Pseudomonas pp 477-503 | Cite as

The Pathogenic Lifestyle of Pseudomonas aeruginosa in Model Systems of Virulence

  • David A. D’Argenio


It is a constant challenge for the microbiologist not to let a human’s-eye view of the world occlude a bacterium’s-eye view71. From a human perspective, Pseudomonas aeruginosa seizes the opportunity to proliferate and cause acute disease10. Any breach of external barriers provides such an opportunity and includes tissue damage (burned skin or a scratched cornea) and procedures that allow contamination of the blood or urinary tract. Inborn mutation of the human CFTR gene results in a lung environment where P. aeruginosa can persist and cause chronic disease. Other organisms, when weakened, are also at risk. P. aeruginosa can kill waterlogged plants30 and overcrowded grasshoppers12. Because of its potential for harm, P. aeruginosa is classified as an opportunistic pathogen (Figure 1).


Cystic Fibrosis Pseudomonas Aeruginosa Cystic Fibrosis Patient Virulence Determinant Cystic Fibrosis Mouse 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aballay A. and Ausubel F.M., 2002, Caenorhabditis elegans as a host for the study of host-pathogen interactions. Curr. Opin. Microbiol, 5:97–101.PubMedCrossRefGoogle Scholar
  2. 2.
    Abd H., Johansson T., Golovliov I., Sandström, and Forsman M., 2003, Survival and growth of Francisella tularensis in Acanthamoeba castellanii. Appl. Environ. Microbiol., 69:600–606.PubMedCrossRefGoogle Scholar
  3. 3.
    Aravind L. and Koonin E.V, 2001, The DNA-repair protein AlkB, EGL-9, and leprecan define new families of 2-oxoglutarate-and iron-dependent dioxygenases. Genome Biol, 2:1–8.CrossRefGoogle Scholar
  4. 4.
    Asai X, Tena G., Plotnikova J., Willmann M.R., Chiu W.-L., Gomez-Gomez L., Boiler T., Ausubel F.M., and Sheen J., 2002, MAP kinase signalling cascade in Arabidopsis innate immunity. Nature, 415:977–983.PubMedCrossRefGoogle Scholar
  5. 5.
    Bacot A.W., 1911, The persistence of Bacillus pyocyaneus in pupae and imagines of Musca domestica raised from larvae experimentally infected with the bacillus. Parasitology, 4:68–74.CrossRefGoogle Scholar
  6. 6.
    Barrett J.F. and Hoch J.A., 1998, Two-component signal transduction as a target for microbial anti-infective therapy. Antimicrob. Agents Chemother., 42:1529–1536.Google Scholar
  7. 7.
    Basset A., Khush R.S., Braun A., Gardan L., Boccard F., Hoffmann J.A., and Lemaitre B., 2000, The phytopathogenic bacteria Erwinia carotovora infects Drosophila and activates an immune response. Proc. Natl. Acad. Sci. USA, 97:3376–3381.PubMedCrossRefGoogle Scholar
  8. 8.
    Beatson S.A., Whitchurch C.B., Sargent J.L., Levesque R.C., and Mattick J.S., 2002, Differential regulation of twitching motility and elastase production by Vfr in Pseudomonas aeruginosa. J. Bacteriol., 184:3605–3613.PubMedCrossRefGoogle Scholar
  9. 9.
    Beatson S.A., Whitchurch C.B., Semmler A.B.T., and Mattick J.S., 2002, Quorum sensing is not required for twitching motility in Pseudomonas aeruginosa. J. Bacteriol, 184:3598–3604.PubMedCrossRefGoogle Scholar
  10. 10.
    Bodey G.P., Bolivar R., Fainstein V., and Jadeja L., 1983, Infections caused by Pseudomonas aeruginosa. Rev. Infect. Dis., 5:279–313.PubMedCrossRefGoogle Scholar
  11. 11.
    Boman H.G., Nilsson I., andRasmuson B., 1972, Inducible antibacterial defence system in Drosophila. Nature, 237:232–235.PubMedCrossRefGoogle Scholar
  12. 12.
    Bucher G.E. and Stephens J.M., 1957, A disease of grasshoppers caused by the bacterium Pseudomonas aeruginosa (Schroeter) Migula. Can. J. Bacteriol, 3:611–625.Google Scholar
  13. 13.
    Budzikiewicz H., 1993, Secondary metabolites from fluorescent pseudomonads. FEMS Microbiol. Rev., 104:209–228.CrossRefGoogle Scholar
  14. 14.
    Cao H., Baldini R.L., and Rahme L.G., 2001, Common mechanisms for pathogens of plants and animals. Annu. Rev. Phytopathol, 39:259–284.PubMedCrossRefGoogle Scholar
  15. 15.
    Cao H., Krishnan G., Goumnerov B., Tsongalis J., Tompkins R., and Rahme L.G., 2001, A quorum sensing-associated virulence gene of Pseudomonas aeruginosa encodes a LysR-like transcription regulator with a unique self-regulatory mechanism. Proc. Natl Acad. Sci. USA, 98:14613–14618.PubMedCrossRefGoogle Scholar
  16. 16.
    Chakrabarty A.M., 1998, Nucleoside diphosphate kinase: Role in bacterial growth, virulence, cell signalling and polysaccharide synthesis. Mol Microbiol, 28:875–882.PubMedCrossRefGoogle Scholar
  17. 17.
    Chugani S.A., Whiteley M., Lee K.M., D’Argenio D., Manoil C, and Greenberg E.P., 2001, QscR, a modulator of quorum-sensing signal synthesis and virulence in Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA, 98:2752–2757.PubMedCrossRefGoogle Scholar
  18. 18.
    Coleman FT., Mueschenborn S., Meluleni G., Ray C., Carey VI., Vargas S.O., Cannon C.L., Ausubel F.M., and Pier G.B., 2003, Hypersusceptibility of cystic fibrosis mice to chronic Pseudomonas aeruginosa oropharyngeal colonization and lung infection. Proc. Natl. Acad. Sci. USA, 100:1949–1954.PubMedCrossRefGoogle Scholar
  19. 19.
    Collier D.N., Anderson L., McKnight S.L., Noah T.L., Knowles M., Boucher R., Schwab U., Gilligan P., and Pesci E.C., 2002, A bacterial cell to cell signal in the lungs of cystic fibrosis patients. FEMS Microbiol. Lett., 215:41–46.PubMedCrossRefGoogle Scholar
  20. 20.
    Cosson P., Zulianello L., Join-Lambert O., Faurisson F., Gebbie L., Benghezal M., van Delden C., Kocjancic-Curty L., and Köhler T., 2002, Pseudomonas aeruginosa virulence analyzed in a Dictyostelium discoideum host system. J. BacterioL, 184:3027–3033.PubMedCrossRefGoogle Scholar
  21. 21.
    Couillault C., and Ewbank J.J., 2002, Diverse bacteria are pathogens of Caenorhabditis elegans. Infect. Immun., 70:4705–4707.PubMedCrossRefGoogle Scholar
  22. 22.
    Daborn P.J., Waterfield N., Silva CP., Au C.P.Y., Sharma S., and ffrench-Constant R.H., 2002, A single Photorhabdus gene, makes caterpillars floppy (mcf), allows Escherichia coli to persist within and kill insects. Proc. Natl. Acad. Sci. USA, 99:10742–10747.PubMedCrossRefGoogle Scholar
  23. 23.
    Dacheux D., Attree I., Schneider C, and Toussaint B., 1999, Cell death of human polymorphonuclear neutrophils induced by a Pseudomonas aeruginosa cystic fibrosis isolate requires a functional Type III secretion system. Infect. Immun., 67:6164–6167.PubMedGoogle Scholar
  24. 24.
    Dangl J.L. and Jones J.D.G., 2001, Plant pathogens and integrated defence responses to infection. Nature, 411:826–833.PubMedCrossRefGoogle Scholar
  25. 25.
    Darby C, Cosma C.L., Thomas J.H., and Manoil C, 1999, Lethal paralysis of Caenorhabditis elegans by Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA, 96:15202–15207.PubMedCrossRefGoogle Scholar
  26. 26.
    D’Argenio DA., Calfee M.W., Rainey P.B., and Pesci E.C., 2002, Autolysis and auto-aggregation in Pseudomonas aeruginosa colony morphology mutants. J. Bacteriol., 184:6481–6489.PubMedCrossRefGoogle Scholar
  27. 27.
    D’Argenio D.A., Gallagher L.A., Berg C.A., and Manoil C, 2001, Drosophiia as a model host for Pseudomonas aeruginosa infection. J. Bacteriol., 183:1466–1471.PubMedCrossRefGoogle Scholar
  28. 28.
    Dionne M.S., Ghori N., and Schneider D.S., 2003, Drosophiia melanogaster is a genetically tractable model host for Mycobacterium marinum. Infect. Immun., 71:3540–3550.PubMedCrossRefGoogle Scholar
  29. 29.
    Elrod R.P. and Braun A.C., 1941, A phytopathogenic bacterium fatal to laboratory animals. Science, 94:520–521.PubMedCrossRefGoogle Scholar
  30. 30.
    Elrod R.P. and Braun A.C., 1942, Pseudomonas aeruginosa; its role as a plant pathogen. J. Bacteriol., 46:633–645.Google Scholar
  31. 31.
    Epstein A.C.R., Gleadle J.M., McNeill L.A., Hewitson K.S., O’Rourke J., Mole D.R., Mukherji M., Metzen E., Wilson M.I., Dhanda A., Tian Y.-M., Masson N., Hamilton D.L., Jaakkola P., Barstead R., Hodgkin J., Maxwell PH., Pugh C.W., Schofield C.J., and Ratcliffe P.J., 2001, C. elegans Egl-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell, 107:43–54.PubMedCrossRefGoogle Scholar
  32. 32.
    Ewbank J.J., 2002, Tackling both sides of the host-pathogen equation with Caenorhabditis elegans. Microb. Infect., 4:247–256.CrossRefGoogle Scholar
  33. 33.
    Falkow S., 2000, Living in stools is not as dumb as you think. J. Bacteriol., 182:3319–3322.PubMedCrossRefGoogle Scholar
  34. 34.
    Fauvarque M.-O., Bergeret E., Chabert J., Dacheux D, Satre M., and Attree I., 2002, Role and activation of Type III secretion system genes in Pseudomonas aeruginosa-induced Drosophiia killing. Microb. Pathogen., 32:287–295.CrossRefGoogle Scholar
  35. 35.
    Fernández R.O. and Pizarro R.A., 1999, Pseudomonas aeruginosa UV-A-induced lethal effect: influence of salts, nutritional stress and pyocyanine. J. Photochem. Photobiol. B: Biol., 50:59–65.CrossRefGoogle Scholar
  36. 36.
    Finlay B.B., 1999, Bacterial disease in diverse hosts. Cell, 96:315–318.PubMedCrossRefGoogle Scholar
  37. 37.
    Firoved A.M. and Deretic V, 2003, Microarray analysis of global gene expression in mucoid Pseudomonas aeruginosa. J. Bacteriol., 185:1071–1081.PubMedCrossRefGoogle Scholar
  38. 38.
    Flyg C, Kenne K., and Boman H.G., 1980, Insect pathogenic properties of Serratia marcescens phage-resistant mutants with a decreased resistance to Cecropia immunity and a decreased virulence to Drosophila. J. Gen. Microbiol, 120:173–181.PubMedGoogle Scholar
  39. 39.
    Friedheim E.A.H., 1931, Pyocyanine, an accessory respiratory enzyme. J. Exp. Med., 54:207–221.PubMedCrossRefGoogle Scholar
  40. 40.
    Gaffhey T., Friedrich L., Vernooij B., Negrotto D., Nye G., Uknes S., Ward E., Kessmann H., and Ryals J., 1993, Requirement of salicylic acid for the induction of systemic acquired resistance. Science, 261:754–756.CrossRefGoogle Scholar
  41. 41.
    Gallagher L.A. and Manoil C, 2001, Pseudomonas aeruginosa PAOl kills Caenorhabditis elegans by cyanide poisoning. J. Bacteriol., 183:6207–6214.PubMedCrossRefGoogle Scholar
  42. 42.
    Gallagher L.A., McKnight S.L., Kuznetsova M., Pesci E.C., and Manoil C, 2002, Functions required for extracellular quinolone signaling by Pseudomonas aeruginosa. J. Bacteriol., 184:6472–6480.PubMedCrossRefGoogle Scholar
  43. 43.
    Garsin D.A., Sifri CD., Mylonakis E., Qin X., Singh K.Y., Murray B.E., Calderwood S.B. and Ausubel F.M., 2001, A simple model host for identifying Gram-positive virulence factors. Proc. Natl. Acad. Sci. USA, 98:10892–10897.PubMedCrossRefGoogle Scholar
  44. 44.
    Gems D. and Riddle D.L., 2000, Genetic, behavioral and environmental determinants of male longevity in Caenorhabditis elegans. Genetics, 154:1597–1610.PubMedGoogle Scholar
  45. 45.
    Govan J.R.W. and Deretic V., 1996, Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia. Microbiol. Rev., 60:539–574.PubMedGoogle Scholar
  46. 46.
    Grcenberg B., 1969, Salmonella suppression by known populations of bacteria in flies. J. Bacteriol, 99:629–635.Google Scholar
  47. 47.
    Guina T., Purvine S.O., Yi E.C., Eng J., Goodlett. D.R., Aebersold R., and Miller S.I., 2003, Quantitative proteomic analysis indicates increased synthesis of a quinolone by Pseudomonas aeruginosa isolates from cystic fibrosis airways. Proc. Natl Acad. Sci. USA, 100:2771–2776.PubMedCrossRefGoogle Scholar
  48. 48.
    Handelsman J. and Stabb E.V, 1996, Biocontrol of soilborne plant pathogens. Plant Cell, 8:1855–1869.PubMedGoogle Scholar
  49. 49.
    Hassett D.J., Cuppoletti J., Trapnell B., Lymar S.V, Rowc J.J., Yoon S.S., Hilliard G.M., Parvatiyar K., Kamani M.C., Wozniak DJ., Hwang S.-H., McDermott T.R., and Ochsner U.A., 2002, Anaerobic metabolism and quorum sensing by Pseudomonas aeruginosa biofilms in chronically infected cystic fibrosis airways: rethinking antibiotic treatment strategies and drug targets. Adv. Drug. Deliv. Rev., 54:1425–1443.PubMedCrossRefGoogle Scholar
  50. 50.
    Hays E.E., Wells I.C., Katzman P.A., Cain C.K., Jacobs F.A., Thayer S.A., Doisy E.A., Gaby W.L., Roberts E.C., Muir R.D., Carroll C.J., Jones L.R., and Wade N.J., 1945, Antibiotic substances produced by Pseudomonas aeruginosa. J. Biol Chem., 159:725–750.Google Scholar
  51. 51.
    Hendrickson E.L., Plotnikova J., Mahajan-Miklos S., Rahme L.G., and Ausubel F.M., 2001, mice. J Bacteriol, 183:7126–7134.PubMedCrossRefGoogle Scholar
  52. 52.
    Hentzer M., Riedel K., Rasmusscn T.B., Heydorn A., Andersen J.B., Parsek M.R., Rice S.A., Eberl L., Molin S., Hoiby N., Kjellcberg S., and Givskov M., 2002, Inhibition of quo-rum sensing in Pseudomonas aeruginosa biofilm bacteria by a halogenated fiiranone compound. Microbiology, 148:87–102.PubMedGoogle Scholar
  53. 53.
    Heurlier K., Dénervaud V, Pessi G., Reimmann C, and Haas D., 2003, Negative control of quorum sensing by RpoN (σ54) in Pseudomonas aeruginosa PAOl. J. Bacteriol, 185:2227–2235.PubMedCrossRefGoogle Scholar
  54. 54.
    Hogan D.A. and Kolter R., 2002, Pseudomonas-Candida interactions: an ecological role for virulence factors. Science, 296:2229–2232.PubMedCrossRefGoogle Scholar
  55. 55.
    Hultmark. D., 2003. Drosophiia immunity: Paths and patterns. Curr. Opin. Immunol, 15:12–19.PubMedCrossRefGoogle Scholar
  56. 56.
    Ichikawa J.K., Norris A., Bangera M.G., Geiss G.K., van’t Wout A.B., Bumgarner R.E., and Lory S., 2000, Interaction of Pseudomonas aeruginosa with epithelial cells: Identification of differentially regulated genes by expression microarray analysis of human cDNAs. Proc. Natl. Acad. Sci USA, 97:9659–9664.PubMedCrossRefGoogle Scholar
  57. 57.
    Jander G., Rahme L.G., and Ausubel F.M., 2000, Positive correlation between virulence of Pseudomonas aeruginosa mutants in mice and insects. J. Bacteriol., 182:3843–3845.PubMedCrossRefGoogle Scholar
  58. 58.
    Jiménez J.I., Miñambres B., Garcia J.L., and Diaz E., 2002, Genomic analysis of the aromatic catabolic pathways from Pseudomonas putida K.T2440. Environ. Microbiol., 4:824–841.PubMedCrossRefGoogle Scholar
  59. 59.
    Johnson CD. and Liu L. X., 2000, Novel antimicrobial targets from combined pathogen and host genetics. Proc. Natl. Acad. Sci. USA, 97:958–959.PubMedCrossRefGoogle Scholar
  60. 60.
    Kamath S., Kapatral V., and Chakrabarty A.M., 1998, Cellular function of elastase in Pseudomonas aeruginosa: role in cleavage of nucleoside diphosphate kinase and in alginate synthesis. Mol. Microbiol., 30:933–941.PubMedCrossRefGoogle Scholar
  61. 61.
    Kang P.J., Hauser A.R., Apodaca G., Fleiszig S.M.J., Wiener-Kronish. J., Mostov K., and Engel. J.N., 1997, Identification of Pseudomonas aeruginosa genes required for epithelial cell injury. Mol. Microbiol., 24:1249–1262.PubMedCrossRefGoogle Scholar
  62. 62.
    Kessin R.H., Gundcrsen G.G., Zaydfudim V, Grimson M., and Blanton R.L., 1996, How cellular slime molds evade nematodes. Proc. Natl. Acad. Sci. USA, 93:4857–4861.PubMedCrossRefGoogle Scholar
  63. 63.
    Khush R.S. and Lemaitre B., 2000, Genes that fight infection: what the Drosophiia genome says about animal immunity. Trends Genet., 16:442–449.PubMedCrossRefGoogle Scholar
  64. 64.
    Kim D.H., Feinbaum R., Alloing G., Emerson EE., Garsin D.A., Inoue H., Tanaka-Hino, M., Hisamoto N., Matsumoto K., Tan M.-W., and Ausubel EM., 2002, A conserved p38 MAP kinase pathway in Caenorhabditis elegans innate immunity. Science, 297: 623–626.PubMedCrossRefGoogle Scholar
  65. 65.
    Kim H.-Y., Schlictman D., Shankar S., Xic Z., Chakrabarty A.M., and Romberg A., 1998, Alginate, inorganic polyphosphate, GTP and ppGpp synthesis co-regulated in Pseudomonas aeruginosa: implications for stationary phase survival and synthesis of RNA/DNA precursors. Mol. Microbiol., 27:717–725.PubMedCrossRefGoogle Scholar
  66. 66.
    Köhler T., Curty L.K., Barja F., van Delden C, and Pechcrc J.-C, 2000, Swarming of Pseudomonas aeruginosa is dependent on cell-to-cell signaling and requires flagella and pili. J. Bacterial., 182:5990–5996.CrossRefGoogle Scholar
  67. 67.
    Köhler T., van Delden C., Curty L.K., Hamzehpour M.M., and Pechere J.-C, 2001. Overexpression of the MexEF-OprN multidrug efflux system affects cell-to-cell signaling in Pseudomonas aeruginosa. J. Bacterial., 183:5213–5222.CrossRefGoogle Scholar
  68. 68.
    Kurz. C.L., and Ewbank J.J., 2000, Caenorhabditis elegans for the study of host-pathogen interactions. Trends Microbiol., 8:142–144.PubMedCrossRefGoogle Scholar
  69. 69.
    Larbig K.D., Christmann A., Johann A., Klockgether J., Hartsch T., Merkl R., Wiehlmann, L., Fritz H.-J., and Tümmler B., 2002, Gene islands integrated into tR_NAGly genes confer genome diversity on a Pseudomonas aeruginosa clone. J. Bacteriol., 184:6665–6680.PubMedCrossRefGoogle Scholar
  70. 70.
    Lau. G.W., Goumnerov B.C., Walendzicwicz CL., Hewitson J., Xiao W., Mahajan-Miklos S., Tompkins R.G., Perkins L.A., and Rahme L.G., 2003, The Drosophiia melanogaster Toll pathway participates in resistance to infection by the gram-negative human pathogen Pseudomonas aeruginosa. Infect. Immun., 71:4059–4066.PubMedCrossRefGoogle Scholar
  71. 71.
    Lederberg J., 1999, Paradoxes of the host-parasite relationship. ASM News, 65:811–816.Google Scholar
  72. 72.
    Leisinger T. and Margraff R., 1979, Secondary metabolites of the fluorescent pseudomonads. Microbiol. Rev., 43:422–442.PubMedGoogle Scholar
  73. 73.
    Lemaitre B., Reichhart J.-M., and Hoffmann J.A., 1997, Drosophila host defense: differential induction of antimicrobial peptide genes after infection by various classes of microorganisms. Proc. Natl. Acad. Sci. USA, 94:14614–14619.PubMedCrossRefGoogle Scholar
  74. 74.
    Leulier F., Parquet C, Pili-FIoury S., Ryu J.-H., Caroff M., Lee W.-J., Mengin-Lecreuk D., and Lemaitre B., 2003, The Drosophila immune system detects bacteria through specific peptidoglycan recognition. Nat. Immunol., 4:478–484.PubMedCrossRefGoogle Scholar
  75. 75.
    Lightbrown J.W. and Jackson F.L., 1956, Inhibition of cytochrome systems of heart muscle and certain bacteria by the antagonists of dihydrostreptomycin: 2-alkyl-4-hydroxyquinoline N-oxides. Biochem. J., 63:130–137.Google Scholar
  76. 76.
    Lizewski S.E., Lundberg D.S., and Schurr M.J., 2002, The transcriptional regulator AlgR is essential for Pseudomonas aeruginosa pathogenesis. Infect. Immun., 70:6083–6093.PubMedCrossRefGoogle Scholar
  77. 77.
    Mahajan-Miklos S., Rahme L.G., and Ausubel F.M., 2000, Elucidating the molecular mechanisms of bacterial virulence using non-mammalian hosts. Mol. Microbiol., 37:981–988.PubMedCrossRefGoogle Scholar
  78. 78.
    Mahajan-Miklos S., Tan M.-W., Rahme L.G. and Ausubel F.M., 1999, Molecular mechanisms of bacterial virulence elucidated using a Pseudomonas aeruginosa-Caenorhabditis elegans pathogenesis model. Cell, 96:47–56.PubMedCrossRefGoogle Scholar
  79. 79.
    Mallo G.V, Kurz C.L., Couitlault C., Pujol R., Granjeaud S., Kohara Y., and Ewbank J.J., 2002, Inducible antibacterial defense system in C. elegans. Curr. Biol, 12:1209–1214.PubMedCrossRefGoogle Scholar
  80. 80.
    Maseda H., Saito K., Nakajima A., andNakae T., 2000, Variation of the mexT gene, a reg-ulator of the MexEF-OprN efflux pump expression in wild-type strains of Pseudomonas aeruginosa. FEMS Microbiol. Lett, 192:107–112.PubMedCrossRefGoogle Scholar
  81. 81.
    Mattick IS., 2002, Type IV pili and twitching motility. Annu. Rev. Microbiol, 56:289–314.PubMedCrossRefGoogle Scholar
  82. 82.
    Mavrodi D.V., Bonsall R.F., Delaney S.M., Soule M.J., Phillips G., and Thomashow L.S., 2001, Functional analysis of genes for biosynthesis of pyocyanin and phenazine-l-carboxamide from Pseudomonas aeruginosa PAOl. J. Bacteriol, 183:6454–6465.PubMedCrossRefGoogle Scholar
  83. 83.
    Mavrodi D.V., Ksenzenko VN., Bonsall R.F., Cook R.J., Boronin A.M., and Thomashow, L.S., 1998, A seven-gene locus for synthesis of phenazine-1-carboxylic acid by Pseudomonas fluorescens 2–79. J. Bacteriol, 180:2541–2548.PubMedGoogle Scholar
  84. 84.
    Michel-Briand Y. and Baysse C, 2002, The pyocins of Pseudomonas aeruginosa. Biochimie, 84:499–510.PubMedCrossRefGoogle Scholar
  85. 85.
    Miyata S., Casey M., Frank D.W., Ausubel F.A., and Drenkard E., 2003, Use of the Galleria mellonella caterpillar as a model host to study the role of the type III secretion system in Pseudomonas aeruginosa pathogenesis. Infect. Immun., 71:2404–2413.PubMedCrossRefGoogle Scholar
  86. 86.
    Mylonakis E., Ausubel F.M., Perfect J.R., Heitman J., and Calderwood S.B., 2002, Killing of Caenorhabditis elegans by Cryptococcus neoformans as a model of yeast pathogenesis. Proc. Natl Acad. Sci. USA, 99:15675–15680.PubMedCrossRefGoogle Scholar
  87. 87.
    Nishijyo T., Haas D., and Itoh, Y, 2001, The CbrA-CbrB two-component regulatory system controls the utilization of multiple carbon and nitrogen sources in Pseudomonas aeruginosa. Mol Microbiol., 40:917–931.PubMedCrossRefGoogle Scholar
  88. 88.
    O’Quinn A.L., Wiegand E.M., and Jeddeloh J.A., 2001, Burkholderiapseudomallei kills the nematode Caenorhabditis elegans using an endotoxin-mediated paralysis. Cell Microbiol, 3:381–393.PubMedCrossRefGoogle Scholar
  89. 89.
    Page F., Altabe S., Hugouvieux-Cotte-Pattat N., Lacroix J.-M., Robert-Baudouy J., and Bohin J.-R, 2001, Osmoregulated periplasmic glucan synthesis is required for Erwinia chrysanthemi pathogenicity. J. Bacteriol, 183:3134–3141.PubMedCrossRefGoogle Scholar
  90. 90.
    Pernestig A.-K., Georgellis D., Romeo T., Suzuki K., Tomenius H., Normark S., and Melefors O., 2003, The Escherichia coli BarA-UvrY two-component system is needed for efficient switching between glycolytic and gluconeogenic carbon sources. J. Bacteriol, 185:843–853.PubMedCrossRefGoogle Scholar
  91. 91.
    Pesci E.C., Milbank J.B.J., Pearson J.P, McKnight S., Kende A.S., Greenberg E.P, and Iglewski B.H., 1999, Quinolone signaling in the cell-to-cell communication system of Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA, 96:11229–11234.PubMedCrossRefGoogle Scholar
  92. 92.
    Pessi G., Williams F., Hindle Z., Heurlier K., Holden M.T.G., Cámara M., Haas D., and Williams P., 2001, The global posttranscriptional regulator RsmA modulates production of virulence determinants and JV-acylhomoserine lactones in Pseudomonas aeruginosa. J. Bad, 183:6676–6683.Google Scholar
  93. 93.
    Plotnikova J.M., Rahme L.G., and Ausubel EM., 2000, Pathogenesis of the human opportunistic pathogen Pseudomonas aeruginosa PA14 in Arabidopsis. Plant Physiol., 124:1766–1774.PubMedCrossRefGoogle Scholar
  94. 94.
    Preston G.M., Haubold B., and Rainey P.B., 1998, Bacterial genomics and adaptation to life on plants: implications for the evolution of pathogenicity and symbiosis. Curr. Opin. Microbiol, 1:589–597.PubMedCrossRefGoogle Scholar
  95. 95.
    Pujol N., Link E.M., Liu L.X., Kurz CL., AUoing G., Tan M.-W., Ray K.P., Solari R., Johnson C.D., and Ewbank J.J., 2001, A reverse genetic analysis of components of the Toll signaling pathway in Caenorhabditis elegans. Curr. Biol, 11:809–821.PubMedCrossRefGoogle Scholar
  96. 96.
    Pukatzki S., Kessin R.H., and Mekalanos J.J., 2002, The human pathogen Pseudomonas aeruginosa utilizes conserved virulence pathways to infect the social amoeba Dictyostelium discoideum. Proc. Natl Acad. Sci. USA, 99:3159–3164.PubMedCrossRefGoogle Scholar
  97. 97.
    Pye A.E., 1974, Microbial activation of prophenoloxidase from immune insect larvae. Nature, 251:610–613.PubMedCrossRefGoogle Scholar
  98. 98.
    Rahme L.G., Ausubel F.M., Cao H., Drenkard E., Goumnerov B.C., Lau G.W, Mahajan-Miklos S., Plotnikova J., Tan M.-W., Tsongalis J., Walendziewicz C.L., and Tompkins R.G., 2000, Plants and animals share functionally common bacterial virulence factors. Proc. Natl. Acad. Sci. USA, 97:8815–8821.PubMedCrossRefGoogle Scholar
  99. 99.
    Rahme L.G., Stevens E.J., Wolfort S.F., Shao J., Tompkins R.G., and Ausubel F.M., 1995, Common virulence factors for bacterial pathogenicity in plants and animals. Science, 268:1899–1902.PubMedCrossRefGoogle Scholar
  100. 100.
    Rahme L.G., Tan M.-W., Le L., Wong S.M., Tompkins R.G., Calderwood S.B., and Ausubel F.M., 1997, Use of model plant hosts to identify Pseudomonas aeruginosa virulence factors. Proc. Natl. Acad. Sci. USA, 94:13245–13250.PubMedCrossRefGoogle Scholar
  101. 101.
    Raper K.B. and Smith N.R., 1939, The growth of Dictyostelium discoideum upon pathogenic bacteria. J. Bacteriol., 38:431–446.PubMedGoogle Scholar
  102. 102.
    Reimmann C, Beyeler M., Latifi A., Winteler H., Foglino M., Lazdunski A., and Haas D., 1997, lipase. Mol. Microbiol, 24: 309–319.PubMedCrossRefGoogle Scholar
  103. 103.
    Sato H., Frank D.W., Hillard C.J., Feix J.B., Pankhaniya R.R., Moriyama K., Finck-Barbançon, V., Buchaklian A., Lei M., Long R.M., Wiener-Kronish J., and Sawa T., 2003, The mechanism of action of the Pseudomonas aeruginosa-encoded type III cytotoxin, ExoU. EMBO J., 22:2959–2969.PubMedCrossRefGoogle Scholar
  104. 104.
    Schell M.A., 2000, Control of virulence and pathogenicity genes of Ralstonia solanacearum by an elaborate sensory network. Annu. Rev. Phytopathol., 38:263–292.PubMedCrossRefGoogle Scholar
  105. 105.
    Schoental R., 1941, The nature of the antibacterial agents present in Pseudomonas aeruginosa cultures. Brit. J. Exp. Pathol, 22:137–147.Google Scholar
  106. 106.
    Schuster M., Lostroh CP, Ogi T., and Greenberg E.P, 2003, Identification, timing, and signal specificity of Pseudomonas aeruginosa quorum-controlled genes: A transcriptome analysis. J. Bacteriol., 185:2066–2079.PubMedCrossRefGoogle Scholar
  107. 107.
    Semenza G.L., 2001, the 3 PHDs: How animal cells signal hypoxia to the nucleus. Cell, 107:1–3.PubMedCrossRefGoogle Scholar
  108. 108.
    Silo-Suh L., Suh S.-J., Sokol P.A., and Ohman D.E., 2002, A simple alfalfa seedling infection model for Pseudomonas aeruginosa strains associated with cystic fibrosis shows AlgT (sigma-22) and RhlR contribute to pathogenesis. Proc. Natl. Acad. Sci. USA, 99:15699–15704.PubMedCrossRefGoogle Scholar
  109. 109.
    Singh P.K., Schaefer A.L., Parsek M.R., Moninger T.O., Welsh M.J., and Greenberg E.P., 2000, Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms. Nature, 407:762–764.PubMedCrossRefGoogle Scholar
  110. 110.
    Spencer D.H., Kas A., Smith E.E., Raymond C.K., Sims E.H., Hastings M., Burns J.L., Kaul R., and Olson M.V., 2003, Whole-genome sequence variation among multiple isolates of Pseudomonas aeruginosa. J. Bacteriol., 185:1316–1325.PubMedCrossRefGoogle Scholar
  111. 111.
    Steenbergen J.N., Shuman H.A., and Casadevall A., 2001, Cryptococcusneoformans interactions with amoebae suggest an explanation for its virulence and intracellular pathogenic strategy in macrophages. Proc. Natl. Acad. Sci. USA, 98:15245–15250.PubMedCrossRefGoogle Scholar
  112. 112.
    Steinert M., Hentschel U., and Hacker I, 2002, Legionella pneumophila: an aquatic microbe goes astray. FEMS Microbiol. Rev., 26:149–162.PubMedCrossRefGoogle Scholar
  113. 113.
    Steinhaus E.A., 1957, Microbial diseases of insects. Annu. Rev. Microbiol., 11:165–183.PubMedCrossRefGoogle Scholar
  114. 114.
    Stephens J.M., 1958, Occurrence of Pseudomonas aeruginosa (Schroeter) Migula in haemolymph of grasshoppers after infection by feeding. Can. J. Microbiol., 4:191–193.PubMedCrossRefGoogle Scholar
  115. 115.
    Stover C.K., Pham X.Q., Erwin A.L., Mizoguchi S.D., Warrener P, Hickey M.J., Brinkman, F.S.L., Humagle W.O., Kowalik D.J., Lagrou M., Garber R.L., Goltry L., Tolentino E., Westbrock-Wadman S., Yuan Y, Brody L.L., Coulter S.N., Folger K.R., Kas A., Larbig K, Um R., Smith K., Spencer D., Wong G.K.-S., Wu Z., Paulsen I.T., Reizer J., Saier M.H., Hancock R.E.W., Lory S., and Olson M.V, 2000, Complete genome sequence of Pseudomonas aeruginosa PAOl, an opportunistic pathogen. Nature, 406:959–964.PubMedCrossRefGoogle Scholar
  116. 116.
    Tan M.-W, 2002, Cross-Species infections and their analyses. Annu. Rev. Microbiol., 56:539–565.PubMedCrossRefGoogle Scholar
  117. 117.
    Tan M.-W. and Ausubel F.M., 2000, Caenorhabditis elegans: A model genetic host to study Pseudomonas aeruginosa pathogenesis. Curr. Opin. Microbiol., 3:29–34.PubMedCrossRefGoogle Scholar
  118. 118.
    Tan M.-W., Mahajan-Miklos S., and Ausubel F.M., 1999, Killing of Caenorhabditis elegans by Pseudomonas aeruginosa used to model mammalian bacterial pathogenesis. Proc. Natl. Acad. Sci. USA, 96:715–720.PubMedCrossRefGoogle Scholar
  119. 119.
    Tan M.-W., Rahme L.G., Sternberg J.A., Tompkins R.G., and Ausubel F.M., 1999, Pseudomonas aeruginosa killing of Caenorhabditis elegans used to identify P. aeruginosa virulence factors. Proc. Natl. Acad. Sci. USA, 96:2408–2413.PubMedCrossRefGoogle Scholar
  120. 120.
    Timmis K.N., 2002, Pseudomonas putida: A cosmopolitan opportunist par excellence. Environ. Microbiol., 4:779–781.PubMedCrossRefGoogle Scholar
  121. 121.
    Turner J.M. and Messenger A.J., 1986, Occurrence, biochemistry and physiology of phenazine pigment production. Adv. Microb. Physiol., 27:211–275.PubMedCrossRefGoogle Scholar
  122. 122.
    Tzou P., De Gregorio E., and Lemaitre B., 2002, How Drosophila combats microbial infection: a model to study innate immunity and host-pathogen interactions. Curr. Opin. Microbiol., 5:102–110.PubMedCrossRefGoogle Scholar
  123. 123.
    Tzou P., Reichhart J.-M., and Lemaitre B., 2002, Constitutive expression of a single antimicrobial peptide can restore wild-type resistance to infection in immunodeficient Drosophila mutants. Proc. Natl. Acad. Sci. USA, 99:2152–2157.PubMedCrossRefGoogle Scholar
  124. 124.
    van Delden C., Comte R., and Bally M., 2001, Stringent response activates quorum sensing and modulates cell density-dependent gene expression in Pseudomonas aeruginosa. J. Bacteriol., 183:5376–5384.PubMedCrossRefGoogle Scholar
  125. 125.
    Volko S.M., Boiler T., and Ausubel F.M., 1998, Isolation of new Arabidopsis mutants with enhanced disease susceptibility to Pseudomonas syringae by direct screening. Genetics, 149:537–548.PubMedGoogle Scholar
  126. 126.
    Wagner VE., Bushnell D., Passador L., Brooks A.I., and Iglewski B.H., 2003, Microarray analysis of Pseudomonas aeruginosa quorum-sensing regulons: effect of growth phase and environment. J. Bacteriol., 185:2080–2095.PubMedCrossRefGoogle Scholar
  127. 127.
    Wang J., Lory S., Ramphai R., and Jin S., 1996, Isolation and characterization of Pseudomonas aeruginosa genes inducible by respiratory mucus derived from cystic fibrosis patients. Mol. Microbiol., 22:1005–1012.PubMedCrossRefGoogle Scholar
  128. 128.
    Wang X., Mushegian A., Lory. S., and Jin S., 1996, Large-scale isolation of candidate virulence genes of Pseudomonas aeruginosa by in vivo selection. Proc. Natl. Acad. Sci. USA, 93:10434–10439.PubMedCrossRefGoogle Scholar
  129. 129.
    Wei J.-Z., Hale K., Carta L., Platzer E., Wong C., Fang S.-C, and Aroian R.V., 2003, Bacillus thuringiensis crystal proteins that target nematodes. Proc. Natl. Acad. Sci. USA, 100:2760–2765.PubMedCrossRefGoogle Scholar
  130. 130.
    Wolfgang M.C., Lee V.T., Gilmore M.E., and Lory S., 2003, Coordinate regulation of bacterial virulence genes by a novel adenylate cyclase-dependent signaling pathway. Develop. Cell, 4:253–263.CrossRefGoogle Scholar
  131. 131.
    Wu H., Song Z., Givskov M., Doring G., Worlitzsch D., Mathee K., Rygaard J., and Høiby N., 2001, Pseudomonas aeruginosa mutations in lasI and rhll quorum sensing systems result in milder chronic lung infection. Microbiology, 147:1105–1113.PubMedGoogle Scholar
  132. 132.
    Yoon S.S., Hcnnigan R.F., Hilliard G.M., Ochsner U.A., Parvatiyar K., Kamani M.C., Allen H.L., DeKievit T.R., Gardner PR., Schwab U., Rowe J.J., Iglewski B.H., McDermott T.R., Mason R.P, Wozniak D.J., Hancock R.E.W., Parsek M.R., Noah T.L., Boucher R.C., and Hassett D.J., 2002, Pseudomonas aeruginosa anaerobic respiration in biofilms: Relationships to cystic fibrosis pathogenesis. Develop. Cell, 3:593–603.CrossRefGoogle Scholar
  133. 133.
    Yorgey P., Rahme L.G., Tan M.-W, and Ausubel F.M., 2001, The roles of mucD and alginate in the virulence of Pseudomonas aeruginosa in plants, nematodes and mice. Mol. Microbiol, 41:1063–1076.PubMedCrossRefGoogle Scholar
  134. 134.
    Young G., 1947, Pigment production and antibiotic activity in cultures of Pseudomonas aeruginosa. J. Bacterial, 54:109–117.Google Scholar
  135. 135.
    Yu H., Boucher J.C., Hibler N.S., and Deretic V, 1996, Virulence properties of Pseudomonas aeruginosa lacking the extreme-stress sigma factor AlgU (σE). Infect. Immun., 64:2774–2781.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • David A. D’Argenio
    • 1
  1. 1.Department of MicrobiologyUniversity of WashingtonSeattleUSA

Personalised recommendations