Targeted Disruption Of Ether Lipid Synthesis In Mice

  • Claus Rodemer
  • Thanh-Phuong Thai
  • Britta Brügger
  • Karin Gorgas
  • Wilhelm Just
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 544)

Abstract

Although plasmalogens (PLs) the major mammalian ether lipids (ELs) are known for almost 80 years, their physiological role is still enigmatic. Many diverse cellular processes such as modulation of membrane fluidity, facilitation of membrane fusion, synthesis of eicosanoids, mediation of signal transduction events and protection against oxidative stress were discussed to be affected by ELs (Nagan and Zoeller, 2001). Additionally ELs such as platelet activating factor (PAF), an alkylacetylglycerophospho- choline and seminolipid, a sulfogalaetosyl- alkylacylglycerol (SGalAAG) as well as its precursor galactosyl-alkylacylglycerol (GalAAG) were studied in greater detail and were shown to have important physiological functions in anaphylaxis (Ishii and Shimizu, 2000) as well as in spermatogenesis and myelination (Vos et al, 1994; Ishizuka, 1997). Furthermore a large group of proteins contain a glycosyl-phosphatidylinositol (GPI) anchor to stably associate with membranes. Many of theses GPI anchors include an ether- bonded long chain alcohol and were found in important enzymes, such as erythrocyte acetylcholine esterase and placental alkaline phosphatase (Hooper, 1997; Chatterjee and Major, 2001).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, R.G., 1998, The caveolae membrane system. Ann. Rev. Biochem. 67: 199-225PubMedCrossRefGoogle Scholar
  2. Brown, D.A. and London, E., 1998, Structure and origin of ordered lipid domains in biological membranes. J. Membr. Biol. 164: 103-114PubMedCrossRefGoogle Scholar
  3. Bickel, P.E., Scherer, P.E., Schnitzer, J.E., Oh, P., Lisanti, M.P. and Lodish, H.F., 1997, Flotillin and epidermal surface antigen define a new family of caveolae-associated integral membrane proteins. J. Biol. Chem. 272: 13793-13802PubMedCrossRefGoogle Scholar
  4. Bosio, A., Binczek, E. and Stoffel, W., 1996, Functional breakdown of the lipid bilayer of the myelin membrane in central and peripheral nervous system by disrupted galactocerebroside synthesis. Proc. Natl. Acad. Sci. USA 9: 13280-13285.CrossRefGoogle Scholar
  5. Boyle, M.E., Berglund, E.O., Murai, K.K., Weber, L., Peles, E. and Ranscht, B., 2001, Contactin orchestrates assembly of the septate-like junctions at the paranode in myelinated peripheral nerve. Neuron 30: 385-397PubMedCrossRefGoogle Scholar
  6. Chatterjee, S. and Mayor, S., 2001, The GPI-anchor and protein sorting. Cell. Mol. Life Sci. 58: 1969-1987PubMedCrossRefGoogle Scholar
  7. Chen, L., Miyamura, N., Ninomiya, Y. and Handa, J.T., 2003, Distribution of the collagen IV isoforms in human Bruch's membrane. Br. J. Ophthalmol. 87: 212-215.PubMedCrossRefGoogle Scholar
  8. Clayton, P.T., Eckhardt, S., Wilson, J., Hall, CM., Yousuf, Y., Wanders, R.J. and Schutgens, R.B., 1994, Isolated dihydroxyacetonephosphate acyltransferase deficiency presenting with developmental delay. J. Inherit. Metab. Dis. 17: 533-540PubMedCrossRefGoogle Scholar
  9. Coetzee, T., Fujita, N., Dupree, J., Shi, R., Blight, A., Suzuki, K. and Popko, B., 1996, Myelination in the absence of galactocerebroside and sulfatide: normal structure with abnormal function and regional instability. Cell 86: 209-219.PubMedCrossRefGoogle Scholar
  10. Colville, D.J. and Savige, J., 1997, Alport syndrome. A review of the ocular manifestations. Ophthalmic. Genet . 18 161-173 . PubMedCrossRefGoogle Scholar
  11. Cottin, V., Doan, J.E. and Riches, D.W., 2002, Restricted localization of the TNF receptor CD120a to lipid rafts: a novel role for the death domain. J. Immunol. 168: 4095-4102.PubMedGoogle Scholar
  12. Fujimoto, H., Tadano-Aritomi, K., Tokumasu, A., Ito, K., Hikita, T., Suzuki, K. and Ishizuka, I., 2000, Requirement of seminolipid in spermatogenesis revealed by UDP-galactose: Ceramide galactosyltransferase-deficient mice. J. Biol. Chem. 275: 22623-22626.PubMedCrossRefGoogle Scholar
  13. Girao, H. and Pereira, P., 2003, Phosphorylation of connexin 43 acts as a stimuli for proteasome-dependent degradation of the protein in lens epithelial cells. Mol. Vis. 9: 24- 30.PubMedGoogle Scholar
  14. Hajra, A.K., 1995, Glycerolipid biosynthesis in peroxisomes, (microbodies). Prog. Lipid Res. 34: 343-364.PubMedCrossRefGoogle Scholar
  15. Hooper, N.M., 1997, Glycosyl-phosphatidylinositol anchored membrane enzymes. Clin. Chim. Acta 266: 3-12.PubMedCrossRefGoogle Scholar
  16. Honke, K., Hirahara, Y., Dupree, J., Suzuki, K., Popko, B., Fukushima, K., Fukushima, J., Nagasawa, T., Yoshida, N., Wada, Y. et al, 2002, Paranodal junction formation and spermatogenesis require sulfoglycolipids. Proc. Natl. Acad. Sci. USA99: 4227-4232.Google Scholar
  17. Hossain, M.Z., Jagdale, A.B., Ao, P., Kazlauskas, A. and Boynton, A.L., 1999, Disruption of gap junctional communication by the platelet-derived growth factor is mediated via multiple signaling pathways. J. Biol. Chem. 274: 10489-10496.PubMedCrossRefGoogle Scholar
  18. Ishii, S. and Shimizu, T., 2000, Platelet-activating factor (PAF) receptor and genetically engineered PAF receptor mutant mice. Prog. Lipid Res. 39,41-82.PubMedCrossRefGoogle Scholar
  19. Kramer, E.M., Klein, C, Koch, T., Boytinck, M. and Trotter, J, 1999, Compartmentation of Fyn kinase with glycosylphosphatidylinositol-anchored molecules in oligodendrocytes facilitates kinase activation during myelination. J. Biol. Chem. 214 : 29042-29049CrossRefGoogle Scholar
  20. Kunau, W.H., 2001, Peroxisomes: the extended shuttle to the peroxisome matrix. Curr. Biol. 11: R659-662PubMedCrossRefGoogle Scholar
  21. Ishizuka, I., 1997, Chemistry and functional distribution of sulfoglycolipids. Prog. Lipid Res. 36:245-319PubMedCrossRefGoogle Scholar
  22. Martinez, M., 1995, Polyunsaturated fatty acids in the developing human brain, erythrocytes and plasma in peroxisomal disease: therapeutic implications. J. Inher. Metab. Dis. 18 (SI): 61-75.PubMedCrossRefGoogle Scholar
  23. Moser, H.W, 2000, Molecular genetics of peroxisomal disorders. Front. Biosci. 5: D298-306.PubMedCrossRefGoogle Scholar
  24. Nagan, N. and Zoeller, R.A., 2001, Plasmalogens: biosynthesis and functions. Prog. Lipid Res. 40, 199-229PubMedCrossRefGoogle Scholar
  25. Roscoe, W.A., Barr, K.J., Mhawi, A.A., Pomerantz, D.K. and Kidder, G.M., 2001, Failure of spermatogenesis in mice lacking connexin43. Biol. Reprod. 65: 829-838.PubMedCrossRefGoogle Scholar
  26. Schubert, A.L., Schubert, W., Spray, D.C. and Lisanti, M.P, 2002, Connexin family members target to lipid raft domains and interact with caveolin-1. Biochemistry 41: 5754-5764PubMedCrossRefGoogle Scholar
  27. Subtil, A., Gaidarov, I., Kobylarz, K., Lampson M.A., Keen, J.H., and McGraw, T.E., 1999, Acute cholesterol depletion inhibits clathrin coated pit budding. Proc. Natl. Acad. Sci. USA 96: 6775-6780PubMedCrossRefGoogle Scholar
  28. Thai, T.P., Rodemer, C, Jauch, A., Hunziker, A., Moser, A., Gorgas, K. and Just, W.W., 2001, Impaired membrane traffic in defective ether lipid biosynthesis. Hum. Mol. Genet. 10,127-136PubMedCrossRefGoogle Scholar
  29. Vos, J.P., Lopes-Cardozo, M. and Gadella, B.M., 1994, Metabolic and functional aspects of sulfogalactolipids. Biochim. Biophys. Acta 1211: 125-149.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Claus Rodemer
    • 1
  • Thanh-Phuong Thai
    • 2
  • Britta Brügger
    • 1
  • Karin Gorgas
    • 3
  • Wilhelm Just
    • 1
  1. 1.Biochemie-Zentrum Heidelberg (BZH)Universität HeidelbergHeidelbergDeutschland
  2. 2.Abteilung für Innere MedizinUniversitätsklinikHeidelbergDeutschland
  3. 3.Institut für Anatomie und Zellbiologie der UniversitätHeidelbergDeutschland

Personalised recommendations