Transcriptional Regulation of the Toluene Catabolic Pathways

  • Raquel Ruíz
  • M. Isabel Aranda-Olmedo
  • Patricia Domínguez-Cuevas
  • M. Isabel Ramos-González
  • Silvia Marqués


Although in the past century large amounts of aromatic hydrocarbons have been released as a consequence of industrial activity, most of these compounds in the environment are the product of the natural pyrolysis of organic material28. As a consequence, toluene, one of the simplest substituted aromatic compounds of natural origin, is widely distributed in natural environments. Therefore, because living organisms have been in contact with toluene and related compounds through evolutionary periods of time, it is not surprising that bacteria have developed the capability to degrade aromatic compounds such as toluene. In fact, aerobic bacteria able to use toluene as the sole source of carbon and energy are easily isolated from natural samples. Many of these organisms belong to the Pseudomonadaceae.


Sigma Factor Pseudomonas Putida Toluene Degradation Integration Host Factor Meta Pathway 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abril, M.A., Buck, M., and Ramos, J.L., 1991, Activation of the Pseudomonas TOL plasmid upper pathway operon. Identification of binding sites for the positive regulator XylR and for integration host factor protein. J Biol. Chem., 266: 15832–15838.PubMedGoogle Scholar
  2. 2.
    Abril, M.A., Michán, C., Timmis, K.N., and Ramos, J.L., 1989, Regulator and enzyme specificities of the TOL plasmid-encoded upper pathway for degradation of aromatic hydrocarbons and expansion of the substrate range of the pathway. J. Bacteriol., 171: 6782–6790.PubMedGoogle Scholar
  3. 3.
    Akiyama, Y., 2002, Proton-motive force stimulates the proteolytic activity of FtsH, a membrane-bound ATP-dependent protease in Escherichia coli. Proc. Natl. Acad. Sci. USA, 99: 8066–8071.PubMedCrossRefGoogle Scholar
  4. 4.
    Arenghi, F.L., Pinti, M., Galli, E., and Barbieri, P., 1999, Identification of the Pseudomonas stutzeri OX1 toluene-o-xylene monooxygenase regulatory gene (touR) and of its cognate promoter. Appl. Environ. Microbiol., 65: 4057–4063.PubMedGoogle Scholar
  5. 5.
    Artsimovitch, I., Murakami, K., Ishihama, A., and Howe, M.M., 1996, Transcription activation by the bacteriophage Mu Mor protein requires the C-terminal regions of both alpha and sigma70 subunits of Escherichia coli RNA polymerase. J. Biol. Chem., 271: 32343–32348.PubMedCrossRefGoogle Scholar
  6. 6.
    Assinder, S.J. and Williams, P.A., 1990, The TOL plasmids: determinants of the catabolism of toluene and the xylenes. Adv. Microb. Physiol., 31: 1–69.PubMedCrossRefGoogle Scholar
  7. 7.
    Baggi, G., Barbieri, P., Galli, E., and Tollari, S., 1987, Isolation of a Pseudomonas stutzeri strain that degrades o-xylene. Appl. Environ. Microbiol., 53: 2129–2132.PubMedGoogle Scholar
  8. 8.
    Ben-Bassat, A., Cattermole, M., Gatenby, A.A., Gibson, K.J., Ramos-González, M.I., Ramos, J.L., and Sariaslani, S., 2003, Method for the production of p-hydroxybenzoate in species of Pseudomonas and Agrobacteriurm. US Patent number 6586229.Google Scholar
  9. 9.
    Bertoni, G., Bolognese, F, Galli, E., and Barbieri, P., 1996, Cloning of the genes for and characterization of the early stages of toluene and o-xylene catabolism in Pseudomonas stutzeri OX1. Appl. Environ. Microbiol., 62: 3704–3011.PubMedGoogle Scholar
  10. 10.
    Bertoni, G., Fujita, N., Ishihama, A., and de Lorenzo, V, 1998, Active recruitment of sigma54-RNA polymerase to the Pu promoter of Pseudomonas putida: Role of IHF and alphaCTD. EMBO J., 17: 5120–5128.PubMedCrossRefGoogle Scholar
  11. 11.
    Bertoni, G., Marqués, S., and de Lorenzo, V, 1998, Activation of the toluene-responsive regulator XylR causes a transcriptional switch between sigma54 and sigma70 promoters at the divergent Pr/Ps region of the TOL plasmid. Mol. Microbiol., 27: 651–659.PubMedCrossRefGoogle Scholar
  12. 12.
    Bertoni, G., Martino, M., Galli, E., and Barbieri, P., 1998, Analysis of the gene cluster encoding toluene/o-xylene monooxygenase from Pseudomonas stutzeri OX1. Appl. Environ. Microbiol., 64: 3626–3632.PubMedGoogle Scholar
  13. 13.
    Bertoni, G., Pérez-Martín, J., and de Lorenzo, V., 1997, Genetic evidence of separate repressor and activator activities of the XylR regulator of the TOL plasmid, pWW0, of Pseudomonas putida. Mol. Microbiol., 23: 1221–1227.PubMedCrossRefGoogle Scholar
  14. 14.
    Bhende, P.M. and Egan, S.M., 2000, Genetic evidence that transcription activation by RhaS involves specific amino acid contacts with sigma 70. J. Bacteriol., 182: 4959–4969.PubMedCrossRefGoogle Scholar
  15. 15.
    Busby, S. and Ebright, R.H., 1997, Transcription activation at class II CAP-dependent promoters. Mol. Microbiol., 23: 853–859.PubMedCrossRefGoogle Scholar
  16. 16.
    Byrne, A.M. and Olsen, R.H., 1996, Cascade regulation of the toluene-3-monooxygenase operon (tbuA1UBVA2C) of Burkholderia pickettii PKO1: Role of the tbuA1 promoter (PtbuA1) in the expression of its cognate activator, TbuT. J. Bacteriol., 178: 6327–6337.PubMedGoogle Scholar
  17. 17.
    Carmona, M. and de Lorenzo, V, 1999, Involvement of the FtsH (HflB) protease in the activity of sigma 54 promoters. Mol. Microbiol., 31: 261–270.PubMedCrossRefGoogle Scholar
  18. 18.
    Carmona, M., de Lorenzo, V, and Bertoni, G., 1999, Recruitment of RNA polymerase is a rate-limiting step for the activation of the sigma (54) promoter Pu of Pseudomonas pulida. J. Biol. Chem., 274: 33790–33794.PubMedCrossRefGoogle Scholar
  19. 19.
    Carmona, M., Rodriguez, M.J., Martinez-Costa, O., and De Lorenzo, V., 2000, In vivo and in vitro effects of (p)ppGpp on the sigma (54) promoter Pu of the TOL plasmid of Pseudomonas putida. J. Bacteriol., 182: 4711–4718.PubMedCrossRefGoogle Scholar
  20. 20.
    Cases, I. and de Lorenzo, V., 2000, Genetic evidence of distinct physiological regulation mechanisms in the sigma (54) Pu promoter of Pseudomonasputida. J. Bacteriol., 182: 956–960.PubMedCrossRefGoogle Scholar
  21. 21.
    Cases, I., de Lorenzo, V., and Pérez-Martín, J., 1996, Involvement of sigma factor σ54 in exponential silencing of the Pseudomonas putida TOL plasmid Pu promoter. Mol. Microbiol., 19: 7–17.PubMedCrossRefGoogle Scholar
  22. 22.
    Cases, I., Lopez, J.A., Albar, J.P., and De Lorenzo, V., 2001, Evidence of multiple regulatory functions for the PtsN (IIA(Ntr)) protein of Pseudomonas putida. J. Bacteriol., 183: 1032–1037.PubMedCrossRefGoogle Scholar
  23. 23.
    Cases, I., Pérez-Martín, J., and de Lorenzo, V., 1999, The IIANtr (PtsN) protein of Pseudomonas putida mediates the C source inhibition of the sigma54-dependent Pu promoter of the TOL plasmid. J. Biol. Chem., 274: 15562–15568.PubMedCrossRefGoogle Scholar
  24. 24.
    Cases, I., Velazquez, E, and de Lorenzo, V., 2001, Role of ptsO in carbon-mediated inhibition of the Pu promoter belonging to the pWW0 Pseudomonas putida plasmid. J. Bacteriol., 183: 5128–5133.PubMedCrossRefGoogle Scholar
  25. 25.
    Choi, E.N., Cho, M.C., Kim, Y, Kim, C.K., and Lee, K., 2003, Expansion of growth substrate range in Pseudomonas putida F1 by mutations in both cymR and todS, which recruit a ringfission hydrolase CmtE and induce the tod catabolic operon, respectively. Microbiology, 149: 795–805.PubMedCrossRefGoogle Scholar
  26. 26.
    Coschigano, P.W. and Young, L.Y., 1997, Identification and sequence analysis of two regulatory genes involved in anaerobic toluene metabolism by strain T1. Appl. Environ. Microbiol., 63: 652–660.PubMedGoogle Scholar
  27. 27.
    Cowles, C.E., Nichols, N.N., and Harwood, C.S., 2000, BenR, a XylS homologue, regulates three different pathways of aromatic acid degradation in Pseudomonas putida. J. Bacteriol., 182: 6339–6346.PubMedCrossRefGoogle Scholar
  28. 28.
    Dagley, S., 1971, Catabolism of aromatic compounds by micro-organisms. Adv. Microb. Physiol., 6: 1–46.PubMedCrossRefGoogle Scholar
  29. 29.
    de Lorenzo, V., Herrero, M., Metzke, M., and Timmis, K.N., 1991, An upstream XylR and IHF induced nucleoprotein complex regulates the s54-dependent Pu promoter of TOL plasmid. EMBO J., 10: 1159–1167.PubMedGoogle Scholar
  30. 30.
    Delgado, A. and Ramos, J.L., 1994, Genetic evidence for activation of the positive transcriptional regulator XylR, a member of the NtrC family of regulators, by effector binding. J. Biol. Chem., 269: 8059–8062.PubMedGoogle Scholar
  31. 31.
    Delgado, A., Salto, R., Marqués, S., and Ramos, J.L., 1995, Single amino acids changes in the signal receptor domain of XylR resulted in mutants that stimulate transcription in the absence of effectors. J. Biol. Chem., 270: 5144–5150.PubMedCrossRefGoogle Scholar
  32. 32.
    Dhiman, A. and Schleif, R., 2000, Recognition of overlapping nucleotides by AraC and the sigma subunit of RNA polymerase. J. Bacteriol., 182: 5076–5081.PubMedCrossRefGoogle Scholar
  33. 33.
    Diaz, E. and Prieto, M.A., 2000, Bacterial promoters triggering biodegradation of aromatic pollutants. Curr. Opin. Biotechnol., 11: 467–475.PubMedCrossRefGoogle Scholar
  34. 34.
    Dixon, R., 1986, The xylABC promoter from the Pseudomonas putida TOL plasmid is activated by nitrogen regulatory genes in Escherichia coli. Mol. Gen. Genet., 203: 129–136.PubMedCrossRefGoogle Scholar
  35. 35.
    Duetz, WA., Marqués, S., de Jong, C., Ramos, J.L., and van Andel, J.G., 1994, Inducibility of the TOL catabolic pathway in Pseudomonas putida (pWW0) growing on succinate in continuous culture: Evidence of carbon catabolite repression control. J. Bacteriol., 176: 2354–2361.PubMedGoogle Scholar
  36. 36.
    (a) Duetz, WA., Marqués, S., Wind, B., Ramos, J.L., and Van Andel, J.G., 1996, Catabolite repression of the toluene degradation pathway in Pseudomonas putida harboring pWW0 under various conditions of nutrient limitation in chemostat culture. Appl. Environ. Microbiol., 62: 601–606; (b) Egan, S.M., 2002, Growing repertoire of AraC/XylS activators. J. Bacteriol., 184:5529–5532.PubMedGoogle Scholar
  37. 37.
    Entsch, B., Nan, Y., Weaich, K., and Scott, K.F, 1988, Sequence and organization of pobA, the gene coding for p-hydroxybenzoate hydroxylase, an inducible enzyme from Pseudomonas aeruginosa. Gene, 71: 279–291.PubMedCrossRefGoogle Scholar
  38. 38.
    Fernandez, S., de Lorenzo, Y., and Pérez-Martín, J., 1995, Activation of the transcriptional regulator XylR of Pseudomonas putida by release of repression between functional domains. Mol. Microbiol., 16: 205–213.PubMedCrossRefGoogle Scholar
  39. 39.
    Finette, B.A. and Gibson, D.T., 1988, Initial studies on the regulation of toluene degradation by Pseudomonas putida F1. Biocatalyst, 2: 29–37.CrossRefGoogle Scholar
  40. 40.
    Finette, B.A., Subramanian, V., and Gibson, D.T., 1984, Isolation and characterization of Pseudomonas putida PpF1 mutants defective in the toluene dioxygenase enzyme system. J. Bacteriol., 160: 1003–1009.PubMedGoogle Scholar
  41. 41.
    Fraile, S., Roncal, E, Fernandez, L.A., and de Lorenzo, V., 2001, Monitoring intracellular levels of XylR in Pseudomonas putida with a single-chain antibody specific for aromaticresponsive enhancer-binding proteins. J. Bacteriol., 183: 5571–5579.PubMedCrossRefGoogle Scholar
  42. 42.
    Gallegos, M.T., Marqués, S., and Ramos, J.L., 1996, The TACAN4TGCA motif upstream from the-35 region in the sigma70-sigmaS-dependent Pm promoter of the TOL plasmid is the minimum DNA segment required for transcription stimulation by XylS regulators. J. Bacteriol., 178: 6427–6434.PubMedGoogle Scholar
  43. 43.
    Gallegos, M.T., Schleif, R., Bairoch, A., Hofmann, K., and Ramos, J.L., 1997, Arac/XylS family of transcriptional regulators. Microbiol. Mol. Biol. Rev., 61: 393–410.PubMedGoogle Scholar
  44. 44.
    Garmendia, J. and de Lorenzo, V., 2000, The role of the interdomain B linker in the activation of the XylRprotein of Pseudomonas putida. Mol. Microbiol., 38: 401–410.PubMedCrossRefGoogle Scholar
  45. 45.
    Garmendia, J., Devos, D., Valencia, A., and de Lorenzo, V., 2001, A la carte transcriptional regulators: Unlocking responses of the prokaryotic enhancer-binding protein XylR to nonnatural effectors. Mol. Microbiol. 42: 47–59.PubMedCrossRefGoogle Scholar
  46. 46.
    Gibson, D.T., Koch, J.R., and Kallio, R.E., 1968, Oxidative degradation of aromatic hydrocarbons by microorganisms. I. Enzymatic formation of catechol from benzene. Biochemistry, 7: 2653–2662.PubMedCrossRefGoogle Scholar
  47. 47.
    Gibson, D.T., Zylstra, G.H., and Chauhan, S., 1990, Biotransformations catalyzed by toluene dioxygenase from Pseudomonas putida F1. In S. Silver, A.M. Chakrabarty, B. Iglewski, and S. Kaplan (eds), Pseudomonas: Biotransformations, pathogenesis and Evolving Biotechnology, pp. 121–132. American Society for Microbiology, Washington, DC.Google Scholar
  48. 48.
    Gomada, M., Inouye, S., Imaishi, H., Nakazawa, A., and Nakazawa, T., 1992, Analysis of an upstream regulatory sequence required for activation of the regulatory gene xylS in xylene metabolism directed by the TOL plasmid of Pseudomonas putida. Mol. Gen. Genet., 233: 419–426.PubMedCrossRefGoogle Scholar
  49. 49.
    González-Pérez, M.M., Marqués, S., Dominguez-Cuevas, P., and Ramos, J.L., 2002, XylS activator and RNA polymerase binding sites at the Pm promoter overlap. FEBS Lett., 519: 117–122.PubMedCrossRefGoogle Scholar
  50. 50.
    González-Pérez, M.M., Ramos, J.L., Gallegos, M.T., and Marqués, S., 1999, Critical nucleotides in the upstream region of the XylS-dependent TOL meta-cleavage pathway operon promoter as deduced from analysis of mutants. J. Biol. Chem., 274: 2286–2290.PubMedCrossRefGoogle Scholar
  51. 51.
    Harayama, S. and Timmis, K.N., 1989, Catabolism of aromatic hydrocarbons by Pseudomonas. In D. Hopwood and K. Chater (eds), Genetics of Bacterial Diversity, pp. 151–174. Academic Press, London.CrossRefGoogle Scholar
  52. 52.
    Hellingwerf, K.J., Lolkema, J.S., Otto, R., Neijssel, O.M., Stouthamer A.H., Van Dam, K., and Westerhoff, H.Y., 1982, Energetics of microbial growth: An analysis of the relationship between growth and its mechanistic basis by mosaic non-equilibrium thermodynamics. FEMS Microbiol. Lett., 15: 7–17.CrossRefGoogle Scholar
  53. 53.
    Hoch, J.A. and Silhavy, T.J., 1995, Two-component signal transduction. American Society for Microbiology, Washington DC.Google Scholar
  54. 54.
    Holtel, A., Abril, M.A., Marqués, S., Timmis, K.N., and Ramos, J.L., 1990, Promoter upstream activator sequences are required for expression of the xylS gene and upper pathway operon on the Pseudomonas TOL plasmid. Mol. Microbiol., 4: 1551–1556.PubMedCrossRefGoogle Scholar
  55. 55.
    Holtel, A., Goldenberg, D., Giladi, H., Oppenheim, A.B., and Timrnis, K.N., 1995, Involvement of IHF protein in expression of the Ps promoter of the Pseudomonas putida TOL plasmid. J. Bacteriol., 177: 3312–3315.PubMedGoogle Scholar
  56. 56.
    Holtel, A., Marqués, S., Möhler, I., Jakubzik, U., and Timmis, K.N., 1994, Carbon sourcedependent inhibition of xyl operon expression of the Pseudomonas putida TOL plasmid. J. Bacteriol., 176: 1773–1776.PubMedGoogle Scholar
  57. 57.
    Holtel, A., Timmis, K., and Ramos, J., 1992, Upstream binding sequences of the XylR activator protein and integration host factor in the xylS gene promoter region of the Pseudomonas TOL plasmid. Nucleic Acids Res., 20: 1755–1762.PubMedCrossRefGoogle Scholar
  58. 58.
    Hugouvieux-Cotte-Pattat, N., Köhler, T., Rekik, M., and Harayama, S., 1990, Growth phase dependent expression of the Pseudomonas putida TOL plasmid pWW0 catabolic genes. J. Bacteriol., 172: 6651–6660.PubMedGoogle Scholar
  59. 59.
    Hurst, H.C., 1994, Transcription factors. 1: bZIP proteins. Protein Profile, 1: 123–168.PubMedGoogle Scholar
  60. 60.
    Inouye, S., Nakazawa, A., and Nakazawa, T., 1984, Nucleotide sequence of the promoter region of the xylDEGF operon on TOL plasmid of Pseudomonas putida. Gene, 29: 323–330.PubMedCrossRefGoogle Scholar
  61. 61.
    Inouye, S., Nakazawa, A., and Nakazawa, T., 1985, Determination of the transcription initiation site and identification of the protein product of the regulatory gene xylR for xyl operons on the TOL plasmid. J. Bact eriol., 163: 863–869.Google Scholar
  62. 62.
    Inouye, S., Nakazawa, A., and Nakazawa, T., 1988, Nucleotide sequence of the regulatory gene xylR of the TOL plasmid from Pseudomonas putida. Gene, 66: 301–306.PubMedCrossRefGoogle Scholar
  63. 63.
    Jeffrey, W.H., Cuskey, S.M., Chapman, P.J., Resnick, S., and Olsen, R.H., 1992, Characterization of Pseudomonas putida mutants unable to catabolize benzoate: Cloning and characterization of Pseudomonas genes involved in benzoate catabolism and isolation of a chromosomal DNA fragment able to substitute for xylS in activation of the TOL lowerpathway promoter. J. Bacteriol., 174: 4986–4996.PubMedGoogle Scholar
  64. 64.
    (a) Jishage, M., Kvint, K., Shingler, V., and Nystrom, T., 2002, Regulation of sigma factor competition by the alarmone ppGpp. Genes Dev., 16: 1260–1270; (b) Johnson G.R. And Olsen R.H., 1997, Multiple pathways for toluene degradation in Burkholderia sp. strain JS150. Appl. Environ. Microbiol., 63:4047–4052.PubMedCrossRefGoogle Scholar
  65. 65.
    Jurado, P., Fernandez, L.A., and de Lorenzo, V., 2003, Sigma 54 levels and physiological control of the Pseudomonas putida Pu promoter. J. Bacteriol., 185: 3379–3383.PubMedCrossRefGoogle Scholar
  66. 66.
    Kahng, H.Y., Byrne, A.M., Olsen, R.H., and Kukor, J.J., 2000, Characteri zation and role of tbuX in utilization of toluene by Ralstonia pickettii PKO1. J. Bacteriol., 182: 1232–1242.PubMedCrossRefGoogle Scholar
  67. 67.
    Kaldalu, N., Mandel, T., and Ustav, M., 1996, TOL plasmid transcription factor XylS binds specifically to the Pm operator sequence. Mol. Microbiol., 20: 569–579.PubMedCrossRefGoogle Scholar
  68. 68.
    Kaldalu, N., Toots, U., de Lorenzo, V., and Ustav, M., 2000, Functional domains of the TOL plasmid transcription factor XyIS. J. Bacteriol., 182: 1118–1126.PubMedCrossRefGoogle Scholar
  69. 69.
    Kessler, B., de Lorenzo, V., and Timrnis, K., 1993, Identification of a cis-acting sequence within the Pm promoter of the TOL plasmid which confers XylS-mediated responsiveness to substituted benzoates. J. Mol. Biol., 230: 699–703.PubMedCrossRefGoogle Scholar
  70. 70.
    Kessler, B., Herrero, M., Timmis, K.N., and de Lorenzo, V., 1994, Genetic evidence that XylS regulator of the Pseudomonas TOL meta operon controls the Pm promoter through weak DNA-protein interactions. J. Bacteriol., 176: 3171–3176.PubMedGoogle Scholar
  71. 71.
    Kessler, B., Marqués, S., Kohler, T., Ramos, J.L., Tirnmis, K.N., and de Lorenzo, V., 1994, Cross talk between catabolic pathways in Pseudomonas putida: XylS-dependent and-independent activation of the TOL meta operon requires the same cis-acting sequences within the Pm promoter. J. Bacteriol., 176: 5578–5582.PubMedGoogle Scholar
  72. 72.
    Kukor, J.J. and Olsen, R.H., 1990, Molecular cloning, characterization, and regulation of a Pseudomonas pickettii PKOI gene encoding phenol hydroxylase and expression of the gene in Pseudomonas aeruginosa PAO1c. J. Bacteriol., 172: 4624–4630.PubMedGoogle Scholar
  73. 73.
    Kukor, J.J. and Olsen, R.H., 1991, Genetic organization and regulation of a meta cleavage pathway for catechols produced from catabolism of toluene, benzene, phenol, and cresols by Pseudomonas pickettii PKO1. J. Bacteriol., 173: 4587–4594.PubMedGoogle Scholar
  74. 74.
    Kukor, J.J. and Olsen, R.H., 1992, Complete nucleotide sequence of tbuD, the gene encoding phenol/cresol hydroxylase from Pseudomonas pickettii PKO1, and functional analysis of the encoded enzyme. J. Bacteriol., 174: 65 18–6526.Google Scholar
  75. 75.
    Kustu, S., Santero, E., Keener, J., Popham, D., and Weiss, D., 1989, Expression of sigma 54 (ntrA)-dependent genes is probably united by a common mechanism. Microbial. Rev., 53: 367–376.Google Scholar
  76. 76.
    Labbe, D., Garnon, J., and Lau, P.C., 1997, Characterization of the genes encoding a receptorlike histidine kinase and a cognate response regulator from a biphenyl/polychlorobiphenyldegrading bacterium, Rhodococcus sp. strain M5. J. Bacteriol., 179: 2772–2776.PubMedGoogle Scholar
  77. 77.
    Landini, P. and Busby, S.J., 1999, The Escherichia coli Ada protein can interact with two distinct determinants in the sigma70 subunit of RNA polymerase according to promoter architecture: Identification of the target of Ada activation at the alkA promoter. J. Bacteriol., 181: 1524–1529.PubMedGoogle Scholar
  78. 78.
    LaRonde-LeBlanc, N. and Wolberger, C., 2000, Characterization of the oligomeric states of wild type and mutant AraC. Biochemistry, 39: 11593–11601.PubMedCrossRefGoogle Scholar
  79. 79.
    Lau, P.C., Wang, Y., Patel, A., Labbe, D., Bergeron, H., Brousseau, R., Konishi, Y., and Rawlings, M., 1997, A bacterial basic region leucine zipper histidine kinase regulating toluene degradation. Proc. Natl. Acad. Sci. USA, 94: 1453–1458.PubMedCrossRefGoogle Scholar
  80. 80.
    Leahy, J.G., Johnson, G.R., and Olsen, R.H., 1997, Cross-regulation of toluene monooxygenases by the transcriptional activators TbmR and TbuT. Appl. Environ. Microbiol., 63: 3736–3739.PubMedGoogle Scholar
  81. 81.
    Leuthner, B. and Heider, J., 1998, A two-component system involved in regulation of anaerobic toluene metabolism in Thauera aromatica. FEMS Microbial. Lett., 166: 35–41.CrossRefGoogle Scholar
  82. 82.
    Lonetto, M.A., Rhodius, V, Lamberg, K., Kiley, P., Busby, S., and Gross, C., 1998, Identification of a contact site for different transcription activators in region 4 of the Escherichia coli RNA polymerase sigma70 subunit. J. Mol. Biol., 284: 1353–1365.PubMedCrossRefGoogle Scholar
  83. 83.
    Maeda, H., Fujita, N., and Ishihama, A., 2000, Competition among seven Escherichia coli sigma subunits: Relative binding affinities to the core RNA polymerase. Nucleic Acids Res., 28: 3497–3503.PubMedCrossRefGoogle Scholar
  84. 84.
    Manzanera, M., Marqués, S., and Ramos, J.L., 2000, Mutational analysis of the highly conserved C-terminal residues of the XylS protein, a member of the AraC family of transcriptional regulators. FEBS Lett., 476: 312–317.PubMedCrossRefGoogle Scholar
  85. 85.
    Marqués, S., Gallegos, M.T., and Ramos, J.L., 1995, Role of sigma S in transcription from the positively controlled Pm promoter of the TOL plasmid of Pseudomonas putida. Mol. Microbiol., 18: 851–857.PubMedCrossRefGoogle Scholar
  86. 86.
    Marqués, S., Holtel, A., Timmis, K.N., and Ramos, J.L., 1994, Transcriptional induction kinetics from the promoters of the catabolic pathways of TOL plasmid pWW0 of Pseudomonas putida for metabolism of aromatics. J. Bacteriol., 176: 2517–2524.PubMedGoogle Scholar
  87. 87.
    Marqués, S., Manzanera, M., González-Pérez, M.M., Gallegos, M.T., and Ramos, J.L., 1999, The XylS-dependent Pm promoter is transcribed in vivo by RNA polymerase with sigma 32 or sigma 38 depending on the growth phase. Mol. Microbiol., 31: 1105–1113.PubMedCrossRefGoogle Scholar
  88. 88.
    Marqués, S., Gallegos, M.T., Manzanera, M., Holtel, A., Timmis, K.N., and Ramos, J.L., 1998, Activation and repression of transcription at the double tandem divergent promoters for the xylR and xylS genes of the TOL plasmid of Pseudomonas putida. J. Bacteriol., 180: 2889 2894.PubMedGoogle Scholar
  89. 89.
    Mars, A.E., Kasberg, T., Kaschabek, S.R., van Agteren, M.H., Janssen, D.R, and Reineke, W., 1997, Microbial degradation of chloroaromatics: Use of the meta-cleavage pathway for mineralization of chlorobenzene. J. Bacteriol., 179: 4530–4537.PubMedGoogle Scholar
  90. 90.
    Menn, EM., Zylstra, G.J., and Gibson, D.T., 1991, Location and sequence of the todF gene encoding 2-hydroxy-6-oxohepta-2,4-dienoatehydrolase in Pseudomonas putida F1. Gene, 104: 91–94.PubMedCrossRefGoogle Scholar
  91. 91.
    Michán, C., Zhou, L., Gallegos, M.T., Timmis, K.N., and Ramos, J.L., 1992, Identification of critical amino-terminal regions of XylS. The positive regulator encoded by theTOL plasmid. J. Biol. Chem., 267: 22897–22901.PubMedGoogle Scholar
  92. 92.
    Miura, K., Inouye, S., and Nakazawa, A., 1998, The rpoS gene regulates OP2, an operon for the lower pathway of xylene catabolism on the TOL plasmid, and the stress response in Pseudomonas putida mt-2. Mol. Gen. Genet., 259: 72–78.PubMedCrossRefGoogle Scholar
  93. 93.
    Mosqueda, G., Ramos-González, M.I., and Ramos, J.L., 1999, Toluene metabolism by the solvent-tolerant Pseudomonas putida DOT-T1 strain, and its role in solvent impermeabilization. Gene, 232: 69–76.PubMedCrossRefGoogle Scholar
  94. 94.
    Ng, L. Ch., O’Neill, E., and Shingler, V., 1996, Genetic evidencefor interdomain regulation of the Phenol-responsive 54-dependent activator DmpR. J. Biol. Chem., 271: 17281–17286.PubMedCrossRefGoogle Scholar
  95. 95.
    North, A.K., Klose, K.E., Stedman, K.M., and Kustu, S., 1993, Prokaryotic enhancerbinding proteins reflect eukaryote-like modularity: The puzzle of nitrogen regulatory protein C. J. Bacteriol., 175: 4267–4273.PubMedGoogle Scholar
  96. 96.
    O’Leary, N.D., Duetz, W.A., Dobson, A.D., and O’Connor, K.E., 2002, Induction and repression of the sty operon in Pseudomonas putida CA-3 during growth on phenylacetic acid under organic and inorganic nutrient-limiting continuous culture conditions. FEMS Microbiol. Lett., 208: 263–268.CrossRefGoogle Scholar
  97. 97.
    O’Neill, E., Wikstrom, P., and Shingler, V., 2001, An active role for a structured B-linker in effector control of the sigma54-dependent regulator DmpR. EMBO J., 20: 819–827.PubMedCrossRefGoogle Scholar
  98. 98.
    Olsen, R.H., Kukor, J.J., and Kaphammer, R, 1994, A novel toluene-3-monooxygenase pathway cloned from Pseudomonas pickettii PKO1. J. Bacteriol., 176: 3749–3756.PubMedGoogle Scholar
  99. 99.
    Ornston, L.N., 1966, The conversion of catechol and protocatechuate to beta-ketoadipate by Pseudomonas putida. 3. Enzymes of the catechol pathway. J. Biol. Chem., 241: 3795–3799.PubMedGoogle Scholar
  100. 100.
    Panke, S., de Lorenzo, V., Kaiser, A., Witholt, R, and Wubbolts, M.G., 1999, Engineering of a stable whole-cell biocatalyst capable of (S)-styrene oxide formation for continuous twoliquid-phase applications. Appl. Environ. Microbiol., 65: 5619–5623.PubMedGoogle Scholar
  101. 101.
    Parales, R.E., Ditty, J.L., and Harwood, C.S., 2000, Toluene-degrading bacteria are chemotactic towards the environmental pollutants benzene, toluene, and trichloroethylene. Appl. Environ. Microbiol., 66: 4098–4104.PubMedCrossRefGoogle Scholar
  102. 102.
    Pérez-Martín, J. and De Lorenzo, V, 1995, The amino-terminal domain of the prokaryotic enhancer-binding protein XylR is a specific intramolecular repressor. Proc. Natl. Acad. Sci. USA, 92: 9392–9396.PubMedCrossRefGoogle Scholar
  103. 103.
    Pérez-Martín, J. and de Lorenzo, V., 1996, In vitro activities of an N-terminal truncated form of XyIR, a sigma 54-dependent transcriptional activator of Pseudomonas putida. J. Mol. Biol., 258: 575–587.PubMedCrossRefGoogle Scholar
  104. 104.
    Pérez-Martín, J. and de Lorenzo, V., 1996, ATP binding to the sigma 54-dependent activator XylR triggers a protein multimerization cycle catalyzed by UAS DNA. Cell, 86: 331–339.PubMedCrossRefGoogle Scholar
  105. 105.
    Poore, C.A., Coker, C., Dattelbaum, J.D., and Mobley, H.L., 2001, Identification of the domains of UreR, an AraC-like transcriptional regulator of the urease gene cluster in Proteus mirabilis. J. Bacteriol., 183: 4526–4535.PubMedCrossRefGoogle Scholar
  106. 106.
    Ramos-González, M.I., Olson, M., Gatenby, A.A., Mosqueda, G., Manzanera, M., Campos, M.J., Vichez, S., and Ramos, J.L., 2002, Cross-regulation between a novel two-component signal transduction system for catabolism of toluene in Pseudomonas mendocina and the TodST system from Pseudomonas putida. J. Bacteriol., 184: 7062–7067.PubMedCrossRefGoogle Scholar
  107. 107.
    Ramos, J.L., Duque, E., Huertas, M.J., and Haidour, A., 1995, Isolation and expansion of the catabolic potential of a Pseudomonas putida strain able to grow in the presence of high concentrations of aromatic hydrocarbons. J. Bacteriol., 177: 3911–3916.PubMedGoogle Scholar
  108. 108.
    Ramos, J.L., Marqués, S., and Timmis, K.N., 1997, Transcriptional control of the Pseudomonas TOL plasmid catabolic operons is achieved through an interplay of host factors and plasmid-encoded regulators. Annu. Rev. Microbiol., 51: 341–373.PubMedCrossRefGoogle Scholar
  109. 109.
    Ramos, J.L., Michan, C., Rojo, F, Dwyer, D., and Timmis, K., 1990, Signal-regulator interactions. Genetic analysis of the effector binding site of xylS, the benzoate-activated positive regulator of Pseudomonas TOL plasmid meta-cleavage pathway operon. J. Mol. Biol., 211: 373–382.PubMedCrossRefGoogle Scholar
  110. 110.
    Ramos, J.L., Rojo, E, Zhou, L., and Timmis, K.N., 1990, A family of positive regulators related to the Pseudomonas putida TOL plasmid XylS and the Escherichia coli AraC activators. Nucleic Acids Res., 18: 2149–2152.PubMedCrossRefGoogle Scholar
  111. 111.
    Ramos, J.L., Stolz, A., Reineke, W., and Timmis, K.N., 1986, Altered effector specificities in regulators of gene expression: TOL plasmid xylS mutants and their use to engineer expansion of the range of aromatics degraded by bacteria. Proc. Natl. Acad. Sci. USA, 83: 8467–8471.PubMedCrossRefGoogle Scholar
  112. 112.
    Reizer. J, and Saier, M.H.J., 1997, Modular multidomain phosphoryl transfer proteins of bacteria. Curr. Opin. Struct. Biol., 7: 407–415.PubMedCrossRefGoogle Scholar
  113. 113.
    Rhee, S., Martín, R.G., Rosner, J.L., and Davies, D.R., 1998, A novel DNA-binding motif in MarA: The first structure for an AraC family transcriptional activator. Proc. Natl. Acad. Sci. USA, 95: 10413–10418.PubMedCrossRefGoogle Scholar
  114. 114.
    Ross, W., Gosink, K., Salomon, J., Igarashi, K., Zou, C., Ishihma, A., Severinov, K., and Gourse, R., 1993, A third recognition element in bacterial promoters: DNA binding by the asubunit of RNA polymerase. Science, 262: 1407–1413.PubMedCrossRefGoogle Scholar
  115. 115.
    Ruíz, R. and Ramos, J.L., 2002, Residues 137 and 153 at the N terminus of the XylS protein influence the effector profile of this transcriptional regulator and the sigma factor used by RNA polymerase to stimulate transcription from its cognate promoter. J. Biol. Chem., 277: 7282–7286.PubMedCrossRefGoogle Scholar
  116. 116.
    Ruíz, R., Marqués, S., and Ramos, J.L., 2003, Leucines 193 and 194 at the N-terminal domain of the XylS protein, the positive transcriptional regulator of the TOL meta-cleavage pathway, are involved in dimerization. J. Bacteriol., 185: 3036–3041.PubMedCrossRefGoogle Scholar
  117. 117.
    Santos, P.M., Blatny, J.M., Di Bartolo, I., Valla, S., and Zennaro, E., 2000, Physiological analysis of the expression of the styrene degradation gene cluster in Pseudomonas fluorescens ST. Appl. Environ. Microbiol., 66: 1305–1310.PubMedCrossRefGoogle Scholar
  118. 118.
    Seong, G.H., Kobatake, E., Miura, K., Nakazawa, A., and Aizawa, M., 2002, Direct atomic force microscopy visualization of integration host factor-induced DNA bending structure of the promoter regulatory region on the Pseudomonas TOL plasmid. Biochem. Biophys. Res. Commun., 291: 361–366.PubMedCrossRefGoogle Scholar
  119. 119.
    Shields, M.S., Reagin, M.J., Gerger, R.R., Campbell, R., and Somerville, C., 1995, TOM, a new aromatic degradative plasmid from Burkholderia (Pseudomonas) cepacia G4. Appl. Environ. Microbiol., 61: 1352–1356.PubMedGoogle Scholar
  120. 120.
    Shingler, V. and Pavel, H., 1995, Direct regulation of the ATPase activity of the transcriptional activator DmpR by aromatic compounds. Mol. Microbiol., 17: 505–513.PubMedCrossRefGoogle Scholar
  121. 121.
    Skarfstad, E., O’Neill, E., Garmendia, J., and Shingler, V, 2000, Identification of an effector specificity subregion within the aromatic-responsive regulators DmpR and XylR by DNA shuffling. J. Bacteriol., 182: 3008–3016.PubMedCrossRefGoogle Scholar
  122. 122.
    Soisson, S.M., MacDougall-Shackleton, B., Schleif, R., and Wolberger, C., 1997, Structural basis for ligand-regulated oligomerization of AraC. Science, 276: 421–425.PubMedCrossRefGoogle Scholar
  123. 123.
    Sze, C.C., Bernardo, L.M., and Shingler, V., 2002, Integration of global regulation of two aromatic-responsive sigma(54)-dependent systems: A common phenotype by different mechanisms. J. Bacteriol., 184: 760–770.PubMedCrossRefGoogle Scholar
  124. 124.
    Taylor, B.L. and ZhuLin, I.B., 1999, PAS domains: Internal sensors of oxygen, redox potential, and light. Microbiol. Mol. Biol. Rev., 63: 479–506.PubMedGoogle Scholar
  125. 125.
    Tobes, R. and Ramos, J.L., 2002, AraC-XylS database: A family of positive transcriptional regulators in bacteria. Nucleic Acids Res., 30: 318–321.PubMedCrossRefGoogle Scholar
  126. 126.
    Tomoyasu, T., Yamanaka, K., Murata, K., Suzaki, T., Bouloc, P., Kato, A., Niki, H., Hiraga, S., and Ogura, T., 1993, Topology and subcellular localization of FtsH protein in Escherichia coli. J. Bacteriol., 175: 1352–1357.PubMedGoogle Scholar
  127. 127.
    Valls, M., Buckle, M., and de Lorenzo, V., 2002, in vivo UV laser footprinting of the Pseudomonas putida sigma54 Pu promoter reveals that integration host factor couples transcriptional activity to growth phase. J. Biol. Chem., 277: 2169–2175.PubMedCrossRefGoogle Scholar
  128. 128.
    Velasco, A., Alonso, S., Garcia, J.L., Perera, J., and Diaz, E., 1998, Genetic and functional analysis of the styrene catabolic cluster of Pseudomonas sp. strain Y2. J. Bacteriol., 180: 1063–1071.PubMedGoogle Scholar
  129. 129.
    Wang, Y., Rawlings, M., Gibson, D.T., Labbe, D., Bergeron, H., Brousseau, R., and Lau, P.C, 1995, Identification ofa membrane protein and a truncated LysR-type regulator associated with the toluene degradation pathway in Pseudomonas putida F1. Mol. Gen. Genet., 246: 570–579.PubMedCrossRefGoogle Scholar
  130. 130.
    Whited, G.M. and Gibson, D.T., 1991, Toluene-4-monooxygenase, a three-component enzyme system that catalyzes the oxidation of toluene to p-cresol in Pseudomonas mendocina KR1. J. Bacteriol., 173: 3010–3016.PubMedGoogle Scholar
  131. 131.
    Wikstrom, P., O’Neill, E., Ng, L.C., and Shingler, V., 2001, The regulatory N-terminal region of the aromatic-responsive transcriptional activator DmpR constrains nucleotide-triggered multimerisation. J. Mol. Biol., 314: 971–984.PubMedCrossRefGoogle Scholar
  132. 132.
    Wong, C.M., Dilworth, M.J., and Glenn, A.R., 1994, Cloning and sequencing show that 4-hydroxybenzoate hydroxylase (PobA) is required for uptake of 4-hydroxybenzoate in Rhizobium leguminosarum. Microbiology, 140: 2775–2786.PubMedCrossRefGoogle Scholar
  133. 133.
    Worsey, M.J. and Williams P.A., 1975, Metabolism of toluene and xylenes by Pseudomonas putida (arvilla) mt-2: Evidence for a new function ofthe TOL plasmid. J. Bacteriol., 124: 7–13.PubMedGoogle Scholar
  134. 134.
    Wright, A. and Olsen, R.H., 1994, Self-mobilization and organization of the genes encoding the toluene metabolic pathway of Pseudomonas mendocina KR1. Appl. Environ. Microbiol., 60: 235–242.PubMedGoogle Scholar
  135. 135.
    Yen, K.M. and Karl, M.R., 1992, Identification ofa new gene, tmoF, in the Pseudomonas mendocina KRI gene cluster encoding toluene-4-monooxygenase. J. Bacteriol., 174: 7253–7261.PubMedGoogle Scholar
  136. 136.
    Yen, K.M., Karl, M.R., Blatt, L.M., Simon, M.J., Winter, R.B., Fausset, P.R., Lu, H.S., Harcourt, A.A., and Chen, K.K., 1991, Cloning and characterization of a Pseudomonas mendocina KR1 gene cluster encoding toluene-4-monooxygenase. J. Bacteriol., 173: 5315 5327.PubMedGoogle Scholar
  137. 137.
    Yura, T. and Nakahigashi, K., 1999, Regulation of the heat-shock response. Curr. Opin. Microbiol., 2: 153–158.PubMedCrossRefGoogle Scholar
  138. 138.
    Zhou, L.M., Timmis, K.N., and Ramos, J.L., 1990, Mutations leading to constitutive expression from the TOL plasmid meta-cleavage pathway operon are located at the C-terminal end of the positive regulator protein XylS. J. Bacteriol., 172: 3707–3710.PubMedGoogle Scholar
  139. 139.
    Zhulin, I.B., Taylor, B.L., and Dixon, R., 1997, PAS domain S-boxes in Archaea, Bacteria and sensors for oxygen and redox. Trends Biochem. Sci., 22: 331–333.PubMedCrossRefGoogle Scholar
  140. 140.
    Zylstra, G.J. and Gibson, D.T., 1989, Toluene degradation by Pseudomonas putida F1. Nucleotide sequence of the todC1C2BADE genes and their expression in Escherichia coli. J. Biol. Chem., 264: 14940–14946.PubMedGoogle Scholar
  141. 141.
    Zylstra, G.J., McCombie, W.R., Gibson, D.T., and Finette, B.A., 1988, Toluene degradation by Pseudomonas putida F1: Genetic organization of the tod operon. Appl. Environ. Microbiol., 54: 1498–1503.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Raquel Ruíz
    • 1
  • M. Isabel Aranda-Olmedo
    • 1
  • Patricia Domínguez-Cuevas
    • 1
  • M. Isabel Ramos-González
    • 1
  • Silvia Marqués
    • 1
  1. 1.Estación Experimental del ZaidínCSICGranadaSpain

Personalised recommendations