Skip to main content

Correlation and Marginal Longitudinal Kernel Nonparametric Regression

  • Chapter

Part of the Lecture Notes in Statistics book series (LNS,volume 179)

Abstract

We consider nonparametric regression in a marginal longitudinal data framework. Previous work ([3]) has shown that the kernel nonparametric regression methods extant in the literature for such correlated data have the discouraging property that they generally do not improve upon methods that ignore the correlation structure entirely. The latter methods are called working independence methods. We construct a two- stage kernel-based estimator that asymptotically uniformly improves upon the working independence estimator. A small simulation study is given in support of the asymptotics.

Keywords

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. A. Graybill. Matrices with Applications in Statistic. Wadsworth & Brooks/Cole, 1983.

    Google Scholar 

  2. D. R. Hoover, J. A. Rice, C. O. Wu, and Y. Yang. Nonparametric smoothing estimates of time-varying coefficient models with longitudinal data. Biometrika, 85:809–822, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  3. X. Lin and R. J. Carroll. Nonparametric function estimation for clustered data when the predictor is measured without/with error. Journal of the American Statistical Association, 95:520–534, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  4. J. S. Marron and W. Härdle. Random approximations to some measures of accuracy in nonparametric curve estimatio. Journal of Multivariate Analysis, 20:91–113, 1986.

    Article  MathSciNet  MATH  Google Scholar 

  5. M. S. Pepe and D. Couper. Modeling partly conditional means with longitudinal data. Journal of the American Statistical Association, 92:991–998, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  6. A. Ruckstuhl, A. H. Welsh, and R. J. Carroll. Nonparametric function estimation of the relationship between two repeatedly measured variables. Statistica Sinica, 10:51–71, 2000.

    MathSciNet  MATH  Google Scholar 

  7. D. Ruppert. Empirical-bias bandwidths for local polynomial nonparametric regression and density estimatio. Journal of the American Statistical Association, 92:1049–1062, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  8. T. A. Severini and J. G. Staniswalis. Quasilikelihood estimation in semiparametric models. Journal of the American Statistical Association, 89:501–511, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  9. C. J. Wild and T. W. Yee. Additive extensions to generalized estimating equation methods. J. Royal Statist. Soc. B, 58:711–725, 1996.

    MathSciNet  MATH  Google Scholar 

  10. C. O. Wu, C. T. Chiang, and D. R. Hoover. Asymptotic confidence regions for kernel smoothing of a varying coefficient model with longitudinal data. Journal of the American Statistical Association, 93:1388–1402, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  11. S. L. Zeger and P. J. Diggle. Semi-parametric models for longitudinal data with application to cd4 cell numbers in hiv seroconverters. Biometrics, 50:689–699, 1994.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Linton, O.B., Mammen, E., Lin, X., Carroll, R.J. (2004). Correlation and Marginal Longitudinal Kernel Nonparametric Regression. In: Lin, D.Y., Heagerty, P.J. (eds) Proceedings of the Second Seattle Symposium in Biostatistics. Lecture Notes in Statistics, vol 179. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9076-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9076-1_2

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-20862-6

  • Online ISBN: 978-1-4419-9076-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics