Behavioral Principles of Interlimb Coordination

  • Will Spijkers
  • Herbert Heuer


Interference in interlimb coordination is informative with respect to the underlying mechanisms of coordination. A rather comprehensive functional model of bimanual interlimb coordination, in which it is assumed that interference between the limbs may emerge at different levels of motor control, i.e. motor programming and movement execution, was proposed by Spijkers and Heuer (1995). Central to this model is the hypothesis of transient crosstalk during programming of movement parameters in bimanual coordination tasks. A series of experiments is presented, providing support for the model. These studies are based on three prototypical movement tasks in which several movement variables were examined, such as movement amplitude, isometric force and movement direction. It is concluded that the distinction between an execution level and a programming level may not be sufficient to capture all phenomena of intermanual interactions and, therefore, a third “cognitive” level is needed.

Key words

Crosstalk transient coupling motor programming amplitude isometric force 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bullock O, Grossberg S (1988) Neural dynamics of planned arm movements: Emergent invariants and speed-accuracy properties during trajectory formation. Psychol Rev 95:49-90PubMedCrossRefGoogle Scholar
  2. Corcos OM (1984) Two-handed movement control. Res QExerc Sport 55:117–122Google Scholar
  3. De Jong R (2000). An intention-activation account of residual switch costs. In: Monsell S, Driver J (ed) Attention and performance XVIII: Control of cognitive processes, MIT Press, Cambridge, MA pp 357–376Google Scholar
  4. Diedrichsen J, Hazeltine E, Kennerley S, Ivry RB (2001) Moving to directly cued locations abolishes spatial interference during bimanual actions. Psychol Sci 12:493–498PubMedCrossRefGoogle Scholar
  5. Durwen HF, Herzog AG (1992) Electromyographic investigation of mirror movements in normal adults: Variation of frequency with site, effort, and repetition of movement. Brain Dysfunction, 5:310–318Google Scholar
  6. Elison DG (1959). Linear frequency theory as a behavior theory. In: Koch S (ed) Psychology: a study of a science. Vol. 2: General systematic formulations, learning, and special processes, McGraw-Hill, New York, pp 637–662Google Scholar
  7. Favilla M, De Cecco E (1996) Parallel direction and extent specification of planar reaching arm movements in humans. Neuropsychology 34:609–613CrossRefGoogle Scholar
  8. Favilla M, Gordon J, Hening W, Ghez C (1990) Trajectory control in targeted force impulses. VII. Independent setting of amplitude and direction in response preparation. Exp Brain Res 79:530–538PubMedCrossRefGoogle Scholar
  9. Favilla M, Henin W, Ghez C (1989) Trajectory control in targeted force impulses. VI. Independent specification of response amplitude and direction. Exp Brain Res 75:280–294PubMedCrossRefGoogle Scholar
  10. Fowler B, Duck T, Mosher M, Mathieson B (1991) The coordination of bimanual aiming movements: Evidence for progressive desynchronization. QJ Exp Psychol A 43A:205–221Google Scholar
  11. Franz EA, Zelaznik HN, McCabe G (1991) Spatial topological constraints in a bimanual task. ActaPsychol 77:137–151Google Scholar
  12. Franz EA, Zelaznik HN, Swinnen SP, Walter CB (2001) Spatial conceptual influences on the coordination of bimanual actions: when a dual task becomes a single task. J Mot Behav 33:103–112PubMedCrossRefGoogle Scholar
  13. Fuchs A, Kelso JAS (1994) A theoretical note on models of interlimb coordination. J Exp Psychol Human Percept Perform 20:1088–1097CrossRefGoogle Scholar
  14. Garcia-Colera A, Semjen A (1988) Distributed planning of movement sequences. J Mot Behav 20:341–367PubMedGoogle Scholar
  15. Georgopoulos AP (1991) Higher order motor control. Annu Rev Neurosci 14:361–377PubMedCrossRefGoogle Scholar
  16. Ghez C, Favilla M, Ghilardi MF, Gordon J, Bermejo R, Pullman S (1997) Discrete and continuous planning of hand movements and isometric force trajectories. Exp Brain Res 115:217–233PubMedCrossRefGoogle Scholar
  17. Ghez C, Hening W, Favilla M (1990) Parallel interacting channels in the initiation and specification of motor response features. In: Jeannerod M (ed) Attention and performance XIII, Erlbaum, Hillsdale, NJ, pp 265–293Google Scholar
  18. Haken H, Kelso JAS, Bunz H (1985) A theoretical model of phase transitions in human hand movements. Biol Cybem 51:347–356CrossRefGoogle Scholar
  19. Hazeltine E, Diedrichsen J, Kennerley SW, Ivry RB (2003) Bimanual cross-talk during reaching movements is primarily related to response selection, not the specification of motor parameters. Psychol Res 67:56–70PubMedGoogle Scholar
  20. Hening W, Favilla M, Ghez C (1988) Trajectory control in targeted force impulses. V. Gradual specification of response amplitude. Exp Brain Res 71:116–128PubMedCrossRefGoogle Scholar
  21. Heuer H (1987) Visual discrimination and response programming. Psychol Res 49:91–98PubMedCrossRefGoogle Scholar
  22. Heuer H (1993) Structural constraints on bimanual movements. Psychol Res 55:83–98PubMedCrossRefGoogle Scholar
  23. Heuer H (1995) Modelle motorischer Koordination. Psychologische Beitrage 37:396–452Google Scholar
  24. Heuer H (1996a) Coordination. In: Heuer H, Keele SW (ed) Handbook of Perception and Action. Vol. 2: Motor skills, Academic Press, London, pp 121–180Google Scholar
  25. Heuer H (1996b) Dual-task performance. In: Neumann O, Sanders AF (ed) Handbook of Perception and Action. Vol. 3: Attention, Academic Press, London, pp 113–153Google Scholar
  26. Heuer H, Klein W (2001) Eccentric head positions bias random generation of leftward and rightward handle-bar rotations. Acta Psychol 106:23–49CrossRefGoogle Scholar
  27. Heuer H, Kleinsorge T, Spijkers W, Steglich C (2001) Static and phasic cross-talk effects in discrete bimanual reversal movements. J Mot Behav 33:67–85PubMedCrossRefGoogle Scholar
  28. Heuer H, Kleinsorge T, Spijkers W, Steglich C (submitted) Intennanual cross-talk effects in unimanual movementsGoogle Scholar
  29. Heuer H, Spijkers W, Kleinsorge T, Steglich C (2000) Parametrische Kopplung bei Folgen beidhandiger Umkehrbewegungen mit gleichen und unterschiedlichen Weiten. Zeitschrift fur experimentelle Psychologie 47:34–49PubMedCrossRefGoogle Scholar
  30. Heuer H, Spijkers W, Kleinsorge T, van der Loo H (1998) Period duration of physical and imaginary movement sequences affects contralateral amplitude modulation. Q J Exp Psychol A 51A:755–779Google Scholar
  31. Heuer H, Spijkers W, Kleinsorge T, van der Loo H, Steglich C (1998) The time course of cross-talk during the simultaneous specification of bimanual movement amplitudes. Exp Brain Res 118:381–392PubMedCrossRefGoogle Scholar
  32. Heuer H, Spijkers W, Steglich C, Kleinsorge T (2002) Parametric coupling and generalized decoupling revealed by concurrent and successive isometric contractions of distal muscles. Acta Psychol III:205–242CrossRefGoogle Scholar
  33. Heuer H, Wing AM (1984) Doing two things at once: Process limitations and interactions. In: Smyth MM, Wing AM (ed) The psychology of human movement, Academic Press, London, pp 183–213Google Scholar
  34. Kay BA, Kelso JAS, Saltzman E, Schoner G (1987) Space-time behavior of single and bimanual rhythmical movements: Data and limit cycle model. J Exp Psychol Human Percept Perform 13:178–192CrossRefGoogle Scholar
  35. Kelso JAS (1994) Elementary coordination dynamics. In: Swinnen SP, Heuer H, Massion J, Casaer P (ed) Interlimb coordination: Neural, dynamical, and cognitive constraints. Academic Press, San Diego pp 301–318Google Scholar
  36. Kelso JAS, Southard DL, Goodman D (1979) On the coordination of two-handed movements. J Exp Psychol Human Percept Perform 5:229–238CrossRefGoogle Scholar
  37. Klein W, Heuer H (1999) The effects of eccentric head positions on leftward and rightward turns of a handle-bar. Acta Psychol 103:311–329CrossRefGoogle Scholar
  38. Lacquaniti F (1996) Control of movement in three-dimensional space. In: Lacquaniti F, Viviani P (ed) Neural bases of motor behaviour. Kluwer, Dordrecht, pp 1–40Google Scholar
  39. Marteniuk RG, MacKenzie CL (1980) A preliminary theory of two-hand co-ordinated control. In: Stelmach GE, Requin J (ed), Tutorials in motor behavior, North-Holland, Amsterdam, pp 185–197CrossRefGoogle Scholar
  40. Marteniuk RG, MacKenzie CL, Baba DM (1984) Bimanual movement control: Information processing and interaction effects. Q J Exp Psychol A 36A:335–365Google Scholar
  41. Mechsner F, Kerzel D, Knoblich G, Prinz W (2001) Perceptual basis of bimanual coordination. Nature 414:69–73PubMedCrossRefGoogle Scholar
  42. Piek JP, Glencross OJ, Barrett NC, Love GL (1993) The effect of temporal and force changes on the patterning of sequential movements. Psychol Res/Psychologische Forschung 53:116–123CrossRefGoogle Scholar
  43. Preilowski B (1975) Bilateral motor interaction: Perceptual-motor performance of partial and complete “split-brain” patients. In: Zülch KJ, Creutzfeldt O, Galbraith GG (ed), Cerebral localization. Springer, Berlin, pp 115–132CrossRefGoogle Scholar
  44. Rinkenauer G, Ulrich R, Wing AM (2001) Brief bimanual force pulses: Correlations between the hands in force and time. J Exp Psychol Human Percept Perform 27:1485–1497CrossRefGoogle Scholar
  45. Rosenbaum DA (1980) Human movement initiation: Specification of arm, direction, and extent. J Exp Psychol Gen 109:444–474PubMedCrossRefGoogle Scholar
  46. Schmidt RA, Lee T (1999) Motor control and learning: A behavioral emphasis (3rd edition). Human Kinetics Publishers, Champaign, IIIGoogle Scholar
  47. Schmidt RA, Zelaznik HN, Hawkins B, Frank JS, Quinn JT (1979) Motor-output variability: A theory for the accuracy of rapid motor acts. Psychol Rev 86:415–451CrossRefGoogle Scholar
  48. Scheuer G, Kelso JAS (1988) A synergetic theory of environmentally-specified and learned patterns of movement coordination. 11: Component oscillator dynamics. Biol Cybern 58:81–89.CrossRefGoogle Scholar
  49. Schouten JF, Becker JAM (1967) Reaction time and accuracy. Acta Psychol 27:143–153CrossRefGoogle Scholar
  50. Sherwood DE (1990) Practice and assimilation effects in a multilimb aiming task. J Mot Behav 22:267–291PubMedGoogle Scholar
  51. Sherwood DE (1991) Distance and location assimilation in rapid bimanual movement. Res Q Exerc Sport 62:302–308PubMedGoogle Scholar
  52. Sherwood DE (1994a) Interlimb amplitude differences, spatial assimilations, and the temporal structure of rapid bimanual movements. Hum Mov Sci 13:841–860CrossRefGoogle Scholar
  53. Sherwood DE (1994b) Hand preference, practice order, and spatial assimilations in rapid bimanual movement. J Mot Behav 26:123–134PubMedCrossRefGoogle Scholar
  54. Sherwood DE, Nishimura KM (1992) EMG amplitude and spatial assimilation effects in rapid bimanual movement. Res Q Exerc Sport 63:284–291PubMedGoogle Scholar
  55. Spijkers W, Heuer H (1995) Structural constraints on the performance of symmetrical bimanual movements with different amplitudes. QJ Exp Psychol A 48A:716–740Google Scholar
  56. Spijkers W, Heuer H, Kleinsorge T, Steglich C (2000) The specification of movement amplitudes for the left and right hand: evidence for transient parametric coupling from overlapping-task performance. J Exp Psychol Human Percept Perform 26:1091–1105CrossRefGoogle Scholar
  57. Spijkers W, Heuer H, Kleinsorge T, van der Loo H (1997) Preparation of bimanual movements with same and different amplitudes: Specification interference as revealed by reaction time. Acta Psychol 96:207–227CrossRefGoogle Scholar
  58. Spijkers W, Tachmatzidis K, Debus G, Fischer M, Kausche I (1994) Temporal coordination of alternative and simultaneous aiming movements of constrained timing structure. Psychol Res 57:20–29PubMedCrossRefGoogle Scholar
  59. Steglich C (2002) Experimentelle Untersuchungen zur bimanuellen Koordination als transiente Kopplung bei der Richtungsspezifikation. Unpublished Dissertation, RWTH AachenGoogle Scholar
  60. Steglich C, Heuer H, Spijkers W, Kleinsorge T (1999) Bimanual coupling during the specification of isometric forces. Exp Brain Res 129:302–316PubMedCrossRefGoogle Scholar
  61. Swinnen SP, Dounskaia N, Duysens J (2002) Patterns of bimanual interference reveal movement encoding within a radial egocentric reference frame. J Cogn Neurosci 14:463–471PubMedCrossRefGoogle Scholar
  62. Swinnen SP, Dounskaia N, Levin O, Duysens J (2001) Constraints during bimanual coordination: the role of direction in relation to amplitude and force requirements. Behav Brain Res 123:201–218PubMedCrossRefGoogle Scholar
  63. Swinnen SP, Jardin K, Meulenbroek R, Dounskaia N, Hotkens-van den Brandt M (1997) Egocentric and allocentric constraints in the expression of patterns of interlimb coordination. J Cogn Neurosci 9:348–377CrossRefGoogle Scholar
  64. Swinnen SP, Puttemans V, Vangheluwe S, Wenderoth N., Levin O, Dounskaia N (2003) Directional interference during bimanual coordination: is interlimb coupling mediated by afferent or efferent processes. Behav Brain Res 139:177–195PubMedCrossRefGoogle Scholar
  65. Swinnen SP, Walter CB, Serrien OJ, Vandendriesche C (1992) The effect of movement speed on upper-limb coupling strength. Hum Mov Sci 11:615–636CrossRefGoogle Scholar
  66. Swinnen SP, Walter CB, Shapiro DC (1988) The coordination of limb movements with different kinematic patterns. Brain Cogn 8:326–347PubMedCrossRefGoogle Scholar
  67. Todor JI, Lazarus JC (1986) Exertion level and the intensity of associated movements. Dev Med Child Neurol 28:205–212PubMedCrossRefGoogle Scholar
  68. Usher M, McClelland JL (2001) The time course of perceptual choice: The leaky, competing accumulator model. Psychol Rev 108:550–592PubMedCrossRefGoogle Scholar
  69. Van der Meulen JHP, Gooskens RHJM, Denier van der Gon JJ, Gielen CCAM, Wilhelm K (1990) Mechanisms underlying accuracy in fast goal-directed arm movements in man. J Mot Behav 22:67–84PubMedGoogle Scholar
  70. Walter CB, Swinnen SP (1990) Kinetic attraction during bimanual coordination. J Mot Behav 22:451–473PubMedGoogle Scholar
  71. Walter CB, Swinnen SP, Dounskaia NY (2002) Generation of bimanual trajectories of disparate eccentricity: Levels of interference and spontaneous changes over practice. J Mot Behav 34:183–195PubMedCrossRefGoogle Scholar
  72. Zelaznik HN, Shapiro DC, Carter MC (1982) The specification of digit and duration during motor programming: a new method of precueing. J Mot Behav 14:57–68PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Will Spijkers
    • 1
  • Herbert Heuer
    • 2
  1. 1.Institut für PsychologieRWTH AachenGermany
  2. 2.Institut für ArbeitsphysiologieUniversität DortmundGermany

Personalised recommendations