Skip to main content

Abstract

The word Polymer in the term Polymer Electronics is not used in its chemical sense but rather used to embrace a wide variety of materials whose common characteristic is that they are amenable to printing processes rather than conventional electronics processes. In that sense, polymer electronic technology may involve not only organic materials, amongst others polymers in the chemical sense, but also inorganic materials, and nano- composites, such as printable metals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Chapter 5 References

  1. S. Chandrasekhar, Liquid Crystals: their Physics, Chemistry and Application, Eds. G. Hilsum and E. P. Raynes, The Royal Society, London, pp. 93–103, 1983. D. Demus, Liquid Crystals, Applications and Uses, Ed. B. Aahadur, World Scientific, pp. 28-36, 1990. D. Lacey, Liquid Crystals and Devices, chapter nine (pp. 185-219) from Introduction to Molecular Electronics, Oxford University Press, 1995.

    Google Scholar 

  2. E. Huitema, G. Gelinck, B. van der Putten, E. Cantatore, E. van Veenendaal, L. Schrijnemakers, B.-H. Huisman and D. M. de Leeuw, “Plastic transistors in active-matrix displays”, ISSCC session 21, p. 380–381, 2003.

    Google Scholar 

  3. H. E. A. Huitema, G. H. Gelinck, J. B. P. H. van der Putten, K. E. Kuijk, K. M. Hart, E. Cantatore, P. T. Herwig, A. J. J. M. Van Breemen and D. M. de Leeuw, “Plastic transistors in active-matrix displays”, Nature, Vol. 414, p. 599, 2001. H. E. A. Huitema, G. H. Gelinck, J. B. P. H. van der Putten, K. E. Kuijk, K. M. Hart, E. Cantatore and D. M. de Leeuw, “Active-Matrix Displays driven by solution processed polymeric transistors”, Adv. Mater., Vol. 14, No 17, pp. 1201-1204,2002.

    Article  Google Scholar 

  4. C. D. Sheraw, L. Zhou, J. R. Huang, D. J. Gundlach, T. N. Jackson, M. G. Kane, I. G. Hill, M. S. Hammond, J. Campi, B. K. Greening, J. Francl and J. West, “Organic thin-film transistor-driven polymer-dispersed liquid crystal displays on flexible polymeric substrates”, Appl. Phys. Lett., Vol. 80, No. 6, pp. 1088–1090,2002.

    Article  Google Scholar 

  5. J. W. Doane, “A comparison of display technologies suitable for E-books:”, Future of Print Media Journal, Nov 17, 1998 (http://www.futureprint.kent.edu/articles/doaneO1.htm)

  6. P. M. S. Monk, R. J. Mortimer and D. R. Rosseinsky, Electrochromism: Fundamentals and Applications, VCH, Weinheim, 1995.

    Book  Google Scholar 

  7. Courtesy of Professor Michael Gr ätzel, Laboratory for Photonics and Interfaces, Swiss Federal Institute of Technology, EPFL-Ecublens, CH-1015 Lausanne, Switzerland.

    Google Scholar 

  8. P. Bonhote, E. Gogniat, F. Campus, L. Walder, M. Gratzel, “Nanocrystalline electrochromic displays”, Displays, Vol. 20, No. 3, pp. 137–44, 1999.

    Article  Google Scholar 

  9. V. Rani, K. S. V. Santhanam, “Polycarbazole electrochemical transistor”, J. Solid State Electrochem., Vol. 2, p. 99, 1998.

    Article  Google Scholar 

  10. P. Andersson, D. Nilsson, P.O. Svensson, M. Chen, A. Malmstroem, T. Remonen, T. Kugler, M. Beggren, “Active matrix displays based on all-organic electrochemical smart pixels printed on paper”, Advanced materials Vol. 14, pp 1460–1464, 2002. Figures reprinted with permission.

    Article  Google Scholar 

  11. N.K. Sheridon and M.A. Berkovitz, “The Gyricon — a twisting ball display”, Proceedings of the S.I.D vol.18, no.3-4: 289–93, 1977 M. E. Howard, E. A. Richley, R. Spraque, N. K. Sheridon, J. Crowley, “Gyricon electric paper ”, Digest of Technical Papers SID’ 98, Vol. 29, pp. 1010-13, 1998 N. K. Sheridon,, E. A. Richley, J. C. Mikkelsen, D. Tsuda, J. Crowley, K. A. Oraha, M. E. Howard, M. A. Rodkin, R. Swidler, R. Sprague, “The Gyricon rotating ball display ”, Journal of the Society for Information Display vol.7, no.2: 141-5, 1999

    Google Scholar 

  12. B. Comiskey, J. D. Albert, H. Yoshizawa, J. Jacobson, “An electrophoretic ink for all-printed reflective electronic displays”, Nature, Vol. 394, pp. 253–255, (doi:10.1038/28349), 1998.

    Article  Google Scholar 

  13. J. Jacobson, “The last book”, IBM Systems Journal, Vol. 36, No 3, doi 10.1147/SJ.363.0457, 1997 (http://www.research.ibm.com/journal/sj/363/jacobson.html).

  14. Y. Chen, J. Au, P. Kazlas, A. Ritenour, H. Gates, M. McCreary, “Flexible active-matrix electronic ink display”, Nature, Vol. 423, p. 136, 2003.

    Article  Google Scholar 

  15. S. Inoue, H. Kawai, S. Kanbe, T. Saeki and T. Shimoda, “High-Resolution Microencapsulated Electrophoretic Display (EPD) Driven by Poly-Si TFTs With Four-Level Grayscale”, IEEE Trans. El. Dev., Vol. 49, No. 8, 2002.

    Google Scholar 

  16. J. A. Rogers, Z. Bao, K. Baldwin, A. Dodabalapur, B. Crone, V. R. Raju, V. Kuck, H. Katz, K. Amundson, J. Ewing, P. Drzaic “paper-like electronic displays: large-area rubber-stamped plastic sheets of electronics and microencapsulated electrophoretic inks”, Proc. National Academy of Sciences, Vol. 98, No 9, 4835–4840, 2001. Figure is courtesy of Prof. John A. Rogers, University of Illinois at Urbana/Champaign.

    Article  Google Scholar 

  17. P. Kazlas, A. Ritenour, J. Au, Y. Chen, J. Goodman, R. Paolini, H. Gates, “Card-size Active-matrix Electronic Ink Display”, Eurodisplay 2002, paper P-14.3, proceedings pp 259–261, 2002.

    Google Scholar 

  18. Tang and VanSlyke, “Organic electroluminescent diodes”, Applied Physics Letters, 51(12), p. 913–915, 1987.

    Article  Google Scholar 

  19. Burroughes, Bradley, Brown, Marks, Mackay, Friend, Burns, Holmes, ‘Light-emitting diodes based on conjugated polymers’, Nature, 357, p 539–541, 1990.

    Google Scholar 

  20. Fukuda, Wanatabe, Wakimoto, Miyaguchi and Tsuchida, “An organic LED display exhibiting pure RGB colors”, Synthetic Metals, vol. 111-112, p. 1–6, 2000.

    Article  Google Scholar 

  21. Gu and Forres, “Design of Flat-Panel Displays Based on Organic Light-Emitting Devices ”,IEEE Journal on Selected Topics in Quantum Electronics, 4(1), p. 83–99, 1998.

    Article  Google Scholar 

  22. Ammerman, Böhler, Dirr, Johannes, Kowalsky and Grahn, “Device structures and materials for organic light-emitting diodes”, Proc. SPIE 3006 (1997).

    Google Scholar 

  23. Forrest, “Active Optoelectronics Using Thin-Film Organic Semiconductors”, IEEE Journal on Selected Topics in Quantum Electronics, 6(6), p. 1072–1083, 2000.

    Article  Google Scholar 

  24. Friend, Gymer, Homes, Burroughes, Marks, Taliani, Bradley, Dos Santos, Bredas, Löglund and Salaneck, “Electroluminescence in conjugated polymers”, Nature, 397,p. 121–128, 1999.

    Article  Google Scholar 

  25. Baldo, Thompson and Forrest, “High-efficiency fluorescent organic light-emitting devices using a phosphorescent sensitizer”, Nature, vol. 403, p. 750–753, 2000.

    Article  Google Scholar 

  26. Cleave, Yahioglu, Le Barny, Friend and Tessler, “Harvesting Singlet and Triplet Energy in Polymer LEDs”, Advanced Materials, 11(4), p. 285–288, 1999.

    Article  Google Scholar 

  27. Jabbour, Wang and Peyghambarian, ‘High-efficiency organic electrophosphorescent devices through balance of charge injection’, Applied Physics Letters, 80(11), p. 2026–2028, 2002.

    Article  Google Scholar 

  28. Adachi, Baldo, Tompson and Forrest, ‘Nearly 100% internal phosphorescence efficiency in an organic light emitting diode’, Journal of Applied Physics, 90(10), p. 5048–5051, 2001

    Article  Google Scholar 

  29. Adachi, Kwong, Djurovich, Adamovich, Baldo, Thompson and Forrest, ‘Endothermic energy transfer: a mechanism for generating very efficient high-energy phosphorescent emission in organic materials’, Applied Physics Letters, 79(13), p. 2082–2084, 2001

    Article  Google Scholar 

  30. Burrows, Gu, Bulovic, Shen, Forrest and Thompson, “Achieving Full-Color Organic Light-Emitting Devices for Lightweight, Flat-Panel Displays”, IEEE Transactions on Electron Devices, 44(8), p. 1188–1203, 1997.

    Article  Google Scholar 

  31. Shen, Burrows, Bulovic, Forrest and Thompson, “Three-Color, Tunable, Organic Light-Emitting Devices”, Science, vol. 276, p. 2009–2011, 1997.

    Article  Google Scholar 

  32. Hosokawa, Matsuura, Eida, Fukuoka, Tokailin and Kusumoto, “Full-Color Organic EL Display”, SID, 1998.

    Google Scholar 

  33. Sturm, Pschenitzka, Hebner, Lu, Wu and Wilson, “Patterning approaches and system power efficiency considerations for organic LED displays”, SPIE, 3476, p. 208–216, 1998.

    Article  Google Scholar 

  34. Tian, Bulovic, Burrows, Gu, Forrest and Zhou, “Precise, scalable shadowmask patterning of vacuum-deposited organic light-emitting devices”, J. Vac. Sci. & Techn. A, 17(5), p. 2975–2981, 1999.

    Article  Google Scholar 

  35. Tian, Burrows and Forrest, “Photolithographic patterning of vacuum-deposited organic light-emitting devices”, APL 77(22), p. 3197–3199, 1997.

    Article  Google Scholar 

  36. Wu, Sturm, Register and Thompson, “Integrated three-color organic light-emitting devices ”, APL 69(21 ), p. 3117–3119, 1996.

    Article  Google Scholar 

  37. Hebner, Wu, Marcy, Lu and Sturm, “Inkjet printing of doped polymers for organic light-emitting devices”, APL 72(5), p. 519–521, 1998.

    Article  Google Scholar 

  38. Hebner and Sturm, “Local tuning of organic light-emitting diode color by dye droplet application”, APL 73(13), p. 1775–1777, 1998.

    Article  Google Scholar 

  39. Bharathan and Yang, “Polymer electroluminescent devices processed by inkjet printing: I polymer light-emitting logo”, APL 72(21), p. 2660–2662, 1998

    Article  Google Scholar 

  40. Chang, Bharathan, Yang, Helgeson, Wudl, Ramey and Reynolds, “Dual color polymer light-emitting pixels processed by hybrid inkjet printing”, APL 73(18), p. 2561–2563, 1998.

    Article  Google Scholar 

  41. Kobayashi, Kanbe, Seki, Kigchi, Kimura, Yudasaka, Miyashita, Shimoda, Towns, Burroughes and Friend, “A novel RGB multicolor light-emitting displays”, Synthetic Metals, 111-112, p. 125–128, 2000.

    Article  Google Scholar 

  42. Shimoda, Kimura, Seki, Kobayashi, Kanbe, Miyashita, Friend, Burroughes, Towns and Miljard, “Technology for Active Matrix Light Emitting Polymer Displays”, IEDM 99, p. 107–110, 1999.

    Google Scholar 

  43. Kijima, Asai, Kishii and Tamura, “RGB Luminescence from Passive-Matrix Organic LED’s”, IEEE Trans on Elec Dev, 44(8), p. 1222–1228, 1997.

    Article  Google Scholar 

  44. R. Dawson, Z. Shen, D.A. Fürst, S. Connor, J. Hsu, M.G. Kane, R.G. Stewart, A. Ipri, C.N. King, P.J. Green, R.T. Flegal, S. Pearson, W.A. Barrow, E. Dickey, K. Ping, C.W. Tang, S. Van Slyke, F. Chen, J. Shi, J.C. Sturm, and M.H. Lu, “Design of an improved pixel for a polysilicon active-matrix organic LED display ”, SID, International Symposium Proceedings, pp. 11–14, 1998.

    Google Scholar 

  45. Lungu and Fuller, “Thin Film Active Matrix Organic Electroluminescent Display Development”, IEEE, p. 165–168, 1997.

    Google Scholar 

  46. Stewart, Howell, Pires, Hatalis, Howard and Prache, “Polysilicon VGA Active Matrix OLED Displays-Technology and Performance”, IEEE 0-7803-4777-3, 1998.

    Google Scholar 

  47. Jackson, Lin, Gundlach and Klauk, “Organic Thin-Film Transistors for Organic Light-Emitting Flat-Panel Display Backplanes”, IEEE Journal of selected topics in quantum electronics, 4(1), p. 100–104, 1998.

    Article  Google Scholar 

  48. Hattori, Tsukamizu, Tsuchiya, Miyake, He and Kanicki, “Current-Writing Active-Matrix Circuit for Organic Light-Emitting Diode Display using a-Si:H Thin-Film-Transistors”, IEICE Trans. Electron., E83-C(5), p. 779–782, 2000.

    Google Scholar 

  49. Pribat and Plais, “Matrix addressing for organic electroluminescent displays”, Thin Solid Films, 383, p. 25–30, 2001.

    Article  Google Scholar 

  50. Mathine, WOO, He, Kim, Kippelen and Peyghambarian, “Heterogeneously integrated organic light-emitting diodes with complementary metal-oxide-silicon circuitry”, APL, 76(26), p. 3849–3851, 2000.

    Article  Google Scholar 

  51. Guan, Matin and Stephen, “Transparent contact studies for organic devices”, Electronics Letters, 38(15), p. 826–827, 2002.

    Article  Google Scholar 

  52. S. Kawashima, and H. Sasaki, “Image display device with element driving device for matrix drive of multiple active elements”, US Patent, 6,091,203, 2000.

    Google Scholar 

  53. R. Dawson, Z. Shen, D.A. Für st, S. Connor, J. Hsu, M.G. Kane, R.G. Stewart, A. Ipri, C.N. King, P.J. Green, R.T. Flegal, S. Pearson, W.A. Barrow, E. Dickey, K. Ping, S. Robinson, C.W. Tang, S. Van Slyke, F. Chen, J. Shi, M.H. Lu, and J.C. Sturm, “The impact of the transient response of organic light emitting diodes on the design of active-matrix OLED displays”, Proc. IEDM, pp. 875–878, 1998.

    Google Scholar 

  54. Aerts, Verlaak and Heremans, “Design of an Organic Pixel Addressing Circuit for an Active-Matrix OLED Display”, IEEE Trans, on Electron Devices, 2002.

    Google Scholar 

  55. He, Hattori and Kanicki, “Four-Thin Film Transistor Pixel Electrode Circuits for Active-Matrix Organic Light-Emitting Displays”, Jpn. JAP part l,40(3A),p. 1199–1208,2001.

    Article  Google Scholar 

  56. Kim, Kwon, Kim, Shin, Kim and Chung, “A New Current Programmable Pixel Structure for Large-Size and High-Resolution AMOLEDs”, IDW’02, p. 367–370, 2002.

    Google Scholar 

  57. Inukai, Kimura, Mizukami, Maruyama, Murakami, Koyama, Konuma and Yamazaki, ‘4.0-in. TFT-OLED displays and a novel digital driving method’, SID 00 Digest, p. 924–927, 2000.

    Google Scholar 

  58. Mizukami, Inukai, Yamagata, Konuma, Nishi, Koyama, Yamazaki and Tsutsui, ‘6-bit digital VGA OLED’, SID 00 Digest, p. 912–915.

    Google Scholar 

  59. Kimura, Maeda, Matsueda, Miyashita, Shimoda, Tarn, Migliorato, Burroughes, Towns and Friend, ‘Low-temperature poly-Si TFT driven light-Emitting-Polymer displays and digital gray scale for uniformity’, IDW’99, p. 171–174, 1999.

    Google Scholar 

  60. Theiss, Carey, Smith, Wickboldt and Sigmon, ‘PolySilicon Thin Film Transistors Fabricated at 100°, C on a Flexible Plastic Substrate’, IEDM 98, p.257–260, 1998.

    Google Scholar 

  61. Dodabalapur, Bao, Makhija, Laquindanum, Raju, Feng, Katz and Rogers, “Organic smart pixels”, APL, 73(2), p. 142–144, 1998.

    Article  Google Scholar 

  62. Rogers, Bao and Dodabalapur, “Organic Smart Pixels and Complementary Inverter Circuits Formed on Plastic Substrates by Casting and Rubber Stamping”, IEEE Electron Devices Letters, 21(3), 2000.

    Google Scholar 

  63. Klauk, D’Andrade and Jackson, “All-Organic Integrated Emissive Pixels”, 57th Annual Device Research Conference Digest, p. 162–163, 1999.

    Google Scholar 

  64. Sirringhaus, Tessler and Friend, “Integrated Optoelectronic Devices Based on Conjugated Polymers”, Science, 280, p. 1741–1744, 1998.

    Article  Google Scholar 

  65. Sirringhaus, Tessler and Friend, “Integrated, high-mobility polymer field-effect transistors driving polymer light-emitting diodes”, Synthetic Metals, vol. 102, p. 857–860, 1999.

    Article  Google Scholar 

  66. Meng and Wong, “Active-Matrix Organic Light-Emitting Diode Displays Realized Using Metal-Induced Unilaterally Crystallized Polycrystalline Silicon Thin-Film Transistors”, IEEE Transactions on electron devices, 49(6), p. 991–996, 2002.

    Article  Google Scholar 

  67. Fix, Ullmann, Ficker and Clemens, ‘Fast polymer integrated circuits’, Applied Physics Letters, 81(9), p. 1735–1737, 2002.

    Article  Google Scholar 

  68. Drury, Mutsaerts, Hart, Matters and de Leeuw, ‘Low-cost all-polymer integrated circuits’, Applied Physics Letters, 73(1), p. 108–110, 1998.

    Article  Google Scholar 

  69. Gelinck, Geuns and de Leeuw, ‘High-performance all-polymer integrated circuits’, Applied Physics Letters, 77(10), p. 1487–1489, 2000.

    Article  Google Scholar 

  70. Crone, Dodabalapur, Lin, Filas, Bao, LaDuca, Sarpeshkar, Katz and Li, ‘Large-scale complementary integrated circuits based on organic transistors’, Nature, 403, p. 521–523, 2000.

    Article  Google Scholar 

  71. Kawase, Sirringhaus, Friend and Shimoda, ‘Inkjet printed via-hole interconnections and resistors for all-polymer transistor circuits’, Advanced Materials, 13(21), p. 1601–1605,2001.

    Article  Google Scholar 

  72. Sirringhaus, Kawase, Friend, Shimoda, Inbasekaran, Wu and Woo, ‘High-resolution inkjet printing of all-polymer transistor circuits’, Science, 290, p. 2123–2126,2000.

    Article  Google Scholar 

  73. Klauk, Gundlach and Jackson, ‘Fast Organic Thin-Film Transistor Circuits’, IEEE Electron Device Letters, 20(6), p. 289–291, 1999.

    Article  Google Scholar 

  74. Kane, Campi, Hammond, Cuomo, Greening, Sheraw, Nichols, Gundlach, Huang, Kuo, Jia, Klauk and Jackson, ‘Analog and digital circuits using organic thin-film transistors on polyester substrates’, IEEE Electron Device Letters, 21(11), p. 534–536, 2000.

    Article  Google Scholar 

  75. Neil Storey, Electronics-a systems approach, Addison-Wesley, ISBN 0-201-17558, 1992.

    Google Scholar 

  76. McCarthym, MOS Device and Circuit Design, John Wiley & Sons, ISBN 0 471 10026 9, 1982.

    Google Scholar 

  77. Brown, Pomp, Hart and de Leeuw, ‘Logic gates made from polymer transistors and their use in ring oscillators’, Science, 270, p. 972–974, 1995.

    Article  Google Scholar 

  78. D.J. Gundlach, L. Zhou, J.A. Nichols, J-R Huang, CD. Sheraw and T.N. Jackson, “Organic Thin Film Phototransistors and Fast Circuits”, IEDM, p. 743–746, 2001.

    Google Scholar 

  79. Brown, Jarrett, de Leeuw and Matters, ‘Field-effect transistors made from solution-processed organic semiconductors’, Synthetic Metals, vol. 88, p. 37–55, 1997.

    Article  Google Scholar 

  80. D.M. de Leeuw, G.H. Gelinck, T.C.T. Geuns, E. van Veenendaal, E. Cantatore and B.H. Huisman, “Polymeric integrated circuits: fabrication and first characterisation” IEDM Technical Digest, 293, 2002. Photographs courtesy of D. De Leeuw, Philips research Laboratories, Eindhoven, The Netherlands

    Google Scholar 

  81. Lin, Dodabalapur, Sarpeshkar, Bao, Li, Baldwin, Raju and Katz, ‘Organic complementary ring oscillators’, Applied Physics Letters, 74(18), p. 2714–2716, 1999.

    Google Scholar 

  82. Crone, Dodabalapur, Sarpeshkar, Filas, Lin, Bao, O’Neill, Li and Katz, ‘Design and fabrication of organic complementary circuits’, Journal of Applied Physics, 89(9), p. 5125–5132, 2001.

    Article  Google Scholar 

  83. Crone, Dodabalapur, Sarpeshkar, Gelperin, Katz and Bao, ‘Organic oscillator and adaptive amplifier circuits for chemical vapor sensing’, Journal of Applied Physics, 91(12), p. 10140–10146, 2002.

    Article  Google Scholar 

  84. Knipp, Street, Völkel and Ho, ‘Pentacene thin film transistors on inorganic dielectrics: morphology, structural properties, and electronic transport’, Journal of Applied Physics, vol. 93(1), p. 347–355, 2003

    Article  Google Scholar 

  85. Zilker, Detcheverry, Cantatore and de Leeuw, ‘Bias stress in organic thin-film transistors and logic gates’, Applied Physics Letters, vol. 79(8), p. 1124–1126, 2001.

    Article  Google Scholar 

  86. Schoonveld, Oostinga, Vrijmoeth and Klapwijk, ‘Charge trapping instabilities of sexithiophene thin film transistors’, Synthetic Metals, vol. 101, p. 608–609, 1999.

    Article  Google Scholar 

  87. Matters, de Leeuw, Herwig and Brown, ‘Bias-stress induced instability of organic thin film transistors’, Synthetic Metals, vol. 102, p. 998–999, 1999.

    Article  Google Scholar 

  88. Jian Li and Xiao-Chun Mu, “Stepped structure for a multi-ranked, stacked polymer memory device and a method for making the same”, US patent 2003/0015740

    Google Scholar 

  89. H. S. Nalva, Ferroelectric Polymers, Ch. 3, pp. 183–232and Ch. 4, pp. 233-261 (Marcel Dekker, Inc (1995)),, ISBN: 0-8247-9468-0

    Google Scholar 

  90. R. S. Potember, T. O. Poehler, D. O. Cowan, “Electrical switching and memory phenomena in Cu-TCNQ thin films”, Appl. Phys. Lett., Vol. 34, pp 405–407, 1979. Figure reprinted with permission.

    Article  Google Scholar 

  91. A. Bandyopadhyay and A. J. Pal, “Large conductance switching and memory effects in organic molecues for data-storage applications”, Appl. Phys. Lett, Vol. 82, pp 1215–1217, 2003

    Article  Google Scholar 

  92. A. Bandyopadhyay and A. J. Pal, “Large conductance switching and binary operation in organic devices: Role of functional groups”, J. Phys. Chem. B. 107, 2531, 2003. Figure reprinted with permission.

    Article  Google Scholar 

  93. J. Chen, M. A. Reed, A. M. Rawlett, J. M. Tour, “Large On-Off ratios and negative differential resistance in a molecular electronic device”, Science, Vol. 286, pp. 1550–1551, 1999.

    Article  Google Scholar 

  94. Y. H. Krieger, “Structural instability of one-dimensional systems as a physical principle underlying the functioning of molecular electronic devices”, Journal of Structural Chemistry, Vol. 40, pp. 594–619, 1999

    Article  Google Scholar 

  95. J. Krieger, S. V. Trubin, S. B. Vaschenko, N. F. Yudanov “Molecular analogue memory cell based on electrical switching and memory in molecular thin films”, Synthetic metals Vol. 122, pp 199–202, 2001. Figures reprinted with permission.

    Article  Google Scholar 

  96. H. S. Majumdar, A. Bandyopadhyay, A. Bolognesi, A. Pal, “Memory device applications of a conjugated polymer: role of space charges”, Journal of Applied Physics, Vol. 91, pp. 2433–2437, 2002

    Article  Google Scholar 

  97. K. Finkenzeller, RFID handbook, translated by R. Waddington, John Wiley and Son, 1999.

    Google Scholar 

  98. D. M. de Leeuw, P. W. M. Blom, C. M. hart, C. M. J. Mutsaers, C. J. Drury, M. Matters and H. Termeer, “Polymeric integrated circuits and light-emitting diodes”, International Electron Devices Meeting (IEDM) Technical Digest (Cat. No.97CH36103), pp. 331–6, 1997.

    Google Scholar 

  99. M. Matters, D. M. De Leeuw, M. J. C. M. Vissenberg, C. M. Hart, P. T. Herwig, T. Geuns, C. M. J. Mutsaers, C. J. Drury, “Organic field-effect transistors and all-polymer integrated circuits”, Optical Materials, Vol. 12, pp. 189–197, 1999.

    Article  Google Scholar 

  100. P. F. Baude, D. A. Ender, M. A. Haase, T. W. Kelley, D. V. Muyres, S. D. Theiss, “Pentacene-based radio-frequency identification circuitry”, Appl. Phys. Lett., Vol. 82, pp. 3964–3966, 2003.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Daniel Gamota Paul Brazis Krishna Kalyanasundaram Jie Zhang

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Heremans, P., Verlaak, S., McLean, T. (2004). Applications. In: Gamota, D., Brazis, P., Kalyanasundaram, K., Zhang, J. (eds) Printed Organic and Molecular Electronics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9074-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9074-7_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4783-5

  • Online ISBN: 978-1-4419-9074-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics