbiol Lett., 113:63–66.PubMedCrossRefGoogle Scholar
  57. 56.
    Parales R.E., Ditty. J.L.. and Harwood C.S., 2000, Toluene-degrading bacteria are chemotactic to the environmental pollutants benzene, toluene, and trichloroethylene. Appt. Environ. Microbiol., 66:4098–4104.CrossRefGoogle Scholar
  58. 57.
    Parales R.E. and Harwood C.S., Unpublished data.Google Scholar
  59. 58.
    Pei J. and Grishin N.V., 2001, GGDEF domain is homologous to adenylyl cyclase. Proteins, 42:210–216.PubMedCrossRefGoogle Scholar
  60. 59.
    Porter S.X. and Armitage J.P., 2002, Phosphoteansfer in Rhodobacter sphaeroides chemotaxis. 324:35–45.Google Scholar
  61. 60.
    Porter S.L., Warren A.V., Martin A.C., and Armitage J.P., 2002, The third chemotaxis locus of Rhodobacter sphaeroides is essential for chemotaxis. Mol. Microbiol., 46:1081–1094.PubMedCrossRefGoogle Scholar
  62. 61.
    Repik A., Rebbapragada A., Johnson M.S., Haznedar J.O., Zhulin I.B., and Taylor B.L., 2000, PAS domain residues involved in signal transduction by the Aer redox sensor of Escherichia coli. Mol. Microbiol., 36:806–816.PubMedCrossRefGoogle Scholar
  63. 62.
    Römling U., Rohde M., Olsén A., Normark S., and Reinköster J., 2000, AgtD, the check-point of multicellular and aggregative behaviour in Salmonella typhimurium regulates at least two independent pathways. Mol. Microbiol, 36:10–23.PubMedCrossRefGoogle Scholar
  64. 63.
    Schuster M., Lostroh C.P., Ogi T., and Greenberg E.P., 2003, Identification, timing, and signal specificity of Pseudomonas aeruginosa quorum-controlled genes: A transcriptome analysis. J. Bacteriol., 185:2066–2079.PubMedCrossRefGoogle Scholar
  65. 64.
    Shah D.S.Ft., Porter S.L., Martin A.C., Hamblin P.A., and Armitage J.P., 2000, Fine tuning bacterial chemotaxis: Analysis of Rhodobacter sphaeroides behaviour under aerobic and anaerobic conditions by mutation of the major chemotaxis operons and cheY genes. EMBO J., 19:4601–4613.PubMedCrossRefGoogle Scholar
  66. 65.
    Shioi J., Dang C.V., and Taylor, B.L., 1987, Oxygen as attractant and repellent in bacterial chemotaxis. J. Bacteriol., 169:3118–3123.PubMedGoogle Scholar
  67. 66.
    Shuster M., Hawkins A.C., Harwood C.S., and Greenberg E.P., 2004, The Pseudomonas aeruginosa RpoS regulon and its relationship to quorum sensing. Mol. Microbiol., (in press).Google Scholar
  68. 67.
    Singh T. and Arora D.K., 2001, Motility and chemotactic response of Pseudomonas fluorescens toward chemoatfractants present in the exudate of Macrophominaphaseolina. Microbiol Res., 156:343–351.PubMedCrossRefGoogle Scholar
  69. 68.
    Sourjik V. and Schmitt R., 1996, Different roles of CheY1 and CheY2 in the chemotaxis of Rhizobium meliloti. Mol. Microbiol, 22:427–436.PubMedCrossRefGoogle Scholar
  70. 69.
    Sourjik Y. and Schmitt R., 1998, Phosphotransfer between CheA, CheY1, and CheY2 in the chemotaxis signal transduction chain of Rhizobium meliloti. Biochemistry, 37:2327–2335.PubMedCrossRefGoogle Scholar
  71. 70.
    Spiers A.J., Kahn S.G., Bohannon J., Travisano M., and Rainey P.B., 2002, Adaptive divergence in experimental populations of Pseudomonas fluorescens. I. Genetic and phenotypic bases of wrinkly spreader fitness. Genetics, 161:33–46.PubMedGoogle Scholar
  72. 71.
    Spudich J.L. and Koshland D.E.J, 1975, Quantitation of the sensory response in bacterial chemotaxis. Proc. Natl. Acad. Sci. USA, 72:710–713.PubMedCrossRefGoogle Scholar
  73. 72.
    Stock A.M., Robinson V.L., and Goudreau P.N., 2000, Two-component signal transduction. Annu. Rev. Biochem., 69:183–215.PubMedCrossRefGoogle Scholar
  74. 73.
    Stock J.B. and Surette M.G., 1996, Chemotaxis. In EC Neidhardt (ed.), Escherichia coli and Salmonella cellular and molecular biology, pp. 1103–1129. ASM Press Washington, DC.Google Scholar
  75. 74.
    Stover C.K., Pham X.Q., Erwin A.L., Mizoguchi S.D., Warrener P., Hickey M.J., Brinkman F.S., Hufhagle W.O., Kowalik D.J., Lagrou M., Garber R.L., Goltry L., Tolentino E., Westbrock-Wadman S., Yuan Y., Brody L.L., Coulter S.N., Folger K.R., Kas A., Larbig K., Lim R., Smith K., Spencer D., Wong G.K., Wu Z., Paulsen L.T., Reizer J., Saier M.H., Hancock R.E., Lory S., and Olson M.V., 2000, Complete genome sequence of Pseudomonas aeruginosa PA01, an opportunistic pathogen. Nature, 406:959–964.PubMedCrossRefGoogle Scholar
  76. 75.
    Taguchi K., Fukatomi H., Kuroda A., Kato J., and Ohtake H., 1997, Genetic identification of chemotactic transducers for amino acids in Pseudomonas aeruginosa. Microbiology, 143:3223–3229.PubMedCrossRefGoogle Scholar
  77. 76.
    Taylor B.L. and Zhulin L.B., 1999, PAS domains: Internal sensors of oxygen, redox potential, and light. Microbiol. Mol. Biol. Rev., 63:479–506.PubMedGoogle Scholar
  78. 77.
    Tsai J.W. and Alley M.R., 2001, Proteolysis of the Caulobacter McpA chemoreceptor is cell cycle regulated by a ClpX-dependent pathway. J. Bacteriol., 183:5001–5007.PubMedCrossRefGoogle Scholar
  79. 78.
    van Beilen J.B., Panke S., Lucchini S., Franchini A.G., Röthlisberger M., and Witholt B., 2001, Analysis of Pseudomonas putida alkane-degradation gene clusters and flanking insertion Sequences: Evolution and regulation of the alk genes. Microbiology, 147:1621–1630.PubMedGoogle Scholar
  80. 79.
    Ward M.J., Mok K.C., and Zusman D.R., 1998, Myxococcus xanthus dispays Frz-dependent chemokinetic behavior during vegetative swarming. J. Bacteriol, 180:440–443.PubMedGoogle Scholar
  81. 80.
    Ward M.J. and Zusman D.R., 1999, Motility in Myxococcus xanthus and its role in developmental aggregation. Curr. Opin. Microbiol., 2:624–629.PubMedCrossRefGoogle Scholar
  82. 81.
    Ward M.J. and Zusman D.R., 1997, Regulation of directed motility in Myxococcus xanthus. Mol. Microbiol., 24:885–893.PubMedCrossRefGoogle Scholar
  83. 82.
    Watson A.A., Alm R.A., and Mattick J.S., 1996, Identification of a gene,pilF, required for type 4 fimbrial biogenesis and twitching motility in Pseudomonas aeruginosa. Gene, 180:49–56.PubMedCrossRefGoogle Scholar
  84. 83.
    Wu H., Kato J., Kuroda A., Ikeda T., Takiguchi N., and Ohtake H., 2000, Identification and characterization of two chemotactic transducers for inorganic phosphate in Pseudomonas aeruginosa. J. Bacteriol., 182:3400–3404.PubMedCrossRefGoogle Scholar
  85. 84.
    Yu H. S. and Alam M., 1997, An agarose-in-plug bridge method to study chemotaxis in the Archaeon Halobacterium salinarum. FEMS Microbiol. Lett., 156:265–269.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Rebecca E. Parales
    • 1
  • Abel Ferrández
    • 2
  • Caroline S. Harwood
    • 3
  1. 1.Section of MicrobiologyUniversity of CaliforniaDavisUSA
  2. 2.DSM Nutritional ProductsBaselSwitzerland
  3. 3.Department of Microbiology and Center for Biocatalysis and BioprocessingThe University of IowaIowa CityUSA

Personalised recommendations