Advertisement

Manufacturing Platforms for Printing Organic Circuits

  • Dan Lawrence
  • Jim Kohler
  • Brian Brollier
  • Tim Claypole
  • Timothy Burgin

Abstract

The goal of this section is to give the reader an indication of the required material properties, characterization techniques, and print-related failure mechanisms necessary to begin to understand the printing of functional organic circuits. Though not exhaustive, this will be an introduction to the concept of attempting to re-create the functionality of solid-state electronics using various printed suspensions and solutions.

Keywords

Ultra Violet Printing Process Molecular Electronics Doctor Blade Image Carrier 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

3.1.9 Section 3.1 References

  1. [1]
    R. C. Dorf, The Electrical Engineering Handbook, 2nd Ed. (1997)Google Scholar
  2. [2]
    R. H. Leach, The Printing Ink Handbook, 5th ed. (1999)Google Scholar
  3. [3]
    Though the relative densities stay the same, particles that are sufficiently small may settle more slowly due to effects such as Brownian motion.Google Scholar
  4. [4]
    No warranty is offered for this ‘illustrative formulation’ being of any practical use, with the possible exception of printing a primitive, fine grain sandpaper.Google Scholar
  5. [5]
    Van Valkenburgh, Nooger, & Neville, Inc., Basic Solid-State Electronics (1992)Google Scholar
  6. [6]
    H. Klauk, D. J. Gundlach, M. Bonse, C. C. Kuo, and T. N. Jackson, “A Reduced Complexity Process for Organic Thin Film Transistors”, Applied Physics Letters, vol. 76, no. 13, pp. 1692–1694 (2000)CrossRefGoogle Scholar
  7. [7]
    H. A. Barnes, et al., An Introduction to Rheology (1989)Google Scholar
  8. [8]
    The nomenclatural convention used here is that surface energy refers to the free energy of the solid surface and surface tension refers to the tension holding a fluid in a droplet of a given shape. The units used to quantify surface energy and tension are identical.Google Scholar
  9. [9]
    Technically, the partial force balance described by Young contains a term describing the presence of both the liquid vapor and the interfacial tension between the solid and liquid.Google Scholar
  10. [10]
    J. MacPhee, Fundamentals of Lithographic Printing, Vol. 1 (1998) [II] Trademark of DuPont.Google Scholar
  11. [12]
    A. W. Adamson, Physical Chemistry of Surfaces (1990)Google Scholar
  12. [13]This rather odd combination of units evolved from industry practices. To convert to cm3/m2, multiply by 1.55.Google Scholar
  13. [14]
    W. Lim and S. Mani, “Application of Digital Image Analyses to Measure Print Quality,” Journal of Coatings Technology, July (1999)Google Scholar
  14. [15]
    Gravure Association of America, Gravure Process and Technology (1991)Google Scholar
  15. [16] The shape of a sphere represents a minimization of surface area and therefore surface energy.Google Scholar
  16. [17]
    G. E. Moore, “Cramming more components onto integrated circuits”, Electronics, vol. 38, no. 8, April 19 (1965)Google Scholar

3.8.4 References

  1. [1]
    P. Krauss, P. Renstrom, and S. Chou, Science 1996, Vol. 272, p85–87.CrossRefGoogle Scholar
  2. [2]
    S. Chou, Materials Research Society MRS Bulletin 2001, Vol. 26, p512–517.Google Scholar
  3. [3]
    C. Keimel, J. Gu, and S. Chou, Nature 2002, Vol. 417, p835–837.CrossRefGoogle Scholar
  4. [4]
    T. Bailey, B. Choi, B. J.; M. Colburn, A. Grot, M. Meissl, M. Stewart, J. Ekerdt, S. Sreenivasan, and C. Willson, Future Electron Devices, Tokyo 2000, Vol.11, p54.Google Scholar
  5. [5]
    T. Bailey, S. Johnson, S. Sreenivasan, J. Ekerdt, and C. Willson, Journal Photopolymer Sci. Tech. 2002, Vol. 15, p481.CrossRefGoogle Scholar
  6. [6]
    M. Colburn, A. Grot, B. Choi, M. Amistoso, T. Bailey, S. Sreenivasan, J. Ekerdt, and C. Willson, Journal of Vac. Sci. & Tech. B 2001, Vol. 19, p2162–2172.CrossRefGoogle Scholar
  7. [7]
    Y. Xia, and G. Whitesides, Angewandte Chemie 1998, Vol. 37, p550–575.CrossRefGoogle Scholar
  8. [8]
    J. Xu, Synthetic Metals 2000, Vol. 115, p1–3.CrossRefGoogle Scholar
  9. [9]
    X. Zhao, Y. Xia, and G. Whitesides, Journal of Materials Chemistry 1997, 7, 1069–1074.CrossRefGoogle Scholar
  10. [10]
    J. Rogers, Abstracts of Papers, 223rd ACS National Meeting, Orlando, FL, United States, April 7-11, 2002 2002, PHYS-072.Google Scholar
  11. [11]
    J. Rogers, Abstracts of Papers, 223rd ACS National Meeting, Orlando, FL, United States, April 7-11, 2002 2002, PMSE-101.Google Scholar
  12. [12]
    J. Rogers, MRS Bulletin 2001,s Vol. 26, 530–534.CrossRefGoogle Scholar
  13. [13]
    D. Qin, Y. Xia, J. Rogers, R. Jackman, X. Zhao, and G. Whitesides, Topics in Current Chemistry 1998, Vol. 194(Microsystem Technology in Chemistry and Life Science), p1–20.CrossRefGoogle Scholar
  14. [14]
    R. Nuzzo, Proceedings of the National Academy of Sciences of the United States of America 2001, Vol. 98, p4827–4829.CrossRefGoogle Scholar
  15. [15]
    C. Mirkin and J. Rogers, MRS Bulletin 2001, Vol. 26, p506–509.CrossRefGoogle Scholar
  16. [16]
    A. Huebler, U. Hahn, W. Beier, N. Lasch, and T. Fischer, Procedings of IEEE Conference on Polymers and Adhesives in Microelectronics and Photonics, June 23-26 2002, p172.Google Scholar
  17. [17]
    S. Brittain, K. Paul, X. Zhao, and G. Whirtesides, Physics World 1998, Vol. 11, p31–36.Google Scholar
  18. [18]
    N. Abbott, P. Nealey, X. Yang, A. Teixeira, J. Skaife, and S. Kim, Book of Abstracts, 219th ACS National Meeting, San Francisco, CA, March 26-30, 2000 2000, IEC-044.Google Scholar
  19. [19]
    S. Sreenivasan, C. Willson, N. Schumaker, and D. Resnick, Proceedings of SPIE 2002, 4688, 903.CrossRefGoogle Scholar
  20. [20]
    J. Rogers, Z. Bao, Z. Makhija, and P. Braun, Advanced Materials 1999, Vol. 11, p741–745.CrossRefGoogle Scholar
  21. [21]
    Y. Xia, E. Kim, and G. Whitesides, Chemistry of Materials 1996, Vol. 8, pl558–1567.CrossRefGoogle Scholar
  22. [22]
    L. Malaquin, F. Carcenac, C. Vieu, and M. Mauzac, Microelectronic Engineering 2002, Vol. 61-62, p379–384.CrossRefGoogle Scholar
  23. [23]
    J. Wilbur, A. Kumar, E. Kim, and G. Whitesides, Advanced Materials 1994, Vol. 6,p600–4.CrossRefGoogle Scholar
  24. [24]
    Y. Xia, and X. Zhao, and G. Whitesides, Microelectronic Engineering 1996, Vol. 32, p255–268.CrossRefGoogle Scholar
  25. [25]
    T. Nyberg, F. Zhang, and O. Inganas, Nanotechnology 2002, 13, 205–211.CrossRefGoogle Scholar
  26. [26]
    Y. Kim, J. Park, and H. Lee, Applied Physics Letters 2002, Vol. 81, p1011–1013.CrossRefGoogle Scholar
  27. [27]
    D. Pisignano, G. Gigli, P. Visconti, A. Zocco, A. Perrone, and R. Cingolani, Journal of Vacuum Science & Technology, B: Microelectronics and Nanometer Structures 2002, Vol. 20, p2248–2251.CrossRefGoogle Scholar
  28. [28]
    J. Hu, T. Deng, R. Beck, R. Westervelt, and G. Whitesides, Sensors and Actuators, A: Physical 1999, A75, p65–69.CrossRefGoogle Scholar
  29. [29]
    T. Deng, L. Goetting, J. Hu, and G. Whitesides, Sens. Actuators, A 1999, A75, 60–64.CrossRefGoogle Scholar
  30. [30]
    Z. Bao, J. Rogers, and H. Katz, Journal of Materials Chemistry 1999, 9, 1895–1904.CrossRefGoogle Scholar
  31. [31]
    R. Kane, S. Takayama, E. Ostuni, D. Ingber, and G. Whitesides, Biomaterials 1999, Vol. 20, p2363–2376.CrossRefGoogle Scholar
  32. [32]
    A. Bernard, J. Renault, B. Michel, H. Bosshard, and E. Delamarche, Advanced Materials 2000, Vol. 12, pl067–1070.CrossRefGoogle Scholar
  33. [33]
    M. Mrksich, L. Dike, J. Tien, D. Ingber, G. Whitesides, Experimental Cell Research 1997, Vol. 235, p305–313.CrossRefGoogle Scholar
  34. [34]
    Wilhelm, T.; Wittstock, G. Langmuir 2002, 18, 9485–9493.Google Scholar
  35. [35]
    L. Yan, X. Zhao, and G. Whitesides, Journal of the American Chemical Society 1998, Vol. 120, p6179–6180.CrossRefGoogle Scholar
  36. [36]
    L. Yan, W. Huck, X. Zhao, and G. Whitesides, Langmuir 1999, Vol. 15, pl208–1214.Google Scholar
  37. [37]
    M. Erhardt and R. Nuzzo, Langmuir 1999, Vol. 15, p2188–2193.CrossRefGoogle Scholar
  38. [38]
    P. Ghosh and R. Crooks, Journal of the American Chemical Society 1999, Vol. 121,p8395–8396.CrossRefGoogle Scholar
  39. [39]
    N. Jeon, R. Nuzzo, Y. Xia, M. Mrksich and G. Whitesides, Book of Abstracts, 210th ACS National Meeting, Chicago, IL, August 20-24 1995 Pt. 1 1995, INOR-019.Google Scholar
  40. [40]
    N. Jeon, R. Nuzzo, Y. Xia, M. Mrksich and G. Whitesides, Langmuir 1995, Vol. 11, p3024–6.CrossRefGoogle Scholar
  41. [41]
    N. Jeon, W. Lin, M. Erhardt, G. Girolami, and R. Nuzzo, Langmuir 1997, Vol. 13,p3833–3838.CrossRefGoogle Scholar
  42. [42]
    H. Kind, M. Geissler, H. Schmid, B. Michel, K. Kern, and E. Delamarche,. Langmuir 2000, Vol. 16, p6367–6373.CrossRefGoogle Scholar
  43. [43]
    J. Rogers, R. Jackman, and G. Whitesides, Advanced Materials 1997, Vol. 9, p475–477.Google Scholar
  44. [44]
    K. Vaeth, R. Jackman, A. Black, and G. Whitesides, Jensen, K. F. Langmuir 2000, Vol. 16, p8495–8500.CrossRefGoogle Scholar
  45. [45]
    M. Yan, Y. Koide, J. Babcock, P. Markworth, J. Belot, T. Marks, and R. Chang, Applied Physics Letters 2001, Vol. 79, p1709–1711.CrossRefGoogle Scholar
  46. [46]
    W. Childs, and R. Nuzzo, Journal of the American Chemical Society 2002, Vol. 124, p13583–13596.CrossRefGoogle Scholar
  47. [47]
    Loo, Y.-L. W., Robert L.; K. Baldwin, and J. Rogers, Applied Physics Letters 2002, Vol. 81, p562–564.CrossRefGoogle Scholar
  48. [48]
    Loo, Y.-L. W., Robert L.; K. Baldwin, and J. Rogers, Journal of the American Chemical Society 2002, Vol. 124, p7654–7655.CrossRefGoogle Scholar
  49. [49]
    Lammerlink, R. G. H.; Peter, M.; Hempenius, M. A.; Vancso, G. J. Polymeric Materials Science and Engineering 2002, 86, 101–102.Google Scholar
  50. [50]
    A. Bernard, E. Delamarche, H. Schmid, B. Michel, H. Bosshard, and H. Biebuyck, Langmuir 1998, Vol. 14, p2225–2229.CrossRefGoogle Scholar
  51. [51]
    A. Bernard, D. Fitzli, P. Sonderegger, E. Delamarche, B. Michel, H. Bosshard, and H. Biebuyck, Nature Biotechnology 2001, Vol. 19, p866–869.CrossRefGoogle Scholar
  52. [52]
    A. Fang, H. Ng, X. Su, and S. Li, Langmuir 2000, Vol. 16, p5221–5226.CrossRefGoogle Scholar
  53. [53]
    C. James, R. Davis, L. Kam, H. Craighead, M. Isaacson, J. Turner, and W. Shain, Langmuir 1998, Vol. 14, p741–744.CrossRefGoogle Scholar
  54. [54]
    J. Renault, A. Bernard, D. Juncker, B. Michel, H. Bosshard, and E. Delamarche, Angewandte Chemie, International Edition 2002, Vol. 41, p2320–2323.CrossRefGoogle Scholar
  55. [55]
    W. Huck, L. Yan, A. Stroock, R. Haag, and G. Whitesides, Langmuir 1999, Vol. 15, p6862–6867.CrossRefGoogle Scholar
  56. [56]
    N. Jeon, I. Choi, G. Whitesides, N. Kim, P. Laibinis, Y. Harada, K. Finnie, G. Girolami, and R. Nuzzo, Applied Physics Letters 1999, Vol. 75, p4201–4203.CrossRefGoogle Scholar
  57. [57]
    W. Lackowski, P. Ghosh, and R. Crooks, Journal of the American Chemical Society 1999, 121, 1419–1420.CrossRefGoogle Scholar
  58. [58]
    N. Jeon, P. Clem, D. Jung, W. Lin, K. Finnie, M. Erhardt, G. Girolami, D. Payne, and R. Nuzzo, Book of Abstracts, 214th ACS National Meeting, Las Vegas, NV, September 7-11 1997, PMSE-087.Google Scholar
  59. [59]
    R. Nuzzo, N. Jeon, P. Clem, and D. Payne, Book of Abstracts, 212th ACS National Meeting, Orlando, FL, August 25-29 1996 1996, INOR-212.Google Scholar
  60. [60]
    Y. Xia, E. Kim, and G. Whitesides, Journal of the Electrochemical Society 1996, 143, 1070–9.CrossRefGoogle Scholar
  61. [61]
    Y. Xia, E. Kim, M. Mrksich, and G. Whitesides, Chemistry of Materials 1996,Vol. 8,p601–3.CrossRefGoogle Scholar
  62. [62]
    J. Love, D. Wolfe, M. Chabinyc, K. Paul, and G. Whitesides, Journal of the American Chemical Society 2002, Vol. 124, p1576–1577.CrossRefGoogle Scholar
  63. [63]
    L. Goetting, T. Deng, and G. Whitesides, Langmuir 1999, Vol. 15, p11182–1191.CrossRefGoogle Scholar
  64. [64]
    K. Finnie, R. Haasch, and R. Nuzzo, Langmuir 2000, Vol. 16, p6968–6976.CrossRefGoogle Scholar
  65. [65]
    B. Michel, A. Bernard, A. Bietsch, E. Delamarche, M. Geissler, D. Juncker, H. Kind, J. Renault, H. Rothuizen, H. Schmid, P. Schmidt-Winkel, R. Stutz, and H. Wolf, IBM Journal of Research and Development 2001, Vol. 45,p697–719.Google Scholar
  66. [66]
    L. Libioulle, A. Bietsch, H. Schmid, B. Michel, and E. Delamarche, Langmuir 1999, Vol. 15, p300–304.CrossRefGoogle Scholar
  67. [67]
    Bür gin, T.; Choong, V.-E.; Maracas, G. Langmuir 2000.Google Scholar
  68. [68]
    D. Delamarche, H. Schmid, A. Bietsch, N. Larsen, B. Reothuizen, and H. Biebuyck, Journal of Physical Chemistry B 1998, Vol. 102, p3324–3334.CrossRefGoogle Scholar
  69. [69]
    H. Biebuyck, N. Larsen, E. Delamarche, and B. Michel, B. IBM Journal of Research and Development 1997, Vol. 41, p1–12.CrossRefGoogle Scholar
  70. [70]
    N. Larsen, H. Biebuyck, E. Delemarche, and B. Michel, B. Journal of the American Chemical Society 1997, Vol. 119, p3017–3026.CrossRefGoogle Scholar
  71. [71]
    G. Bar, S. Rubin, A. Parikh, B. Swanson, J. Zawodzinski, and M. Whangbo, Langmuir 1997, Vol. 13, p373.CrossRefGoogle Scholar
  72. [72]
    D. Fischer, A. Marti, and G. Hahner, Journal of Vacuum Science Technology A 1997, Vol. 15, p2173–2180.CrossRefGoogle Scholar
  73. [73]
    A. Eberhardt, R. Nyquist, A. Parikh, T. Zawodzinski, and B. Swanson, Langmuir 1999, Vol. 15, pl595–1598.CrossRefGoogle Scholar
  74. [74]
    T. Whidden, D. Ferry, M. Kozicki, E. Kim, A. Kumar, and G. Whitesides, Nanotechnology 1996, Vol. 7, 447–451.CrossRefGoogle Scholar
  75. [75]
    A. Kumar, and G. Whitesides, Applied Physics Letters 1993, Vol. 63, p2002–4.CrossRefGoogle Scholar
  76. [76]
    A. Bietsch and B. Michel, Appl. Phys. 2000, Vol. 88, p4310–4318.CrossRefGoogle Scholar
  77. [77]
    M. Chaudhury and G. Whitesides, Langmuir 1991, Vol. 7, pl013–1025.CrossRefGoogle Scholar
  78. [78]
    H. Schmid and B. Michel, Macromolecules 2000, Vol. 33, p3042–3049.CrossRefGoogle Scholar
  79. [79]
    T. Odom, J. Love, D. Wolfe, K. Paul, and G. Whitesides, Langmuir 2002, Vol. 18,p5314–5320.CrossRefGoogle Scholar
  80. [80]
    D. Wolfe, J. Love, K. Paul, M. Chabinyc, and G. Whitesides, Applied Physics Letters 2002, Vol. 80, p2222–2224.CrossRefGoogle Scholar
  81. [81]
    J. Rogers, MRS Bulletin 2001, Vol. 26, p530–534.CrossRefGoogle Scholar
  82. [82]
    J. Rogers, Z. Bao, A. Dodabalapur, and A. Makhija, A. IEEE Electron Device Letters 2000, Vol. 21, p100–103.CrossRefGoogle Scholar
  83. [83]
    A. Folch and M. Schmidt, IEEE Journal of Microelectromechanical Systems 1999, Vol. 8, p85–89.CrossRefGoogle Scholar
  84. [84]
    J. Rogers, K. Paul, and G. Whitesides, J. Vac. Sci. Technol., B 1998, Vol. 16, p88–97.CrossRefGoogle Scholar
  85. [85]
    T. Deng, L. Goetting, J. Hu, and G. Whitesides, Sensors and Actuators A 1999, A75, 60–64.CrossRefGoogle Scholar
  86. [86]
    J. Aizenburg, A. Black, and G. Whitesides, Nature 1998, Vol. 394, p868–871.CrossRefGoogle Scholar
  87. [87]
    A. Black, K. Paul, J. Aizenberg, and G. Whitesides, Journal of the American Chemical Society 1999, Vol. 121, p8356–8365.CrossRefGoogle Scholar
  88. [88]
    C. Hui, A. Jagota, Y. Lin, and E. Kramer, Langmuir 2002, Vol. 18, p1394–1407.CrossRefGoogle Scholar
  89. [89]
    Y. Xia, D. Qin, and G. Whitesides, Advanced Materials 1996, Vol. 8, pl015–1017.Google Scholar
  90. [90]
    J. Rogers, Z. Bao, and V. Raju, Applied Physics Letters 1998, Vol. 72, p2716–2718.CrossRefGoogle Scholar
  91. [91]
    M. Cavallini, M. Murgia, and F. Biscarini, Nano Letters 2001, Vol. 1, pl93–195.CrossRefGoogle Scholar
  92. [92]
    N. Jeon, J. Hu, G. Whitesides, M. Erhardt, and R. Nuzzo, R. G. Advanced Materials 1998, Vol. 10, pl466–1469.Google Scholar
  93. [93]
    J. Hu, R. Beck, T. Deng, R. Westervelt, K. Maranowski, A. Gossard, and G. Whitesides, Applied Physics Letters 1997, Vol. 71, 2020–2022.CrossRefGoogle Scholar
  94. [94]
    J. Hu, R. Beck, R. Westervelt, and G. Whitesides, Advanced Materials (Weinheim, Germany) 1998, Vol. 10, p574–577.CrossRefGoogle Scholar
  95. [95]
    H. Yang, P. Deschatelets, S. Brittain, and G. Whitesides, Advanced Materials (Weinheim, Germany) 2001, Vol. 13, p54–58.CrossRefGoogle Scholar
  96. [96]
    M. Unger, H. Chou, T. Thorsen, A. Scherer, and S. Quake, Science (Washington, D. C.) 2000, Vol. 288, p113–116.CrossRefGoogle Scholar
  97. [97]
    O. Schueller, S. Brittain, and G. Whitesides, Advanced Materials 1997, Vol. 9, p477–480.CrossRefGoogle Scholar
  98. [98]
    F. Zhang, T. Nyberg, and O. Inganaes, Nano Letters 2002, Vol. 2, p1373–1377.CrossRefGoogle Scholar
  99. [99]
    T. Deng, G. Whitesides, M. Radhakrishnan, G. Zabow, and M. Prentiss, Applied Physics Letters 2001, Vol. 78, p1775–1777.CrossRefGoogle Scholar
  100. [100]
    M. Erhardt, H. Jin, J. Abelson, and R. Nuzzo, Chemistry of Materials 2000, Vol. 12, p3306–3315.CrossRefGoogle Scholar
  101. [101]
    X. Zhao, A. Stoddart, S. Smith, E. Kim, Y. Xia, M. Prentiss, and G. Whitesides, Advanced Materials 1996, Vol. 8, p420–4.CrossRefGoogle Scholar
  102. [102]
    E. Kim, Y. Xia, and G. Whitesides, Nature 1995, Vol. 376, p581–4.CrossRefGoogle Scholar
  103. [103]
    J. Lawrence, P. Andrew, W. Barnes, M. Buck, G. Turnbull, and I. Samuel, Applied Physics Letters 2002, Vol. 81, pl955–1957.CrossRefGoogle Scholar
  104. [104]
    W. Beh, I. Kim, D. Qin, Y. Xia, and G. Whitesides, Advanced Materials (Weinheim, Germany) 1999, Vol. 11, pl038–1041.CrossRefGoogle Scholar
  105. [105]
    N. Jeon, I. Choi, B. Xu, and G. Whitesides, Advanced Materials 1999, Vol. 11, p946–950.CrossRefGoogle Scholar
  106. [106]
    O. Schueller, S. Brittain, and G. Whitesides, Sensors and Actuators, A: Physical 1999, A72, 125–139.CrossRefGoogle Scholar
  107. [107]
    B. Xu, F. Arias, and G. Whitesides, Advanced Materials 1999, Vol. 11, p492–495.CrossRefGoogle Scholar
  108. [108]
    E. Kim, Y. Xia, X. Zhao, and G. Whitesides, Advanced Materials (Weinheim, Germany) 1997, Vol. 9, p651–654.CrossRefGoogle Scholar
  109. [109]
    X. Zhao, Y. Xia, and G. Whitesides, Advanced Materials 1996, Vol. 8, p837–840.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Dan Lawrence
    • 1
  • Jim Kohler
    • 2
  • Brian Brollier
    • 2
  • Tim Claypole
    • 3
  • Timothy Burgin
    • 4
  1. 1.Precisia LLCAnn ArborUSA
  2. 2.International PaperLovelandUSA
  3. 3.University of Wales SwanseaSwanseaUK
  4. 4.Arizona State UniversityTempeUSA

Personalised recommendations