Skip to main content

Catabolite Repression and Physiological Control

  • Chapter
Virulence and Gene Regulation

Abstract

When confronted with a mixture of potential carbon sources at sufficiently high concentrations, many bacterial species often assimilate the different compounds in an ordered fashion, so that expression of the pathway for the assimilation of the non-preferred substrate remains inhibited until the preferred one is consumed. Pseudomonads are no exception to this. This phenomenon is, at least at first sight, similar to the “catabolite repression” control initially described in Escherichia coli for the hierarchi cal assimilation of sugars39. Catabolite repression has been studied mainly in E. itcoli and Bacillus subtilis, where it was found to be the consequence of a complex global regulatory response. In E. coli, the transport of glucose by the phosphotransferase sugar transport system (PTS) is coupled to its phosphorylation, a process that activates mechanisms to impede the import of other sugars32, 55. This process, named inducer exclusion, prevents expression of the catabolic pathways for other alternative sugars by lowering the intracellular concentration of the corresponding inducer. When glucose is consumed the levels of cAMP increase to levels that allow its binding to the cAMP receptor protein (CRP). The cAMP-CRP protein can then bind to a large number of promoters, where it acts as a transcriptional activator or repressor32,55. Many of the activated promoters correspond to catabolic pathways for other alternative sugars. A protein called Cra also regulates the metabolism of carbohydrates in E. coli.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albus, A.M., Pesci, E.C., Runyen-Janecky, L.J., West, S.E., and Iglewski, B.H., 1997, Vfr controls quorum sensing inPseudomonas aeruginosa. J. Bacteriol., 179: 3928–3935.

    PubMed  CAS  Google Scholar 

  2. Barker, M.M., Gaal, T., and Gourse, R.L., 2001, Mechanism of regulation of transcription initiation by ppGpp. II. Models for positive control based on properties of RNAP mutants and competition for RNAP. J. Mol. Biol., 305: 689–702.

    Article  PubMed  CAS  Google Scholar 

  3. Barker, M.M., Gaal, T., Josaitis, C.A., and Gourse, R.L., 2001, Mechanism of regulation of transcription initiation by ppGpp. I. Effects of ppGpp on transcription initiation in vivo and in vitro. J. Mol. Biol., 305: 673–688.

    Article  PubMed  CAS  Google Scholar 

  4. Bertoni, G., Fujita, N., Ishihama, A., and de Lorenzo, V., 1998, Active recruitment of sigma54-RNA polymerase to the Pu promoter of Pseudomonas putida: Role of IHF and alphaCTD. EMBO J., 17: 5120–5128.

    Article  PubMed  CAS  Google Scholar 

  5. Canosa, I., Sánchez-Romero, J.M., Yuste, L., and Rojo, F, 2000, A positive feedback mechanism controls expression of AlkS, the transcriptional regulator of the Pseudomonas oleovorans alkane degradation pathway. Mol. Microbiol., 35: 791–799.

    Article  PubMed  CAS  Google Scholar 

  6. Carmona, M. and de Lorenzo, V., 1999, Involvement of the FtsH (HflB) protease in the activity of sigma 54 promoters. Mol. Microbiol., 31: 261–270.

    Article  PubMed  CAS  Google Scholar 

  7. Carmona, M., Rodriguez, M.J., Martinez-Costa, O., and De Lorenzo, V., 2000, In vivo and in vitro effects of (p)ppGpp on the sigma(54) promoter Pu of the TOL plasmid of Pseudomonas putida. J Bacteriol., 182: 4711–4718.

    Article  PubMed  CAS  Google Scholar 

  8. Cases, I. and de Lorenzo, V., 1998, Expression systems and physiological control of promoter activity in bacteria. Curr. Opin. Microbiol., 1: 303–310.

    Article  PubMed  CAS  Google Scholar 

  9. Cases, I. and de Lorenzo, V., 2000, Genetic evidence of distinct physiological regulation mechanisms in the sigma 54 Pu promoter of Pseudomonas putida. J. Bacteriol., 182: 956–960.

    Article  PubMed  CAS  Google Scholar 

  10. Cases, I. and de Lorenzo, V., 2001, The black cat/white cat principle of signal integration in bacterial promoters. EMBO J., 20: 1–11.

    Article  PubMed  CAS  Google Scholar 

  11. Cases, I., de Lorenzo, V., and Pérez-Martín, J., 1996, Involvement of sigma 54 in exponential silencing of the Pseudomonas putida TOL plasmid Pu promoter. Mol. Microbiol., 19: 7–17.

    Article  PubMed  CAS  Google Scholar 

  12. Cases, I., Pérez-Martín, J., and de Lorenzo, V., 1999, The IIANtr (PtsN) protein of Pseudomonas putida mediates the C source inhibition of the sigma 54-dependent Pu promoter of the TOL plasmid. J. Biol. Chem., 274: 15562–15568.

    Article  PubMed  CAS  Google Scholar 

  13. Cases, J., Velazquez, E, and de Lorenzo, V.,2001, Role of ptsO in carbon-mediated inhibition of the Pu promoter belonging to the pWW0 Pseudomonas putida plasmid. J. Bacteriol., 183: 5128–5133.

    Article  PubMed  CAS  Google Scholar 

  14. Cashel, M., Gentry, D.R, Hernandez, V.J., and Vinella, D., 1996, The stringent response. In FC. Neidhart, R. Curtis III, JL. Ingraham, E.C.C. Lin, K.B. Low, R Magasanik, W.S. Reznikoff, M. Riley, M. Schaechter, and H.E. Umbarger (eds), Escherichia coli and Salmonella. Cellular and Molecular Biology, pp. 1458–1496. American Society for Microbiology, Washington DC.

    Google Scholar 

  15. Chatterji, D., Fujita, N., and Ishihama, A., 1998, The mediator for stringent control, ppGpp, binds to the beta-subunit of Escherichia coli RNA polymerase. Genes Cells, 3: 279–287.

    Article  PubMed  CAS  Google Scholar 

  16. Collier, D.N., Hager, P.W., and Phibbs, P.V. Jr, 1996, Catabolite repression control in Pseudomonads. Res. Microbiol., 147: 551–561.

    Article  PubMed  CAS  Google Scholar 

  17. Collier, D.N., Spence, C., Cox, M.J., and Phibbs, P.V. Jr, 2001, Isolation and phenotypic characterization of Pseudomonas aeruginosa pseudorevertants containing suppressors of the catabolite repression control-defective crc-10 allele. FEMS Microbiol. Lett., 196: 87–92.

    Article  PubMed  CAS  Google Scholar 

  18. Cotter, P.A., Chepuri, V., Gennis, R.B., and Gunsalus, R.P., 1990, Cytochrome o (cyoABCDE) and d (cydAB) oxidase gene expression in Escherichia coli is regulated by oxygen, pH, and the fnr gene product. J. Bacteriol., 172: 6333–6338.

    PubMed  CAS  Google Scholar 

  19. Cunningham, L., Pitt, M., and Williams, H.D., 1997, The cioAB genes from Pseudomonas aeruginosa code for a novel cyanide-insensitive terminal oxidase related to the cytochrome bd quinol oxidases. Mol. Microbiol., 24: 579–591.

    Article  PubMed  CAS  Google Scholar 

  20. de Lorenzo, V., Cases, I., Herrero, M., and Timmis, K.N., 1993, Early and late responses of TOL promoters to pathway inducers: Identification of postexponential promoters in Pseudomonas putida with lacZ-tet bicistronic reporters. J. Bacteriol., 175: 6902–6907.

    PubMed  Google Scholar 

  21. Dinamarca, M.A., Aranda-Olmedo, I., Puyet, A., and Rojo, F, 2003, Expression of the Pseudomonas putida OCT plasmid alkane degradation pathway is modulated by two different global control signals: Evidence from continuous cultures. J. Bacteriol., 185: 4772–4778.

    Article  PubMed  CAS  Google Scholar 

  22. Dinamarca, M.A., Ruiz-Manzano, A., and Rojo, F, 2002, Inactivation of cytochrome o ubiquinol oxidase relieves catabolic repression of the Pseudomonas putida GPol alkane degradation pathway. J. Bacteriol., 184: 3785–3793.

    Article  PubMed  CAS  Google Scholar 

  23. Duetz, W.A., Marqués, S., de Jong, C., Ramos, J.L., and van Andel, J.G., 1994, Inducibility of the TOL catabolic pathway in Pseudomonas putida (pWW0) growing on succinate in continuous culture: Evidence of carbon catabolite repression control. J. Bacteriol., 176: 2354–2361.

    PubMed  CAS  Google Scholar 

  24. Duetz, W.A., Marqués, S., Wind, B., Ramos, J.L., and van Andel, J.G., 1996, Catabolite repression of the toluene degradation pathway in Pseudomonas putida harboring pWW0 under various conditions of nutrient limitation in chemostat culture. Appl. Environ. Microbiol., 62: 601–606.

    PubMed  CAS  Google Scholar 

  25. Duetz, W.A., Wind, B., Kamp, M., and van Andel, J.G., 1997, Effect of growth rate, nutrient limitation and succinate on expression of TOL pathway enzymes in response to m-xylene in chemostat cultures of Pseudomonas putida (pWW0). Microbiology, 143: 2331–2338.

    Article  CAS  Google Scholar 

  26. Ferenci, T., 2001, Hungry bacteria—definition and properties of a nutritional state. Environ. Microbiol., 3: 605–611.

    Article  PubMed  CAS  Google Scholar 

  27. Georgellis, D., Kwon, O., and Lin, E.C., 2001, Quinones as the redox signal for the Arc two-component system of bacteria. Science, 292: 2314–2316.

    Article  PubMed  CAS  Google Scholar 

  28. Hester, K.L., Lehman, J, Najar, F, Song, L., Roe, B.A., MacGregor, C.H., Hager, P.W, Phibbs, P.V. Jr, and Sokatch, J.R., 2000, Crc is involved in catabolite repression control of the bkd operons of Pseudomonas putida and Pseudomonas aeruginosa. J. Bacteriol., 182: 1144–1149.

    Article  PubMed  CAS  Google Scholar 

  29. Hester, K.L., Madhusudhan, K.T., and Sokatch, J.R., 2000, Catabolite repression control by crc in 2xYT medium is mediated by posttranscriptional regulation of bkdR expression in Pseudomonasputida. J. Bacteriol., 182: 1150–1153.

    Article  PubMed  CAS  Google Scholar 

  30. Holtel, A., Marques, S., Mohler, I., Jakubzik, U., and Timmis, K.N., 1994, Carbon source-dependent inhibition of xyl operon expression of the Pseudomonas putida TOL plasmid. J. Bacteriol., 176: 1773–1776.

    PubMed  CAS  Google Scholar 

  31. Hugouvieux-Cotte-Pattat, N., Kohler, T., Rekik, M., and Harayama, S., 1990, Growth-phase-dependent expression of the Pseudomonas putida TOL plasmid pWW0 catabolic genes. J. Bacteriol., 172: 6651–6660.

    PubMed  CAS  Google Scholar 

  32. Inada, T., Kimata, K., and Aiba, H., 1996, Mechanism responsible for glucose-lactose diauxie in Escherichia coli: Challenge to the cAMP model. Genes Cells, 1: 293–301.

    Article  PubMed  CAS  Google Scholar 

  33. Jackson, D.W, Simecka, J.W, and Romeo, T., 2002, Catabolite repression of Escherichiacoli biofilm formation. J. Bacteriol., 184: 3406–3410.

    Article  PubMed  CAS  Google Scholar 

  34. Jishage, M., Kvint, K., Shingler, V., and Nystrom, T., 2002, Regulation of sigma factor competition by the alarmone ppGpp. Genes Dev., 16: 1260–1270.

    Article  PubMed  CAS  Google Scholar 

  35. Laurie, A.D., Bernardo, L.M., Sze, C.C., Skarfstad, E., Szalewska-Palasz, A., Nystrom, T., and Shingler, V., 2003, The role of the alarmone (p)ppGpp in sigma N competition for core RNA polymerase. J. Biol. Chem., 278: 1494–1503.

    Article  PubMed  CAS  Google Scholar 

  36. Lendenmann, O., Snozzi, M., and Egli, T., 1996, Kinetics of the simultaneous utilization of sugar mixtures by Escherichia coli in continuous culture. Appl. Environ. Microbiol., 62: 1493–1499.

    PubMed  CAS  Google Scholar 

  37. MacGregor, C.H., Arora, S.K., Hager, P.W., Dail, M.B., and Phibbs, P.V. Jr, 1996, The nucleotide sequence of the Pseudomonas aeruginosa pyrE-crc-rph region and the purification of the crc gene product. J. Bacteriol., 178: 5627–5635.

    Google Scholar 

  38. Maeda, H., Fujita, N., and Ishihama, A., 2000, Competition among seven Escherichia coli sigma subunits: Relative binding affinities to the core RNA polymerase. Nucleic Acids Res., 28: 3497–3503.

    Article  PubMed  CAS  Google Scholar 

  39. Magasanik, B., 1970, Glucose effects: Inducer exclusion and repression. In J. Beckwith (ed.), The Lactose Operon, pp. 189–220. Cold Spring Harbor Laboratory Press, Cold Spring harbor, NY.

    Google Scholar 

  40. Marín, M.M., Yuste, L., and Rojo, F., 2003, Differential expression of the components of the two alkane hydroxylases from Pseudomonas aeruginosa. J. Bacteriol., 185: 3232–3237.

    Article  PubMed  Google Scholar 

  41. Marqués, S., Holtel, A., Timmis, K.N., and Ramos, J.L., 1994, Transcriptional induction kinetics from the promoters of the catabolic pathways of TOL plasmid pWW0 of Pseudomonas putida for metabolism of aromatics. J. Bacteriol., 176: 2517–2524.

    PubMed  Google Scholar 

  42. McFall, S.M., Abraham, B., Narsolis, C.G., and Chakrabarty, A.M., 1997, A tricarboxylic acid cycle intermediate regulating transcription of a chloroaromatic biodegradative pathway: Fumarate-mediated repression of the clcABD operon. J. Bacteriol., 179: 6729–6735.

    PubMed  CAS  Google Scholar 

  43. Müller, C., Petruschka, L., Cuypers, H., Burchhardt, G., and Herrmann, H., 1996, Carbon catabolite repression of phenol degradation in Pseudomonas putida is mediated by the inhibition of the activator protein PhlR. J. Bacteriol., 178: 2030–2036.

    PubMed  Google Scholar 

  44. O’Leary, N.D., O’Connor, K.E., Duetz, W., and Dobson, A.D.W., 2001, Transcriptional regulation of styrene degradation in Pseudomonas putida CA-3. Microbiology, 147: 973–979.

    PubMed  Google Scholar 

  45. O’Toole, G.A., Gibbs, K.A., Hager, P.W., Phibbs, P.V. Jr, and Kolter, R., 2000, The global carbon metabolism regulator Crc is a component of a signal transduction pathway required for biofilm development by Pseudomonas aeruginosa. J. Bacteriol., 182: 425–431.

    Article  PubMed  Google Scholar 

  46. Oh, J.I. and Kaplan, S., 2001, Generalized approach to the regulation and integration of gene expression. Mol. Microbiol., 39: 1116–1123.

    Article  PubMed  CAS  Google Scholar 

  47. Pérez-Martín, J. and De Lorenzo, V., 1995, Integration host factor suppresses promiscuous activation of the sigma 54-dependent promoter Pu of Pseudomonas putida. Proc. Natl. Acad. Sci. USA, 92: 7277–7281.

    Article  PubMed  Google Scholar 

  48. Petruschka, L., Burchhardt, G., Müller, C., Weihe, C., and Herrmann, H., 2001, The cyo operon of Pseudomonas putida is involved in catabolic repression of phenol degradation. Mol. Genet. Genomics, 266: 199–206.

    Article  PubMed  CAS  Google Scholar 

  49. Phillips, A.T. and Mulfinger, L.M., 1981, Cyclic adenosine 3’,5’-monophosphate levels in Pseudomonas putida and Pseudomonas aeruginosa during induction and carbon catabolite repression of histidase synthesis. J. Bacteriol., 145: 1286–1292.

    PubMed  CAS  Google Scholar 

  50. Powlowski, J. and Shingler, V., 1994, Genetics and biochemistry of phenol degradation by Pseudomonas sp. CF600. Biodegradation, 5: 219–236.

    Article  PubMed  CAS  Google Scholar 

  51. Ramos, J.L., Marqués, S., and Timmis, K.N., 1997, Transcriptional control of the Pseudomonas TOL plasmid catabolic operons is achieved through an interplay of host factors and plasmid-encoded regulators. Ann. Rev. Microbiol., 51: 341–373.

    Article  CAS  Google Scholar 

  52. Repoila, F., Majdalani, N., and Gottesman, S., 2003, Small non-coding RNAs, co-ordinators of adaptation processes in Escherichia coli: The RpoS paradigm. Mol. Microbiol., 48: 855–861.

    Article  PubMed  CAS  Google Scholar 

  53. Richardson, D.J., 2000, Bacterial respiration: A flexible process for a changing environment. Microbiology, 146: 551–571.

    PubMed  CAS  Google Scholar 

  54. Sage, A.E., Proctor, W.D., and Phibbs, P.V. Jr, 1996, A two-component response regulator, GltR, is required for glucose transport activity in Pseudomonas aeruginosa PAO1. J. Bacteriol., 178: 6064–6066.

    PubMed  CAS  Google Scholar 

  55. Saier, M.H. Jr., Chauvaux, S., Deutscher, J, Reizer, J, and Ye, J.J., 1995, Protein phosphorylation and regulation of carbon metabolism in gram-negative versus gram-positive bacteria. Trends Biochem. Sci., 20: 267–271.

    Article  PubMed  CAS  Google Scholar 

  56. Saier, M.H. Jr. and Ramseier, T.M., 1996, The catabolite repressor/activator (Cra) protein of enteric bacteria. J. Bacteriol., 178: 3411–3417.

    PubMed  CAS  Google Scholar 

  57. Schleissner, C., Reglero, A., and Luengo, J.M., 1997, Catabolism of D-glucose by Pseudomonas putida U occurs via extracellular transformation into D-gluconic acid and induction of a specific gluconate transport system. Microbiology, 143 (Pt 5): 1595–1603.

    Article  PubMed  CAS  Google Scholar 

  58. Schumann, W., 1999, FtsH—a single-chain charon in? FEMS Microbiol. Rev., 23: 1–11.

    PubMed  CAS  Google Scholar 

  59. Siegel, L.S., Hylemon, P.B., and Phibbs, P.V. Jr 1977, Cyclic adenosine 3’,5’-monophosphate levels and activitie s of adenylate cyclase and cyclic adenosine 3’,5’-monophosphate phosphodiesterase in Pseudomonas and Bacteroides. J. Bacteriol., 129: 87–96.

    PubMed  CAS  Google Scholar 

  60. Spiers, A.J., Buckling, A., and Rainey, P.B., 2000, The causes of Pseudomonas diversity. Microbiology, 146: 2345–2350.

    PubMed  CAS  Google Scholar 

  61. Staijen, I.E., Marcionelli, R., and Witholt, B., 1999, The PalkBFGHJKL promoter is under carbon catabolite repression control in Pseudomonas oleovorans but not in Escherichia coli alk+ recombinants. J. Bacteriol., 181: 1610–1616.

    PubMed  CAS  Google Scholar 

  62. Stanier, R.Y., Palleroni, N.J., and Doudoroff, M., 1966, The aerobic Pseudomonads: A taxonomic study. J. Gen. Microbiol., 43: 159–271.

    PubMed  CAS  Google Scholar 

  63. Stanley, N.R., Britton, R.A., Grossman, A.D., and Lazazzera, B.A., 2003, Identification of catabolite repression as a physiological regulator of biofilm formation by Bacillus subtilis by use of DNA microarrays. J. Bacteriol., 185: 1951–1957.

    Article  PubMed  CAS  Google Scholar 

  64. Stulke, J. and Hillen, W, 2000, Regulation of carbon catabolism in bacillus species. Ann. Rev. Microbiol., 54: 849–880.

    Article  CAS  Google Scholar 

  65. Suh, S.J., Runyen-Janecky, L.J., Maleniak, T.C., Hager, P., MacGregor, C.H., Zielinski-Mozny, N.A., Phibbs, P.V. Jr, and West, S.E., 2002, Effect of vfr mutation on global gene expression and catabolite repression control of Pseudomonas aeruginosa. Microbiology, 148: 1561–1569.

    PubMed  CAS  Google Scholar 

  66. Sweet, W.J. and Peterson, J.A., 1978, Changes in cytochrome content and electron transport patterns in Pseudomonas putida as a function of growth phase. J. Bacteriol., 133: 217–224.

    PubMed  CAS  Google Scholar 

  67. Sze, C.C., Bernardo, L.M.D., and Shingler, V., 2002, Integration of global regulation of two aromatic-responsive sigma 54-dependent systems: A common phenotype by different mechanisms. J. Bacteriol., 184: 760–770.

    Article  PubMed  CAS  Google Scholar 

  68. Sze, C.C., Laurie, A.D., and Shingler, V., 2001, In vivo and in vitro effects of integration host factor at the DmpR-regulated sigma(54)-dependent Po promoter. J. Bacteriol., 183: 2842–2851.

    Article  PubMed  CAS  Google Scholar 

  69. Sze, C.C., Moore, T., and Shingler, V., 1996, Growth phase-dependent transcription of the sigma(54)-dependent Po promoter controlling the Pseudomonas-derived (methyl)phenol dmp operon ofpVI150. J. Bacteriol., 178: 3727–3735.

    PubMed  CAS  Google Scholar 

  70. Sze, C.C. and Shingler, V., 1999, The alarmone (p)ppGpp mediates physiological-responsive control at the sigma 54-dependent Po promoter. Mol. Microbiol., 31: 1217–1228.

    Article  PubMed  CAS  Google Scholar 

  71. Tomoyasu, T., Gamer, J., Bukau, B., Kanemori, M., Mori, H., Rutman, A.J., Oppenheim, A.B., Yura, T., Yamanaka, K., Niki, H. et al., 1995, Escherichia coli FtsH is a membrane-bound, ATP-dependent protease which degrades the heat-shock transcription factor sigma 32. EMBO J., 14: 2551–2560.

    Google Scholar 

  72. Toulokhonov, II, Shulgina, I., and Hernandez, V.J, 2001, Binding of the transcription effector ppGpp to Escherichia coli RNA polymerase is allosteric, modular, and occurs near the N terminus of the beta’-subunit. J. Biol. Chem., 276: 1220–1225.

    Article  PubMed  CAS  Google Scholar 

  73. Tover, A., Ojangu, E.L., and Kivisaar, M., 2001, Growth medium composition-determined regulatory mechanisms are superimposed on CatR-mediated transcription from the pheBA and catBCA promoter s in Pseudomonas putida. Microbiology, 147: 2149–2156.

    PubMed  CAS  Google Scholar 

  74. Valls, M., Buckle, M., and de Lorenzo, V., 2002, In vivo UV laser footprinting of the Pseudomonas putida sigma 54-Pu promoter reveals that integration host factor couples transcriptional activity to growth phase. J. Biol. Chem., 277: 2169–2175.

    Article  PubMed  CAS  Google Scholar 

  75. Wassarman, K.M., 2002, Small RNAs in bacteria: Diverse regulators of gene expression in response to environmental changes. Cell, 109: 141–144.

    Article  PubMed  CAS  Google Scholar 

  76. Weilbacher, T., Suzuki, K., Dubey, A.K., Wang, X., Gudapaty, S., Morozov, I., Baker, C.S., Georgellis, D., Babitzke, P., and Romeo, T., 2003, A novel sRNA component of the carbon storage regulatory system of Escherichia coli. Mol. Microbiol., 48: 657–670.

    Article  PubMed  CAS  Google Scholar 

  77. Wikstrom, P., O’Neill, E., Ng, L.C., and Shingler, V., 2001, The regulatory N-terminal region of the aromatic-responsive transcriptional activator DmpR constrains nucleotide-triggered multimerisation. J. Mol. Biol., 314: 971–984.

    Article  PubMed  CAS  Google Scholar 

  78. Wolff, J.A., MacGregor, C.H., Eisenberg, R.C., and Phibbs, P.V. Jr, 1991, Isolation and characterization of catabolite repression control mutants of Pseudomonas aeruginosa PAO. J. Bacteriol., 173: 4700–4706.

    PubMed  CAS  Google Scholar 

  79. Yuste, L., Canosa, I., and Rojo, F, 1998, Carbon-source-dependent expression of the PalkB promoter from the Pseudomonas oleovorans alkane degradation pathway. J. Bacteriol., 180: 5218–5226.

    PubMed  CAS  Google Scholar 

  80. Yuste, L. and Rojo, F, 2001, Role of the crc gene in catabolic repression of the Pseudomonas putida GPo1 alkane degradation pathway. J. Bacteriol., 183: 6197–6206.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rojo, F., Alejandro Dinamarca, M. (2004). Catabolite Repression and Physiological Control. In: Ramos, JL. (eds) Virulence and Gene Regulation. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9084-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9084-6_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4787-3

  • Online ISBN: 978-1-4419-9084-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics