Pseudomonas pp 575-601 | Cite as

The Outer Membranes of Pseudomonads

  • Sandeep Tamber
  • Robert E. W. Hancock

Abstract

The study of bacterial cell surfaces began in 1675 when Leeuwenhoek peering through his microscope wondered what “held [bacteria] together, or what contained them”92. Since that time, our knowledge of cell surfaces, namely the Gram-negative outer membrane, has grown considerably. In addition to containing the bacteria, the outer membrane mediates a myriad of functions including other structural roles such as maintaining bacterial shape and providing a scaffold for fimbriae and flagella. Another key function of the outer membrane is to mediate the interactions between Gram-negative bacteria and their environment, primarily by determining which compounds enter and exit the cell. This complex task involves the integration of lipidic components involved in the barrier function of the outer membrane and proteins involved in the uptake and efllux of the various compounds able to traverse this barrier.

Keywords

Cystic Fibrosis Outer Membrane Pseudomonas Aeruginosa Outer Membrane Protein Pseudomonas Putida 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abdallah M.A., Pfestorf M., and Doring G., 1989. Pseudomonas aeruginosa pyoverdin: Structure and function. Antibiot. Chemother., 42:8–14.PubMedGoogle Scholar
  2. 2.
    Adewoye L.O., Tschetter L., O’Neil I., and Worobec E.A., 1998, Channel specificity and secondary structure of the glucose-inducible porins of Pseudomonas spp. J. Bioenerg. Bimembr., 30:257–267.Google Scholar
  3. 3.
    Adewoye L.O. and Worobec E.A., 2000, Identification and characterization of the gltK gene encoding a membrane-associated glucose transport protein of Pseudomonas aeruginosa. Gene, 253:323–330.PubMedGoogle Scholar
  4. 4.
    Adewoye L.O. and Worobec E.A., 1999, Multiple environmental factors regulate the expression of the carbohydrate-selective OprB porin of Pseudomonas aeruginosa. Can. J. Microbiol., 45, 1033–1042.PubMedGoogle Scholar
  5. 5.
    Angus B.L. and Hancock R.E.W., 1983, Outer membrane porin proteins F, P, and D1 of Pseudomonas aeruginosa and PhoE of Escherichia coli: Chemical cross-linking to reveal native oligomers. J. Bacteriol., 155:1042–1051.PubMedGoogle Scholar
  6. 6.
    Azghani A.O., Idell S., Bains M., and Hancock R.E.W., 2002, Pseudomonas aeruginosa outer membrane protein F is an adhesin in bacterial binding to lung epithelial cells in culture. Microb. Pathog., 33:109–114.PubMedGoogle Scholar
  7. 7.
    Baysse c., Meyer J.M., Plesiat P., Geoffroy v., Michel-Briand Y., and Cornelis P., 1999, Uptake of pyocin S3 occurs through the outer membrane ferripyoverdine type II receptor of Pseudomonas aeruginosa. J. Bacteriol., 181:3849–3851.PubMedGoogle Scholar
  8. 8.
    Bellido E, Finnen R.L., Martin N.L., Siehnel R.J., and Hancock R.E.W., 1992, Function and structure of Pseudomonas aeruginosa outer membrane protein OprF. In E. Galli, S. Silver, and B. Witholt (eds), Pseudomonas: Molecular Biology and Biotechnology, pp. 170-176. American Society for Microbiology Washington, DC.Google Scholar
  9. 9.
    Bellido E., Martin N.L., Siehnel R.J., and Hancock R.E.W., 1992, Reevaluation, using intact cells, of the exclusion limit and role of porin OprF in Pseudomonas aeruginosa outer membrane permeability. J. Bacteriol., 174:5196–5203.PubMedGoogle Scholar
  10. 10.
    Benz R., 1988, Structure and function of porins from Gram-negative bacteria. Annu. Rev. Microbiol., 42:359–393.PubMedGoogle Scholar
  11. 11.
    Bitter w., Marugg J.D., de Weger L.A., Tommassen J., and Weisbeek P.J., 1991, The ferricpseudobactin receptor PupA of Pseudomonas putida WCS358: Homology to TonB-dependent Escherichia coli receptors and specificity of the protein. Mol. Microbiol., 5:647–655.PubMedGoogle Scholar
  12. 12.
    Braun v., 2001, Iron uptake mechanisms and their regulation in pathogenic bacteria. Int. J. Med. Microbiol., 291:67–79.PubMedGoogle Scholar
  13. 13.
    Brinkman E.S., Bains M., and Hancock R.E.W., 2000, The amino terminus of Pseudomonas aeruginosa outer membrane protein OprF forms channels in lipid bilayer membranes: Correlation with a three-dimensional model. J. Bacteriol., 182:5251–5255.PubMedGoogle Scholar
  14. 14.
    Brinkman F.S., Schoofs G., Hancock R.E.W., and De Mot R., 1999, Influence of a putative ECF sigma factor on expression of the major outer membrane protein, OprF, in Pseudomonas aeruginosa and Pseudomanas fluorescens. J. Bacteriol., 181:4746–4754.PubMedGoogle Scholar
  15. 15.
    Castignetti D., 1997, Probing of Pseudomonas aeruginosa, Pseudomonas aureofaciens, Burkholderia (Pseudomonas) cepacia, Pseudomonas fluorescens, and Pseudomonas putida with the ferripyochelin receptor A gene and the synthesis of pyochelin in Pseudomonas aureofaciens, Pseudomonas fluorescens, and Pseudomonas putida. Curr. Microbiol., 34:250–257.PubMedGoogle Scholar
  16. 16.
    Cirillo D.M., Heffernan E.J., Wu L., Harwood J., Fierer J., and Guiney D.G., 1996, Identification of a domain in Rck, a product of the Salmonella typhimurium virulence plasmid, required for both serum resistance and cell invasion. Infect. Immun., 64;2019–2023.PubMedGoogle Scholar
  17. 17.
    Cody Y.S. and Gross D.C., 1987, Outer membrane protein mediating iron uptake via pyoverdinpss, the fluorescent siderophore produced by Pseudomonas syringae pv. syringae. J. Bacteriol., 169:2207–2214.Google Scholar
  18. 18.
    Cornelis P. and Matthijs S., 2002, Diversity of siderophore-mediated iron uptake systems in fluorescent pseudomonads: Not only pyoverdines. Environ. Microbiol., 4:787–798.PubMedGoogle Scholar
  19. 19.
    Cowan S.W., Schirmer T., Rummel G., Steiert M., Ghosh R., Pauptit R.A., Jansonius J.N., and Rosenbusch J.P., 1992, Crystal structures explain functional properties of two E. coli porins. Nature, 358:727–733.PubMedGoogle Scholar
  20. 20.
    Cripps A.w., Dunkley M.L., Taylor D.C., Cousins S., and Clancy R.L., 1995, Immunity to Pseudomonas aeruginosa induced by OprF following intestinal immunization. Adv. Exp. Med. Biol., 371B:761–763.Google Scholar
  21. 21.
    Cryz S.J., Jr., Pitt T.L., Furer E., and Germanier R., 1984, Role of lipopolysaccharide in virulence of Pseudomonas aeruginosa. Infect. Immun., 44:508–513.PubMedGoogle Scholar
  22. 22.
    de Chial M., Ghysels B., Beatson S.A., Geoffroy v., Meyer J.M., Pattery T., Baysse C., Chablain P., Parsons Y.N., Winstanley C., Cardwell S.J, and Carnelis P., 2003, Identification of type II and type III pyoverdine receptors from Pseudomonas aeruginosa. Microbiology, 149:821–831.PubMedGoogle Scholar
  23. 23.
    De Mot R., Schoofs G., Roelandt A., Declerck P., Proost P., Van Damme J., and Vanderleyden J., 1994, Molecularcharacterization of the major outer-membrane protein OprF from plant root-colonizing Pseudomunas fluorescens. Microbiology, 140(Pt6):1377–1387.PubMedGoogle Scholar
  24. 24.
    De Mot R. and Vanderleyden J., 1994, The C-terminal sequence conservation between OmpA-related outer membrane proteins and MotB suggests a common function in both Gram-positive and Gram-negative bacteria, possibly in the interaction of these domains with peptidoglycan. Mol. Microbiol., 12:333–334.PubMedGoogle Scholar
  25. 25.
    Dean C.R. and Poole K., 1993, Cloning and characterization of the ferric enterobactin receptor gene (pfeA) of Pseudomonas aeruginosa. J. Bacterial., 175:317–324.Google Scholar
  26. 26.
    Epp S.P., Kohler T., Plesiat P., Michea-Hamzehpour M., Frey J., and Pechere J.C., 2001, C-terminal region of Pseudomonas aeruginosa outer membrane porin OprD modulates susceptibility to meropenem. Antimicrob. Agents Chemother., 45:1780–1787.PubMedGoogle Scholar
  27. 27.
    Ernst RK., Yi E.C., Guo L., Lim K.B., Burns J.L., Hackett M., and Miller S.I., 1999, Specific lipopolysaccharide found in cystic fibrosis airway Pseudomonas aeruginosa. Science, 286:1561–1565.PubMedGoogle Scholar
  28. 28.
    Erridge c., Bennett-Guerrero E., and Poxton I.R., 2002, Structure and function of lipopolysaccharides. Microbes Infect., 4:837–851.PubMedGoogle Scholar
  29. 29.
    Faraldo-Gomez J.D. and Sansom M.S., 2003, Acquisition of siderophores in Gram-negative bacteria. Nat. Rev. Mol. Cell. Biol., 4:105–116.PubMedGoogle Scholar
  30. 30.
    Ferguson AD., Chakraborty R., Smith B.S., Esser L., van der Helm D., and Deisenhofer J., 2002, Structural basis of gating by the outer membrane transporter FecA. Science, 295:1715–1719.PubMedGoogle Scholar
  31. 31.
    Ferguson A.D. and Deisenhofer J., 2002, TonB-dependent receptors—structural perspectives. Biochim. Biophys. Acta, 1565:318–332.PubMedGoogle Scholar
  32. 32.
    Ferguson A.D., Hofmann E., Coulton J.W., Diederichs K., and Welte W., 1998, Siderophore-mediated iron transport: Crystal structure of FhuA with bound lipopolysaccharide. Science, 282:2215–2220.PubMedGoogle Scholar
  33. 33.
    Firoved A.M., Boucher J.C., and Deretic v., 2002, Global genomic analysis of AlgU (sigma(E))-dependent promoters (sigmulon) in Pseudomonas aeroginosa and implications for inflammatory processes in cystic fibrosis. J. Bacterial., 184:1057–1064.Google Scholar
  34. 34.
    Folschweiller N., Gallay J., Vincent M., Abdallah M.A., Pattus F., and Schalk I.J., 2002, The interaction between pyoverdin and its outer membrane receptor in Pseudomonas aeruginosa leads to different conformers: A time-resolved fluorescence study. Biochemistry, 41:14591–14601.PubMedGoogle Scholar
  35. 35.
    Folschweiller N., Schalk I.J., Celia H., Kieffer B., Abdallah M.A., and Pattus F., 2000, The pyoverdin receptor FpvA, a TonB-dependent receptor involved in iron uptake by Pseudomonas aeruginosa (review). Mol. Membr. Biol., 17:123–133.PubMedGoogle Scholar
  36. 36.
    Gensberg K., Smith A.W, Brinkman F.S., and Hancock R.E.W., 1999, Identification of oprG, a gene encoding a major outer membrane protein of Pseudomonas aeroginosa. J. Antimicrob. Chemother., 43:607–608.PubMedGoogle Scholar
  37. 37.
    Groisman E.A., 2001, The pleiotropic two-component regulatory system PhoP-PhoQ. J. Bacteriol., 183:1835–1842.PubMedGoogle Scholar
  38. 38.
    Hancock R.E.W, 1997, The bacterial outer membrane as a drug barrier. Trends Microbiol., 5:37–42.PubMedGoogle Scholar
  39. 39.
    Hancock R.E.W., 1991, Bacterial outer membranes: Evolving concepts. ASM News, 57:175–182.Google Scholar
  40. 40.
    Hancock R.E.W., 1998, Resistance mechanisms in Pseudomonas aeruginosa and other nonfennentative gram-negative bacteria. Clin. Infect. Dis., 27(Suppl. 1):S93–S99.PubMedGoogle Scholar
  41. 41.
    Hancock R.E.W. and Worobec E.A., 1998, Outer membrane proteins. In T.C. Montie (ed.), Pseudomonas, Vol. 10. pp. 139–167. Academic Press London.Google Scholar
  42. 42.
    Hancock R.E.W. and Brinkman F.S.L., 2002, Function of Pseudomonas porins in uptake and efflux. Annu. Rev. Microbial., 56:17–38.Google Scholar
  43. 43.
    Hancock R.E.W., Egli C., and Karunaratne N., 1994, Molecular organization and structural role of outer membrane macromolecules. In J.M. Ghuysen and R. Hackenback (eds), Bacterial Cell Wall pp. 263–279. Elsevier Science Publishers Amsterdam.Google Scholar
  44. 44.
    Hancock R.E.W., Worobec E.A, Poole K., and Benz R., 1987, Phosphate binding site of Pseudomonas aeruginosa outer membrane P, pp. 176–180. In A. Torriani, S. Silver, F. Rathman, A. Wright, and E. Yagel (eds), Phosphate Metabolism and Cellular Recognition in Microorganisms. American Society for Microbiology Washington, DC.Google Scholar
  45. 45.
    Hassett D.J., Cuppoletti J., Trapnell B., Lymar S.V., Rowe J.J., Sun Yoon S., Hilliard G.M., Parvatiyar K., Kamani M.C., Wozniak,D.J., Hwang S.H., McDermott T.R., and Ochsner U.A., 2002, Anaerobic metabolism and quorum sensing by Pseudomonas aeruginosa biofilms in chronically infected cystic fibrosis airways: Rethinking antibiotic treatment strategies and drug targets. Adv. Drug. Deliv. Rev., 54:1425–1443.PubMedGoogle Scholar
  46. 46.
    Heinrichs D.E., Yethon J.A., and Whitfield C., 1998, Molecular basis for structural diversity in the core regions of the lipopolysaccharides of Escherichia coli and Salmonella enterica. Mol. Microbiol., 30:221–232.PubMedGoogle Scholar
  47. 47.
    Hengge R. and Boos w., 1983, Maltose and lactose transport in Escherichia coli. Examples of two different types of concentrative transport systems. Biochim. Biophys. Acta, 737:443–478.PubMedGoogle Scholar
  48. 48.
    Huang H. and Hancock R.E.W., 1993, Genetic definition of the substrate selectivity of outer membrane porin protein OprD of Pseudomonasaeruginosa. J. Bacteriol., 175:7793–7800.PubMedGoogle Scholar
  49. 49.
    Huang H. and Hancock R.E.w., 1996, The role of specific surface loop regions in determining the function of the imipenem-specific pore protein OprD of Pseudomonas aeruginosa. J. Bacterial., 178:3085–3090.Google Scholar
  50. 50.
    Hughes E.E., Gilleland L.B., and Gilleland H.E., Jr., 1992, Synthetic peptides representing epitopes of outer membrane protein F of Pseudomonas aeruginosa that elicit antibodies reactive with whole cells of heterologous immunotype strains of P. aeruginosa. Infect. Immun., 60:3497–3503.PubMedGoogle Scholar
  51. 51.
    Jeanteur D., Lakey J.H., and Pattus E, 1991, The bacterial porin superfamily: Sequence alignment and structure prediction. Mol. Microbiol., 5:2153–2164.PubMedGoogle Scholar
  52. 52.
    Karunaratne D.N., Richards J.C., and Hancock R.E.W., 1992, Characterization of lipid A from Pseudomonas aeruginosa O-antigenic B band lipopolysaccharide by 1D and 2D NMR and mass spectral analysis. Arch. Biochem. Biophys., 299:368–376.PubMedGoogle Scholar
  53. 53.
    Kilburn L., Poole K., Meyer J.M., and Neshat S., 1998, Insertion mutagenesis of the ferric pyoverdine receptor FpvA of Pseudomonas aeruginosa: Identification of permissive sites and a region important for ligand binding. J. Bacteriol., 180:6753–6756.PubMedGoogle Scholar
  54. 54.
    Koebnik R, Locher K.P., and Van Gelder P., 2000, Structure and function of bacterial outer membrane proteins: Barrels in a nutshell. Mol. Microbiol., 37:239–253.PubMedGoogle Scholar
  55. 55.
    Kohler T., Epp S.F., Curty L.K., and Pechere J.c., 1999, Characterization of MexT, the regulator of the MexE-MexF-OprN multidrug efflux system of Pseudomonas aeruginosa. J. Bacteriol., 181:6300–6305.PubMedGoogle Scholar
  56. 56.
    Kohler T., Michea-Hamzehpour M., Epp S.F., and Pechere J.C., 1999, Carbapenem activities against Pseudomonas aeruginosa: Respective contributions of OprD and efflux systems. Antimicrob. Agents Chemother., 43:424–427.PubMedGoogle Scholar
  57. 57.
    Koster M., van de Vossenberg J., Leong J., and Weisbeek P.J., 1993, Identification and characterization of the pupB gene encoding an inducible ferric-pseudobactin receptor of Pseudomonas putida WCS358. Mol. Microbiol., 8:591–601.PubMedGoogle Scholar
  58. 58.
    Kreusch A., Neubuser A., Schiltz E., Weckesser J., and Schulz G.E., 1994, Structure of the membrane channel porin from Rhodopseudomonas blastica at 2.0 Å resolution. Protein Sci., 3:58–63.PubMedGoogle Scholar
  59. 59.
    Kropinski A.M., Jewell B., Kuzio J., Milazzo F., and Berry D., 1985, Structure and functions of Pseudomonas aeruginosa lipopolysaccharide. Antibiot. Chemother., 36:58–73.PubMedGoogle Scholar
  60. 60.
    Lam M.Y., McGroarty E.J., Kropinski A.M., MacDonald L.A., Pedersen S.S., Hoiby N., and Lam J.S., 1989, Occurrence of a common lipopolysaccharide antigen in standard and clinical strains of Pseudomonas aeruginosa. J. Clin. Microbiol., 27:962–967.PubMedGoogle Scholar
  61. 61.
    Larsen R.A., Letain T.E., and Postle K., 2003, In vivo evidence of TonB shuttling between the cytoplasmic and outer membrane in Escherichia coli. Mol. Microbiol., 49:211–218.PubMedGoogle Scholar
  62. 62.
    Leopold K., Jacobsen S., and Nybroe O., 1997, A phosphate-starvation-inducible outer-membrane protein of Pseudomonas fluorescens Ag1 as an immunological phosphate-starvation marker. Microbiology, 143(Pt 3):1019–1027.PubMedGoogle Scholar
  63. 63.
    Llamas M.A., Ramos J.L., and Rodriguez-Herve J.J., 2000, Mutations in each of the tol genes of Pseudomonas putida reveal that they are critical for maintenance of outer membrane stability. J. Bacterial., 182:4764–4772.Google Scholar
  64. 64.
    Loper, J.E. and Henkels M.D., 1999, Utilization of heterologous siderophores enhances levels of iron available to Pseudomonas putida in the rhizosphere. Appl. Environ. Microbiol., 65:5357–5363.PubMedGoogle Scholar
  65. 65.
    Macfarlane E.L., Kwasnicka, A., Ochs M.M., and Hancock R.E.W, 1999, PhoP-PhoQ homologues in Pseudomonas aeruginosa regulate expression of the outer-membrane protein OprH and polymyxin B resistance. Mol. Microbiol., 34:305–316.PubMedGoogle Scholar
  66. 66.
    Meadow P., 1975, Wall and membrane structures in the genus Pseudomonas. In P.R. Clarke and M.H. Richmond (eds), Genetics and Biochemistry of Pseudomonas, pp. 67–98. John Wiley Sons London.Google Scholar
  67. 67.
    Midgley M. and Dawes E.A., 1973, The regulation of transport of glucose and methyl alpha-glucoside in Pseudomonas aeruginosa. Biochem. J., 132:141–154.PubMedGoogle Scholar
  68. 68.
    Minnikin D.E. and Abdolrahimzadeh H., 1974, The replacement of phosphatidylethanolamine and acidic phospholipids by an ornithine-amide lipid and a minor phosphorus-free lipid in Pseudomonas fluorescens NCMB 129. FEBS Lett., 43:257–260.PubMedGoogle Scholar
  69. 69.
    Morris J., Donnelly D.F., O’Neill E., McConnell F., and O’Gara F., 1994, Nucleotide sequence analysis and potential environmental distribution of a ferric pseudobactin receptor gene of Pseudomonas sp. strain M114. Mol. Gen. Genet., 242:9–16.PubMedGoogle Scholar
  70. 70.
    Mossialos D., Meyer J.M., Budzikiewicz H., Wolff U., Koedam N., Baysse C., Anjaiah V., and Comelis P., 2000, Quinolobactin, a new siderophore of Pseudomonas fluorescens ATCC 17400, the production of which is repressed by the cognate pyoverdine. Appl. Environ. Microbiol., 66:487–492.PubMedGoogle Scholar
  71. 71.
    Mutharia L.M. and Hancock R.E.W., 1985, Characterization of two surface-localized antigenic sites on porin protein F of Pseudomonas aeruginasa. Can. J. Microbiol., 31:381–386.PubMedGoogle Scholar
  72. 72.
    Neilands J.B., 1995, Siderophores: Structure and function of microbial iron transport compounds. J. Biol. Chem., 270:26723–26726.PubMedGoogle Scholar
  73. 73.
    Nelson K.E., Weinel C., Paulsen I.T., Dodson R.J., Hilbert H., Martins dos Santos V.A., Fouts D.E., Gill S.R., Pop M., Holmes M., Brinkac L., Beanan M., DeBoy R.T., Daugherty S., Kolonay J., Madupu R., Nelson W., White O., Peterson J., Khouri H., Hance I., Chris Lee P., Holtzapple E., Scanlan D., Tran K., Moazzez A., Utterback T., Rizzo M., Lee K., Kosack D., Moestl D., Wedler H., Lauber J., Stjepandic D., Hoheisel J., Straetz M., Heim S., Kiewitz C., Eisen J., Timmis K.N., Dusterhoft A., Tummler B., and Fraser C.M., 2002, Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. Environ. Microbiol., 4:799–808.PubMedGoogle Scholar
  74. 74.
    Nikaido, H. and Vaara M., 1985, Molecular basis of bacterial outer membrane permeability. Microbiol. Rev., 49:1–32.PubMedGoogle Scholar
  75. 75.
    Nikaido H. and Hancock R.E.W., 1986, Outer membrane permeability of Pseudomonas aeruginosa. In J.R. Sokatch (ed.), The Bacteria: A Treatise on Structure and Function,Vol. X, pp. 145–193. Academic Press London.Google Scholar
  76. 76.
    Ochs M.M., Bains M., and Hancock R.E.W., 2000, Role of putative loops 2 and 3 in imipenem passage through the specific porin OprD of Pseudomonas aeruginosa. Antimicrob. Agents Chemothen, 44:1983–1985.Google Scholar
  77. 77.
    Ochs M.M., Lu C.D., Hancock R.E.W., and Abdelal A.T., 1999, Amino acid-mediated induction of the basic amino acid-specific outer membrane porin OprD from Pseudomonas aeruginosa. J. Bacteriol., 181:5426–5432.PubMedGoogle Scholar
  78. 78.
    Ochs M.M., McCusker M.P., Bains M., and Hancock R.E.W, 1999, Negative regulation of the Pseudomonas aeruginosa outer membrane porin OprD selective for imipenem and basic amino acids. Antimicrob. Agents Chemother., 43:1085–1090.PubMedGoogle Scholar
  79. 79.
    Ochsner U.A., Johnson Z., and Vasil M.L., 2000, Genetics and regulation of two distinct haem-uptake systems, phu and has, in Pseudomonas aeruginosa. Microbiology, 146(Pt 1): 185–198.PubMedGoogle Scholar
  80. 80.
    Olivera E.R., Minambres B., Garcia B., Muniz C., Moreno M.A., Ferrandez A., Diaz E., Garcia J.L., and Luengo J.M., 1998, Molecular characterization of the phenylacetic acid catabolic pathway in Pseudomonas putida U: The phenylacetyl-CoA catabolon. Proc. Natl. Acad. Sci. USA, 95:6419–6424.PubMedGoogle Scholar
  81. 81.
    Pai H., Kim J., Lee J.H., Choe K.W., and Gotoh N., 2001, Carbapenem resistance mechanisms in Pseudomonas aeruginosa clinical isolates. Antimicrob. Agents. Chemother., 45:480–484.PubMedGoogle Scholar
  82. 82.
    Pier G.B., 1996, Analysis of naturally occurring antibodies to mucoid Pseudomonas aeruginosa in cystic fibrosis patients. J. Infect. Dis., 173:513–515.PubMedGoogle Scholar
  83. 83.
    Pier G.B., Markham R.B., and Eardley D., 1981, Correlation of the biologic responses of C3H/HEJ mice to endotoxin with the chemical and structural properties of the lipopolysaccharides from Pseudomonas aeruginosa and Escherichia coli. J. Immunol., 127:184–191.PubMedGoogle Scholar
  84. 84.
    Pinkart H.C. and White D.C., 1998, Lipids of Pseudomonas. In T.C. Montie (ed.), Pseudomonas,Vol. 10, pp. 111–138. Plenum Press London.Google Scholar
  85. 85.
    Poole K. and McKay G.A., 2003, Iron acquisition and its control in Pseudomonas aeruginosa: Many roads lead to rome. Front. Biosci., 8:D661–D686.PubMedGoogle Scholar
  86. 86.
    Price R.M., Galloway D.R., Baker N.R., Gilleland L.B., Staczek J. and Gilleland H.E., Jr., 2001, Protection against Pseudomonas aeruginosa chronic lung infection in mice by genetic immunization against outer membrane protein F (OprF) of P. aeruginosa. Infect. Immun., 69:3510–3515.PubMedGoogle Scholar
  87. 87.
    Ramos J.L., Duque E., Gallegos M.T., Godoy P., Ramos-Gonzalez M.I., Rojas A., Teran W., and Segura A., 2002, Mechanisms of solvent tolerance in Gram-negative bacteria. Annu. Rev. Microhiol., 56:743–768.Google Scholar
  88. 88.
    Rawling E.G., Brinkman F.S., and Hancock R.E.W., 1998, Roles of the carboxy-terminal half of Pseudomonas aeruginosa major outer membrane protein OprF in cell shape, growth in low-osmolarity medium, and peptidoglycan association. J. Bacteriol., 180:3556–3562.PubMedGoogle Scholar
  89. 89.
    Rebiere-Huet J., Guerillon J., Pimenta A.L., Di Martino P., Orange N., and Hulen C., 2002, Porins of Pseudomonas fluorescens MFO as fibronectin-binding proteins. FEMS Microbiol. Lett., 215:121–126.PubMedGoogle Scholar
  90. 90.
    Rivera M. and McGroarty E.J., 1989, Analysis of a common-antigen lipopolysaccharide from Pseudomonas aeruginosa. J Bacteriol., 171:2244–2248.PubMedGoogle Scholar
  91. 91.
    Rodriguez-Herva J.J. and Ramos J.L., 1996. Characterization of an OprL null mutant of Pseudomonas putida. J. Bacteriol., 178:5836–5840.PubMedGoogle Scholar
  92. 92.
    Salton M.R.J., 1994, The bacterial cell envelope—a historical perspective. In J.M. Ghuysen and R. Hackenback (eds). Bacterial Cell Wall, pp. 1–22. Elsevier Science Publishers. Amsterdam.Google Scholar
  93. 93.
    Schalk I.J., Abdallah M.A., and Pattus E. 2002, A new mechanism for membrane iron transport in Pseudomonas aeruginosa. Biochem. Soc. Trans., 30:702–705.PubMedGoogle Scholar
  94. 94.
    Schirmer T., 1998. General and specific porins from bacterial outer membranes. J. Struct. Biol., 121:101–109.PubMedGoogle Scholar
  95. 95.
    Schirmer,T., Keller T.A., Wang,Y.F., and Rosenbusch J.P., 1995, Structural basis for sugar translocation through maltoporin channels at 3.1 A resolution. Science, 267:512–514.PubMedGoogle Scholar
  96. 96.
    Segers P., Vancanneyt M., Pot B., Torck U., Haste B., Dewettinck D., Falsen E., Kersters K., and De Vas P., 1994, Classification of Pseudomonas diminuta Leifson and Hugh 1954 and Pseudomonas vesicularis Busing, Doll, and Freytag 1953 in Brevundlmonas gen. nov. as Brevundimonas diminuta comb. nov. and Brevundimonas vesicularis comb. nov., respectively. Int. J. Syst. Bacteriol., 44:499–510.PubMedGoogle Scholar
  97. 97.
    Shen J., Meldrum A., and Poole K., 2002, FpvA receptor involvement in pyoverdine biosynthesis in Pseudomonasaeruginosa. J. Bacteriol., 184:3268–3275.PubMedGoogle Scholar
  98. 98.
    Siehnel R.J., Egli C., and Hancock R.E.W, 1992, Polyphosphate-selective porin OprO of Pseudomonas aeruginosa: Expression. purification and sequence. Mol. Microbiol., 6:23l9–2326.Google Scholar
  99. 99.
    Stover C.K., Pham X.Q., Erwin A.L., Mizoguchi S.D., Warrener P., Hickey M.J., Brinkman F.S.. Hufnagle W.O., Kowalik D.J., Lagrou M., Garber RL., Goltry L., Tolentino E., Westbrock-Wadman S., Yuan Y., Brody L.L., Coulter S.N., Folger K.R., Kas A., Larbig K., Lim R., Smith K., Spencer D., Wong G.K., Wu Z., Paulsen I.T., Reizer J., Seier M.H., Hancock R.E.W., Lory S., and Olson M.V., 2000, Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature, 406:959–964.PubMedGoogle Scholar
  100. 100.
    Sugawara E. and Nikaido H., 1994, OmpA protein of Escherichia coli outer membrane occurs in open and closed channel forms. J. Biol. Chem., 269:17981–17987.PubMedGoogle Scholar
  101. 101.
    Sukhan A. and Hancock R.E.W, 1995, Insertion mutagenesis of the Pseudomonas aeruginosa phosphate-specific porin OprP. J. Bacteriol., 177:4914–4920.PubMedGoogle Scholar
  102. 102.
    Sukhan A. and Hancock R.E.W. 1996. The role of specific lysine residues in the passage of anions through the Pseudomonas aeruginosa porin OprP. J. Biol. Chem., 271:21239–21242.PubMedGoogle Scholar
  103. 103.
    Tamayo R., Ryan S.S., McCoy A.J., and Gunn J.S., 2002, Identification and genetic characterization of PmrA-regulated genes and genes involved in polymyxin B resistance in Salmonella enterica serovar Typhimurium. Infect. Immun., 70:6770–6778.PubMedGoogle Scholar
  104. 104.
    Trias J. and Nikaido H., 1990. Outer membrane protein D2 catalyzes facilitated diffusion of carbapenems and penems through the outer membrane of Pseudomonas oeruginosa. Antimicrob. Agents Chemother., 34:52–57.PubMedGoogle Scholar
  105. 105.
    Trias J. and Nikaido H., 1990, Protein D2 channel of the Pseudomonas aeruginosa outer membrane has a binding site for basic amino acids and peptides. J. Biol. Chem., 265:156811–15684.Google Scholar
  106. 106.
    Van Gelder P., Dumas E, Bartoldus I., Saint N., Prilipov A., Winterhalter M., Wang Y., Philippsen A., Rosenbusch J.P., and Schirmer T., 2002, Sugar transport through maltoporin of Escherichia coli: Role of the greasy slide. J. Bacteriol., 184:2994–2999.PubMedGoogle Scholar
  107. 107.
    von Specht B.U., Gabelsberger J., Knapp B., Hundt E., Schmidt-Pilger H., Bauemsachs S., Lenz U., and Domdey H., 2000, Immunogenic efficacy of differently produced recombinant vaccines candidates against Pseudomonas aeruginosa infections. J. Biotechnol., 83:3–12.Google Scholar
  108. 108.
    von Specht B.U., Knapp B., Muth G., Broker M., Hungerer K.D., Diehl K.D., Massarrat K., Seemann A, and Domdey H., 1995, Protection of immunocompromised mice against lethal infection with Pseudomonas aeruginosa by active or passive immunization with recombinant P. aeruginosa outer membrane protein F and outer membrane protein I fusion proteins. Infect. Immun., 63:1855–1862.Google Scholar
  109. 109.
    Wachtel M.R. and Miller V.L., 1995, In vitro and in vivo characterization of an ail mutant of Yersinia enterocolitica. Infect. Immun., 63:2541–2548.PubMedGoogle Scholar
  110. 110.
    Wang J., Mushegian A., Lory S., and Jin S., 1996, Large-scale isolation of candidate virulence genes of Pseudomonas aeruginosa by in vivo selection. Proc. Natl. Acad. Sci. USA, 93:10434–10439.PubMedGoogle Scholar
  111. 111.
    Wilkinson S.G., 1983, Composition and structure of lipopolysaccharides from Pseudomonas aeruginosa. Rev. Infect. Dis., 5(Suppl. 5):8941–8949.Google Scholar
  112. 112.
    Woodruff WA and Hancock R.E.W., 1989, Pseudomonas aeruginosa outer membrane protein F: Structural role and relationship to the Escherichia coli OmpA protein. J. Baaeriol., 171:3304–3309.Google Scholar
  113. 113.
    Wylie J.L., Bernegger-Egli C, O’Neil, J.D., and Worobec E.A., 1993, Biophysical characterization of OprB, a glucose-inducible porin of Pseudomonas aeruginosa. J. Bioenerg. Biomembr., 25:547–556.PubMedGoogle Scholar
  114. 114.
    Wylie J.L. and Worobec E.A., 1995, The OprB porin plays a central role in carbohydrate uptake in Pseudomonas aeruginosa. J. Bacteriol., 177:3021–3026.PubMedGoogle Scholar
  115. 115.
    Yoon S.S., Hennigan R.F., Hilliard G.M., Ochsner U.A., Parvatiyar K., Kamani M.C., Allen H.L., DeKievit T.R., Gardner P.R., Schwab U, Rowe J.J., Iglewski B.H., McDennott T.R., Mason R.P., Wozniak D.J., Hancock R.E.W., Parsek M.R., Noah T.L., Boucher R.C., and Hassett D.J., 2002, Pseudomonas aeruginosa anaerobic respiration in biofilms: Relationships to cystic fibrosis pathogenesis. Dev. Cell, 3:593–603.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Sandeep Tamber
    • 1
  • Robert E. W. Hancock
    • 1
  1. 1.Department of Microbiology and ImmunologyUniversity of British ColumbiaVancouverCanada

Personalised recommendations