Manufacturing Platforms for Printing Organic Circuits

  • Dan Lawrence
  • Jim Kohler
  • Brian Brollier
  • Tim Claypole
  • Timothy Burgin

Abstract

The goal of this section is to give the reader an indication of the required material properties, characterization techniques, and print-related failure mechanisms necessary to begin to understand the printing of functional organic circuits. Though not exhaustive, this will be an introduction to the concept of attempting to re-create the functionality of solid-state electronics using various printed suspensions and solutions.

Keywords

Fatigue Dust Sulfide Cadmium Manganese 

3.1.9 Section 3.1 References

  1. [1]
    R. C. Dorf, The Electrical Engineering Handbook, 2nd Ed. (1997)Google Scholar
  2. [2]
    R. H. Leach, The Printing Ink Handbook, 5th ed. (1999)Google Scholar
  3. [3]
    Though the relative densities stay the same, particles that are sufficiently small may settle more slowly due to effects such as Brownian motion.Google Scholar
  4. [4]
    No warranty is offered for this ‘illustrative formulation’ being of any practical use, with the possible exception of printing a primitive, fine grain sandpaper.Google Scholar
  5. [5]
    Van Valkenburgh, Nooger, & Neville, Inc., Basic Solid-State Electronics (1992)Google Scholar
  6. [6]
    H. Klauk, D. J. Gundlach, M. Bonse, C. C. Kuo, and T. N. Jackson, “A Reduced Complexity Process for Organic Thin Film Transistors”, Applied Physics Letters, vol. 76, no. 13, pp. 1692–1694 (2000)CrossRefGoogle Scholar
  7. [7]
    H. A. Barnes, et al., An Introduction to Rheology (1989)Google Scholar
  8. [8]
    The nomenclatural convention used here is that surface energy refers to the free energy of the solid surface and surface tension refers to the tension holding a fluid in a droplet of a given shape. The units used to quantify surface energy and tension are identical.Google Scholar
  9. [9]
    Technically, the partial force balance described by Young contains a term describing the presence of both the liquid vapor and the interfacial tension between the solid and liquid.Google Scholar
  10. [10]
    J. MacPhee, Fundamentals of Lithographic Printing, Vol. 1 (1998) [II] Trademark of DuPont.Google Scholar
  11. [12]
    A. W. Adamson, Physical Chemistry of Surfaces (1990)Google Scholar
  12. [13]This rather odd combination of units evolved from industry practices. To convert to cm3/m2, multiply by 1.55.Google Scholar
  13. [14]
    W. Lim and S. Mani, “Application of Digital Image Analyses to Measure Print Quality,” Journal of Coatings Technology, July (1999)Google Scholar
  14. [15]
    Gravure Association of America, Gravure Process and Technology (1991)Google Scholar
  15. [16] The shape of a sphere represents a minimization of surface area and therefore surface energy.Google Scholar
  16. [17]
    G. E. Moore, “Cramming more components onto integrated circuits”, Electronics, vol. 38, no. 8, April 19 (1965)Google Scholar

3.8.4 References

  1. [1]
    P. Krauss, P. Renstrom, and S. Chou, Science 1996, Vol. 272, p85–87.CrossRefGoogle Scholar
  2. [2]
    S. Chou, Materials Research Society MRS Bulletin 2001, Vol. 26, p512–517.Google Scholar
  3. [3]
    C. Keimel, J. Gu, and S. Chou, Nature 2002, Vol. 417, p835–837.CrossRefGoogle Scholar
  4. [4]
    T. Bailey, B. Choi, B. J.; M. Colburn, A. Grot, M. Meissl, M. Stewart, J. Ekerdt, S. Sreenivasan, and C. Willson, Future Electron Devices, Tokyo 2000, Vol.11, p54.Google Scholar
  5. [5]
    T. Bailey, S. Johnson, S. Sreenivasan, J. Ekerdt, and C. Willson, Journal Photopolymer Sci. Tech. 2002, Vol. 15, p481.CrossRefGoogle Scholar
  6. [6]
    M. Colburn, A. Grot, B. Choi, M. Amistoso, T. Bailey, S. Sreenivasan, J. Ekerdt, and C. Willson, Journal of Vac. Sci. & Tech. B 2001, Vol. 19, p2162–2172.CrossRefGoogle Scholar
  7. [7]
    Y. Xia, and G. Whitesides, Angewandte Chemie 1998, Vol. 37, p550–575.CrossRefGoogle Scholar
  8. [8]
    J. Xu, Synthetic Metals 2000, Vol. 115, p1–3.CrossRefGoogle Scholar
  9. [9]
    X. Zhao, Y. Xia, and G. Whitesides, Journal of Materials Chemistry 1997, 7, 1069–1074.CrossRefGoogle Scholar
  10. [10]
    J. Rogers, Abstracts of Papers, 223rd ACS National Meeting, Orlando, FL, United States, April 7-11, 2002 2002, PHYS-072.Google Scholar
  11. [11]
    J. Rogers, Abstracts of Papers, 223rd ACS National Meeting, Orlando, FL, United States, April 7-11, 2002 2002, PMSE-101.Google Scholar
  12. [12]
    J. Rogers, MRS Bulletin 2001,s Vol. 26, 530–534.CrossRefGoogle Scholar
  13. [13]
    D. Qin, Y. Xia, J. Rogers, R. Jackman, X. Zhao, and G. Whitesides, Topics in Current Chemistry 1998, Vol. 194(Microsystem Technology in Chemistry and Life Science), p1–20.CrossRefGoogle Scholar
  14. [14]
    R. Nuzzo, Proceedings of the National Academy of Sciences of the United States of America 2001, Vol. 98, p4827–4829.CrossRefGoogle Scholar
  15. [15]
    C. Mirkin and J. Rogers, MRS Bulletin 2001, Vol. 26, p506–509.CrossRefGoogle Scholar
  16. [16]
    A. Huebler, U. Hahn, W. Beier, N. Lasch, and T. Fischer, Procedings of IEEE Conference on Polymers and Adhesives in Microelectronics and Photonics, June 23-26 2002, p172.Google Scholar
  17. [17]
    S. Brittain, K. Paul, X. Zhao, and G. Whirtesides, Physics World 1998, Vol. 11, p31–36.Google Scholar
  18. [18]
    N. Abbott, P. Nealey, X. Yang, A. Teixeira, J. Skaife, and S. Kim, Book of Abstracts, 219th ACS National Meeting, San Francisco, CA, March 26-30, 2000 2000, IEC-044.Google Scholar
  19. [19]
    S. Sreenivasan, C. Willson, N. Schumaker, and D. Resnick, Proceedings of SPIE 2002, 4688, 903.CrossRefGoogle Scholar
  20. [20]
    J. Rogers, Z. Bao, Z. Makhija, and P. Braun, Advanced Materials 1999, Vol. 11, p741–745.CrossRefGoogle Scholar
  21. [21]
    Y. Xia, E. Kim, and G. Whitesides, Chemistry of Materials 1996, Vol. 8, pl558–1567.CrossRefGoogle Scholar
  22. [22]
    L. Malaquin, F. Carcenac, C. Vieu, and M. Mauzac, Microelectronic Engineering 2002, Vol. 61-62, p379–384.CrossRefGoogle Scholar
  23. [23]
    J. Wilbur, A. Kumar, E. Kim, and G. Whitesides, Advanced Materials 1994, Vol. 6,p600–4.CrossRefGoogle Scholar
  24. [24]
    Y. Xia, and X. Zhao, and G. Whitesides, Microelectronic Engineering 1996, Vol. 32, p255–268.CrossRefGoogle Scholar
  25. [25]
    T. Nyberg, F. Zhang, and O. Inganas, Nanotechnology 2002, 13, 205–211.CrossRefGoogle Scholar
  26. [26]
    Y. Kim, J. Park, and H. Lee, Applied Physics Letters 2002, Vol. 81, p1011–1013.CrossRefGoogle Scholar
  27. [27]
    D. Pisignano, G. Gigli, P. Visconti, A. Zocco, A. Perrone, and R. Cingolani, Journal of Vacuum Science & Technology, B: Microelectronics and Nanometer Structures 2002, Vol. 20, p2248–2251.CrossRefGoogle Scholar
  28. [28]
    J. Hu, T. Deng, R. Beck, R. Westervelt, and G. Whitesides, Sensors and Actuators, A: Physical 1999, A75, p65–69.CrossRefGoogle Scholar
  29. [29]
    T. Deng, L. Goetting, J. Hu, and G. Whitesides, Sens. Actuators, A 1999, A75, 60–64.CrossRefGoogle Scholar
  30. [30]
    Z. Bao, J. Rogers, and H. Katz, Journal of Materials Chemistry 1999, 9, 1895–1904.CrossRefGoogle Scholar
  31. [31]
    R. Kane, S. Takayama, E. Ostuni, D. Ingber, and G. Whitesides, Biomaterials 1999, Vol. 20, p2363–2376.CrossRefGoogle Scholar
  32. [32]
    A. Bernard, J. Renault, B. Michel, H. Bosshard, and E. Delamarche, Advanced Materials 2000, Vol. 12, pl067–1070.CrossRefGoogle Scholar
  33. [33]
    M. Mrksich, L. Dike, J. Tien, D. Ingber, G. Whitesides, Experimental Cell Research 1997, Vol. 235, p305–313.CrossRefGoogle Scholar
  34. [34]
    Wilhelm, T.; Wittstock, G. Langmuir 2002, 18, 9485–9493.Google Scholar
  35. [35]
    L. Yan, X. Zhao, and G. Whitesides, Journal of the American Chemical Society 1998, Vol. 120, p6179–6180.CrossRefGoogle Scholar
  36. [36]
    L. Yan, W. Huck, X. Zhao, and G. Whitesides, Langmuir 1999, Vol. 15, pl208–1214.Google Scholar
  37. [37]
    M. Erhardt and R. Nuzzo, Langmuir 1999, Vol. 15, p2188–2193.CrossRefGoogle Scholar
  38. [38]
    P. Ghosh and R. Crooks, Journal of the American Chemical Society 1999, Vol. 121,p8395–8396.CrossRefGoogle Scholar
  39. [39]
    N. Jeon, R. Nuzzo, Y. Xia, M. Mrksich and G. Whitesides, Book of Abstracts, 210th ACS National Meeting, Chicago, IL, August 20-24 1995 Pt. 1 1995, INOR-019.Google Scholar
  40. [40]
    N. Jeon, R. Nuzzo, Y. Xia, M. Mrksich and G. Whitesides, Langmuir 1995, Vol. 11, p3024–6.CrossRefGoogle Scholar
  41. [41]
    N. Jeon, W. Lin, M. Erhardt, G. Girolami, and R. Nuzzo, Langmuir 1997, Vol. 13,p3833–3838.CrossRefGoogle Scholar
  42. [42]
    H. Kind, M. Geissler, H. Schmid, B. Michel, K. Kern, and E. Delamarche,. Langmuir 2000, Vol. 16, p6367–6373.CrossRefGoogle Scholar
  43. [43]
    J. Rogers, R. Jackman, and G. Whitesides, Advanced Materials 1997, Vol. 9, p475–477.Google Scholar
  44. [44]
    K. Vaeth, R. Jackman, A. Black, and G. Whitesides, Jensen, K. F. Langmuir 2000, Vol. 16, p8495–8500.CrossRefGoogle Scholar
  45. [45]
    M. Yan, Y. Koide, J. Babcock, P. Markworth, J. Belot, T. Marks, and R. Chang, Applied Physics Letters 2001, Vol. 79, p1709–1711.CrossRefGoogle Scholar
  46. [46]
    W. Childs, and R. Nuzzo, Journal of the American Chemical Society 2002, Vol. 124, p13583–13596.CrossRefGoogle Scholar
  47. [47]
    Loo, Y.-L. W., Robert L.; K. Baldwin, and J. Rogers, Applied Physics Letters 2002, Vol. 81, p562–564.CrossRefGoogle Scholar
  48. [48]
    Loo, Y.-L. W., Robert L.; K. Baldwin, and J. Rogers, Journal of the American Chemical Society 2002, Vol. 124, p7654–7655.CrossRefGoogle Scholar
  49. [49]
    Lammerlink, R. G. H.; Peter, M.; Hempenius, M. A.; Vancso, G. J. Polymeric Materials Science and Engineering 2002, 86, 101–102.Google Scholar
  50. [50]
    A. Bernard, E. Delamarche, H. Schmid, B. Michel, H. Bosshard, and H. Biebuyck, Langmuir 1998, Vol. 14, p2225–2229.CrossRefGoogle Scholar
  51. [51]
    A. Bernard, D. Fitzli, P. Sonderegger, E. Delamarche, B. Michel, H. Bosshard, and H. Biebuyck, Nature Biotechnology 2001, Vol. 19, p866–869.CrossRefGoogle Scholar
  52. [52]
    A. Fang, H. Ng, X. Su, and S. Li, Langmuir 2000, Vol. 16, p5221–5226.CrossRefGoogle Scholar
  53. [53]
    C. James, R. Davis, L. Kam, H. Craighead, M. Isaacson, J. Turner, and W. Shain, Langmuir 1998, Vol. 14, p741–744.CrossRefGoogle Scholar
  54. [54]
    J. Renault, A. Bernard, D. Juncker, B. Michel, H. Bosshard, and E. Delamarche, Angewandte Chemie, International Edition 2002, Vol. 41, p2320–2323.CrossRefGoogle Scholar
  55. [55]
    W. Huck, L. Yan, A. Stroock, R. Haag, and G. Whitesides, Langmuir 1999, Vol. 15, p6862–6867.CrossRefGoogle Scholar
  56. [56]
    N. Jeon, I. Choi, G. Whitesides, N. Kim, P. Laibinis, Y. Harada, K. Finnie, G. Girolami, and R. Nuzzo, Applied Physics Letters 1999, Vol. 75, p4201–4203.CrossRefGoogle Scholar
  57. [57]
    W. Lackowski, P. Ghosh, and R. Crooks, Journal of the American Chemical Society 1999, 121, 1419–1420.CrossRefGoogle Scholar
  58. [58]
    N. Jeon, P. Clem, D. Jung, W. Lin, K. Finnie, M. Erhardt, G. Girolami, D. Payne, and R. Nuzzo, Book of Abstracts, 214th ACS National Meeting, Las Vegas, NV, September 7-11 1997, PMSE-087.Google Scholar
  59. [59]
    R. Nuzzo, N. Jeon, P. Clem, and D. Payne, Book of Abstracts, 212th ACS National Meeting, Orlando, FL, August 25-29 1996 1996, INOR-212.Google Scholar
  60. [60]
    Y. Xia, E. Kim, and G. Whitesides, Journal of the Electrochemical Society 1996, 143, 1070–9.CrossRefGoogle Scholar
  61. [61]
    Y. Xia, E. Kim, M. Mrksich, and G. Whitesides, Chemistry of Materials 1996,Vol. 8,p601–3.CrossRefGoogle Scholar
  62. [62]
    J. Love, D. Wolfe, M. Chabinyc, K. Paul, and G. Whitesides, Journal of the American Chemical Society 2002, Vol. 124, p1576–1577.CrossRefGoogle Scholar
  63. [63]
    L. Goetting, T. Deng, and G. Whitesides, Langmuir 1999, Vol. 15, p11182–1191.CrossRefGoogle Scholar
  64. [64]
    K. Finnie, R. Haasch, and R. Nuzzo, Langmuir 2000, Vol. 16, p6968–6976.CrossRefGoogle Scholar
  65. [65]
    B. Michel, A. Bernard, A. Bietsch, E. Delamarche, M. Geissler, D. Juncker, H. Kind, J. Renault, H. Rothuizen, H. Schmid, P. Schmidt-Winkel, R. Stutz, and H. Wolf, IBM Journal of Research and Development 2001, Vol. 45,p697–719.Google Scholar
  66. [66]
    L. Libioulle, A. Bietsch, H. Schmid, B. Michel, and E. Delamarche, Langmuir 1999, Vol. 15, p300–304.CrossRefGoogle Scholar
  67. [67]
    Bür gin, T.; Choong, V.-E.; Maracas, G. Langmuir 2000.Google Scholar
  68. [68]
    D. Delamarche, H. Schmid, A. Bietsch, N. Larsen, B. Reothuizen, and H. Biebuyck, Journal of Physical Chemistry B 1998, Vol. 102, p3324–3334.CrossRefGoogle Scholar
  69. [69]
    H. Biebuyck, N. Larsen, E. Delamarche, and B. Michel, B. IBM Journal of Research and Development 1997, Vol. 41, p1–12.CrossRefGoogle Scholar
  70. [70]
    N. Larsen, H. Biebuyck, E. Delemarche, and B. Michel, B. Journal of the American Chemical Society 1997, Vol. 119, p3017–3026.CrossRefGoogle Scholar
  71. [71]
    G. Bar, S. Rubin, A. Parikh, B. Swanson, J. Zawodzinski, and M. Whangbo, Langmuir 1997, Vol. 13, p373.CrossRefGoogle Scholar
  72. [72]
    D. Fischer, A. Marti, and G. Hahner, Journal of Vacuum Science Technology A 1997, Vol. 15, p2173–2180.CrossRefGoogle Scholar
  73. [73]
    A. Eberhardt, R. Nyquist, A. Parikh, T. Zawodzinski, and B. Swanson, Langmuir 1999, Vol. 15, pl595–1598.CrossRefGoogle Scholar
  74. [74]
    T. Whidden, D. Ferry, M. Kozicki, E. Kim, A. Kumar, and G. Whitesides, Nanotechnology 1996, Vol. 7, 447–451.CrossRefGoogle Scholar
  75. [75]
    A. Kumar, and G. Whitesides, Applied Physics Letters 1993, Vol. 63, p2002–4.CrossRefGoogle Scholar
  76. [76]
    A. Bietsch and B. Michel, Appl. Phys. 2000, Vol. 88, p4310–4318.CrossRefGoogle Scholar
  77. [77]
    M. Chaudhury and G. Whitesides, Langmuir 1991, Vol. 7, pl013–1025.CrossRefGoogle Scholar
  78. [78]
    H. Schmid and B. Michel, Macromolecules 2000, Vol. 33, p3042–3049.CrossRefGoogle Scholar
  79. [79]
    T. Odom, J. Love, D. Wolfe, K. Paul, and G. Whitesides, Langmuir 2002, Vol. 18,p5314–5320.CrossRefGoogle Scholar
  80. [80]
    D. Wolfe, J. Love, K. Paul, M. Chabinyc, and G. Whitesides, Applied Physics Letters 2002, Vol. 80, p2222–2224.CrossRefGoogle Scholar
  81. [81]
    J. Rogers, MRS Bulletin 2001, Vol. 26, p530–534.CrossRefGoogle Scholar
  82. [82]
    J. Rogers, Z. Bao, A. Dodabalapur, and A. Makhija, A. IEEE Electron Device Letters 2000, Vol. 21, p100–103.CrossRefGoogle Scholar
  83. [83]
    A. Folch and M. Schmidt, IEEE Journal of Microelectromechanical Systems 1999, Vol. 8, p85–89.CrossRefGoogle Scholar
  84. [84]
    J. Rogers, K. Paul, and G. Whitesides, J. Vac. Sci. Technol., B 1998, Vol. 16, p88–97.CrossRefGoogle Scholar
  85. [85]
    T. Deng, L. Goetting, J. Hu, and G. Whitesides, Sensors and Actuators A 1999, A75, 60–64.CrossRefGoogle Scholar
  86. [86]
    J. Aizenburg, A. Black, and G. Whitesides, Nature 1998, Vol. 394, p868–871.CrossRefGoogle Scholar
  87. [87]
    A. Black, K. Paul, J. Aizenberg, and G. Whitesides, Journal of the American Chemical Society 1999, Vol. 121, p8356–8365.CrossRefGoogle Scholar
  88. [88]
    C. Hui, A. Jagota, Y. Lin, and E. Kramer, Langmuir 2002, Vol. 18, p1394–1407.CrossRefGoogle Scholar
  89. [89]
    Y. Xia, D. Qin, and G. Whitesides, Advanced Materials 1996, Vol. 8, pl015–1017.Google Scholar
  90. [90]
    J. Rogers, Z. Bao, and V. Raju, Applied Physics Letters 1998, Vol. 72, p2716–2718.CrossRefGoogle Scholar
  91. [91]
    M. Cavallini, M. Murgia, and F. Biscarini, Nano Letters 2001, Vol. 1, pl93–195.CrossRefGoogle Scholar
  92. [92]
    N. Jeon, J. Hu, G. Whitesides, M. Erhardt, and R. Nuzzo, R. G. Advanced Materials 1998, Vol. 10, pl466–1469.Google Scholar
  93. [93]
    J. Hu, R. Beck, T. Deng, R. Westervelt, K. Maranowski, A. Gossard, and G. Whitesides, Applied Physics Letters 1997, Vol. 71, 2020–2022.CrossRefGoogle Scholar
  94. [94]
    J. Hu, R. Beck, R. Westervelt, and G. Whitesides, Advanced Materials (Weinheim, Germany) 1998, Vol. 10, p574–577.CrossRefGoogle Scholar
  95. [95]
    H. Yang, P. Deschatelets, S. Brittain, and G. Whitesides, Advanced Materials (Weinheim, Germany) 2001, Vol. 13, p54–58.CrossRefGoogle Scholar
  96. [96]
    M. Unger, H. Chou, T. Thorsen, A. Scherer, and S. Quake, Science (Washington, D. C.) 2000, Vol. 288, p113–116.CrossRefGoogle Scholar
  97. [97]
    O. Schueller, S. Brittain, and G. Whitesides, Advanced Materials 1997, Vol. 9, p477–480.CrossRefGoogle Scholar
  98. [98]
    F. Zhang, T. Nyberg, and O. Inganaes, Nano Letters 2002, Vol. 2, p1373–1377.CrossRefGoogle Scholar
  99. [99]
    T. Deng, G. Whitesides, M. Radhakrishnan, G. Zabow, and M. Prentiss, Applied Physics Letters 2001, Vol. 78, p1775–1777.CrossRefGoogle Scholar
  100. [100]
    M. Erhardt, H. Jin, J. Abelson, and R. Nuzzo, Chemistry of Materials 2000, Vol. 12, p3306–3315.CrossRefGoogle Scholar
  101. [101]
    X. Zhao, A. Stoddart, S. Smith, E. Kim, Y. Xia, M. Prentiss, and G. Whitesides, Advanced Materials 1996, Vol. 8, p420–4.CrossRefGoogle Scholar
  102. [102]
    E. Kim, Y. Xia, and G. Whitesides, Nature 1995, Vol. 376, p581–4.CrossRefGoogle Scholar
  103. [103]
    J. Lawrence, P. Andrew, W. Barnes, M. Buck, G. Turnbull, and I. Samuel, Applied Physics Letters 2002, Vol. 81, pl955–1957.CrossRefGoogle Scholar
  104. [104]
    W. Beh, I. Kim, D. Qin, Y. Xia, and G. Whitesides, Advanced Materials (Weinheim, Germany) 1999, Vol. 11, pl038–1041.CrossRefGoogle Scholar
  105. [105]
    N. Jeon, I. Choi, B. Xu, and G. Whitesides, Advanced Materials 1999, Vol. 11, p946–950.CrossRefGoogle Scholar
  106. [106]
    O. Schueller, S. Brittain, and G. Whitesides, Sensors and Actuators, A: Physical 1999, A72, 125–139.CrossRefGoogle Scholar
  107. [107]
    B. Xu, F. Arias, and G. Whitesides, Advanced Materials 1999, Vol. 11, p492–495.CrossRefGoogle Scholar
  108. [108]
    E. Kim, Y. Xia, X. Zhao, and G. Whitesides, Advanced Materials (Weinheim, Germany) 1997, Vol. 9, p651–654.CrossRefGoogle Scholar
  109. [109]
    X. Zhao, Y. Xia, and G. Whitesides, Advanced Materials 1996, Vol. 8, p837–840.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Dan Lawrence
    • 1
  • Jim Kohler
    • 2
  • Brian Brollier
    • 2
  • Tim Claypole
    • 3
  • Timothy Burgin
    • 4
  1. 1.Precisia LLCAnn ArborUSA
  2. 2.International PaperLovelandUSA
  3. 3.University of Wales SwanseaSwanseaUK
  4. 4.Arizona State UniversityTempeUSA

Personalised recommendations