Skip to main content

Cortical Networks Associated with Locomotion in Man and Patients with Hemiparetic Stroke

  • Chapter

Abstract

A recently developed optical imaging system using near-infrared spectroscopy enabled real-time monitoring of cortical activation during various locomotor tasks. Cortical activation was assessed as increased levels of regional oxygenated hemoglobin. In healthy subjects, walking at 1 km/hr was associated by cortical activation that centered in the medial sensorimotor cortices and supplementary motor areas. Walking at higher speed (3 km/hr or 5 km/hr) tended to induce decreased rather than increased activation in the sensorimotor cortices. In patients with hemiparetic stroke, cortical activation patterns during hemiparetic gait were characterized by asymmetrical activation in the sensorimotor cortices and recruitment of other motor-related areas such as the premotor cortices and the prefrontal regions. Importantly activation patterns could be modified by rehabilitative intervention. A facilitation technique, by which therapists assisted patients to walk by pressing the hip forward and backward to ensure the stability of the stance and swing phase of the paretic leg, induced enhanced activation in the motor related areas, particularly that in the premotor area. Partial body weight support during gait training on the treadmill tended to decrease overall activation. It remains undetermined whether these changes in cortical activation patterns are associated with good locomotor recovery in patients with stroke.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexander RL, Crutcher MD. Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends Neurosci 1990;13:266–271.

    Article  PubMed  CAS  Google Scholar 

  • Armstrong OM. The supraspinal control of mammalian locomotion. J Physiol 1988;405:1–37.

    PubMed  CAS  Google Scholar 

  • Bartocci M, Winberg J, Ruggiero C, Bergqvist LL, Serra G, Lagercrantz H. Activation of olfactory cortex in newborn infants after odor stimulation: a functional near-infrared spectroscopy study. Pediatr Res 2000;48:18–23.

    Article  PubMed  CAS  Google Scholar 

  • Boas DA, Franceschini MA, Dunn AK, Strangman G: Noninvasive imaging of cerebral activation with diffuse optical tomography, In Frostig ed, In vivo optical imaging of brain function, CRC press, Boca Raton, p193–221, 2002.

    Google Scholar 

  • Bobath, B. 1978. Adult hemiplegia. Evaluation and treatment, 2nd ed. William Heinemann Medical Books Ltd, London, England.

    Google Scholar 

  • Calautti C, Leroy F, Guincestre JY, Marie RM, Baron JC. Sequential activation brain mapping after subcortical stroke: changes in hemispheric balance and recovery. Neuroreport 2001;12:3883–3886.

    Article  PubMed  CAS  Google Scholar 

  • Cao Y, D’Olhaberriague L, Vikingstad EM, Levine SR, Welch KM. Pilot study of functional MRI to assess cerebral activation of motor function after poststroke hemiparesis. Stroke 1998;29:112–122.

    Article  PubMed  CAS  Google Scholar 

  • Carey JR, Kimberley TJ, Lewis SM, Auerbach EJ, Dorsey L, Rundquist P, et al. Analysis of fMRI and finger tracking training in subjects with chronic stroke. Brain 2002;125:773–788.

    Article  PubMed  Google Scholar 

  • Chollet F, DiPiero V, Wise RJ, Brooks OJ, Dolan RJ, Frackowiak RS. The functional anatomy of motor recovery after stroke in humans: a study with positron emission tomography. AnnNeuro 1991;29:63–71.

    CAS  Google Scholar 

  • Colier WN, Quaresima V, Oeseburg B, Ferrari M. Human motor-cortex oxygenation changes induced by cyclic coupled movements of hand and foot. Exp Brain Res 1999;129:457–461.

    Article  PubMed  CAS  Google Scholar 

  • Cramer SC, Nelles G, Benson RR, Kaplan JO, Parker RA, Kwong KK, et al. A functional MRI study of subjects recovered from hemiparetic stroke. Stroke 1997;28:2518–2527.

    Article  PubMed  CAS  Google Scholar 

  • Davidoff RA. The pyramidal tract. Neurology 1990;40:332–339.

    Article  PubMed  CAS  Google Scholar 

  • Davi PM. Steps to follow, 2nd ed. New York: Springer, 2000.

    Google Scholar 

  • Debaere F, Swinnen SP, Beatse E, Sunaert S, Van Heeke P, Duysens J. Brain areas involved in interlimb coordination: a distributed network. Neuroimage 2001;14:947–958.

    Article  PubMed  CAS  Google Scholar 

  • de Jong BM, Leenders KL, Paans AM. Right parieto-premotor activation related to limb in dependent antiphase movement. Cereb Cortex 2002;12:1213–1217.

    Article  PubMed  Google Scholar 

  • Dettmers C, Fink GR, Lemon RN, Stephan KM, Passingham RE, Silbersweig D, et al. Relation between cerebral activity and force in the motor areas of the human brain. J Neurophysiol 1995;74:802–815.

    PubMed  CAS  Google Scholar 

  • Dietz V, Muller R, Colombo G. Locomotor activity in spinal man: significance of afferent input from joint and load receptors. Brain 2002;125:2626–2634.

    Article  PubMed  Google Scholar 

  • Dobkin BH. An overview of treadmill locomotor training with partial body weight support: a neurophysiologically sound approach whose time has come for randomized clinical trials. Neurorehabil Neural Repair 1999;13:157–165.

    Article  Google Scholar 

  • Drew T. Motor cortical cell discharge during voluntary gait modification. Brain Res 1988;457: 181–187.

    Article  PubMed  CAS  Google Scholar 

  • Duncan PW, Lai SM, Keighley J. Defining post-stroke recovery: implications for design and interpretation of drug trials. Neuropharmacology 2000;39:835–841.

    Article  PubMed  CAS  Google Scholar 

  • Eda H, Sase I, Seiyama A, Tanabe HC, Imaruoka T, Tsunazawa Y, Yanagida T. Optical Topography System for Functional Brain Imaging: Mapping Human Occipital Cortex During Visual Stimulation. Proc of Inter-Institute Workshopon In Vivo Optical Imaging at the NIH. pp. 93–99, 2000. Optical Society of America.

    Google Scholar 

  • Eyre JA, Taylor JP, Villagra F, Smith M, Miller S. Evidenceof activity-dependent withdrawal of corticospinal projections during human development. Neurology 2001;57:1543–1554.

    Article  PubMed  CAS  Google Scholar 

  • Ferrier, D. 1876. The Functions of the Brain. Smith, Elder, London.

    Book  Google Scholar 

  • Feydy A, Carlier R, Roby-Brami A, Bussel B, Cazalis F, Pierot L, et al. Longitudinal study of motor recovery after stroke: recruitment and focusing of brain activation. Stroke 2002;33:1610–1617.

    Article  PubMed  CAS  Google Scholar 

  • Fink GR, Frackowiak RS, Pietrzyk D, Passingham RE. Multiple nonprimary motor areas in the human cortex. J Neurophysiol 1997;77:2164–2174.

    PubMed  CAS  Google Scholar 

  • Fisher CM. Concerning the mechanism of recovery in stroke hemiplegia. Can J Neurol Sci 1992;19:57–63.

    PubMed  CAS  Google Scholar 

  • Frackowiak RSJ. The cerebral basis of functional recovery. In Frackowiak RSJ, Friston KJ, Frith CD, Dolan RJ, Mazziotta JC, eds, Human brain function, Academic press, San Diego, p275–299, 1997.

    Google Scholar 

  • Freund HJ, Hummelsheim H. Lesions of premotor cortex in man. Brain 1985;108:697–733.

    Article  PubMed  Google Scholar 

  • Fries W, Danek A, Scheidtmann K, Hamburger C. Motor recovery following capsular stroke. Role of descending pathways from multiple motor areas. Brain 1993;116:369–382.

    Article  PubMed  Google Scholar 

  • Fukuyama H, Ouchi Y, Matsuzaki S, Nagahama Y, Yamauchi H, Ogawa M, et al. Brain functional activity during gait in normal subjects: a SPECT study. Neurosci Lett 1997;228:183–186.

    Article  PubMed  CAS  Google Scholar 

  • Halsband U, Ito N, Tanji J, Freund HJ. The role of premotor cortex and the supplementary motor area in the temporal control of movement in man. Brain 1993;116:243–266.

    Article  PubMed  Google Scholar 

  • Hanakawa T, Fukuyama H, Katsumi Y, Honda M, Shibasaki H. Enhanced lateral premotor activity during paradoxical gait in Parkinson’s disease. Ann Neurol 1999;45:329–336.

    Article  PubMed  CAS  Google Scholar 

  • Hanakawa T, Katsumi Y, Fukuyama H, Honda M, Hayashi T, Kimura J, et aI. Mechanisms underlying gait disturbance in Parkinson’s disease: a single photon emission computed tomography study. Brain 1999;122:1271–1282.

    Article  PubMed  Google Scholar 

  • Hesse S, Bertelt C, Schaffrin A, Malezic M, Mauritz KH. Restoration of gait in nonambulatory hemiparetic patients by treadmill training with partial body-weight support. Arch Phys Med Rehabil 1994;75:1087–1093.

    Article  CAS  Google Scholar 

  • Hesse S, Bertelt C, Jahnke MT, Schaffrin A, Baake P, Malezic M, et al. Treadmill training with partial body weight support compared with physiotherapy in nonambulatory hemiparetic patients. Stroke 1995;26:976–981.

    Article  PubMed  CAS  Google Scholar 

  • Hesse S, Jahnke MT, Schaffrin A, Lucke D, Reiter F, Konrad M. Immediate effects of therapeutic facilitation on the gait of hemiparetic patients as compared with walking with and without a cane. Electroencephalogr Clin Neurophysiol 1998;109:515–522.

    Article  PubMed  CAS  Google Scholar 

  • Hintz SR, Benaron DA, Siegel AM, Zourabian A, Stevenson DK, Boas DA. Bedside functional imaging of the premature infant brain during passive motor activation. J Perinat Med 2001;29:335–343.

    Article  PubMed  CAS  Google Scholar 

  • Hirth C, Obrig H, Villringer K, Thiel A, Bernarding J, Muhlnickel W, et al. Non-invasive functional mapping of the human motor cortex using near-infrared spectroscopy. Neuroreport 1996;7:1977–1981.

    Article  PubMed  CAS  Google Scholar 

  • Hock C, Muller-Spahn F, Schuh-Hofer S, Hofinann M, Dirnagl U, Villringer A. Age dependency of changes in cerebral hemoglobin oxygenation during brain activation: a near-infrared spectroscopy study. J Cereb Blood Flow Metab 1995;15:1103–1108.

    Article  PubMed  CAS  Google Scholar 

  • Hock C, Villringer K, Muller-Spahn F, Wenzel R, Heekeren H, Schuh-Hofer S, et al. Decrease in parietal cerebral hemoglobin oxygenation during performance of a verbal fluency task in patients with Alzheimer’s disease monitored by means of near-infrared spectroscopy (NIRS)—correlation with simultaneous rCBF-PET measurements. Brain Res 1997;755:293–303.

    Article  PubMed  CAS  Google Scholar 

  • Hoshi Y, Oda I, Wada Y, Ito Y, Yutaka Y, Oda M, et al. Visuospatial imagery is a fruitful strategy for the digit span backward task: a study with near-infrared optical tomography. Brain Res Cogn Brain Res 2000;9:339–342.

    Article  PubMed  CAS  Google Scholar 

  • Hoshi Y, Kobayashi N, Tamura M. Interpretation of near-infrared spectroscopy signals: a study with a newly developed perfused rat brain model. J Appl Physiol 2001;90:1657–1662.

    PubMed  CAS  Google Scholar 

  • Hosokawa S, Tsuji S, Uozumi T, Matsunaga K, Toda K, Ota S. Ipsilateral hemiplegia caused by right internal capsule and thalamic hemorrhage: demonstration of predominant ipsilateral innervation of motor and sensory systems by MRI, MEP, and SEP. Neurology 1996;46:1146–1149.

    Article  PubMed  CAS  Google Scholar 

  • Isobe K, Kusaka T, Nagano K, Okubo K, Yasuda S, Kondo M, et al. Functional imaging of the brain in sedated newborn infants using near infrared topography during passive knee movement. Neurosci Lett 2001;299:221–224.

    Article  PubMed  CAS  Google Scholar 

  • Kato T, Kamei A, Takashima S, Ozaki T. Human visual cortical function during photic stimulation monitoring by means of near-infrared spectroscopy. J Cereb Blood Flow Metab 1993;13:516–520.

    Article  PubMed  CAS  Google Scholar 

  • Kawashima R, Inoue K, Sugiura M, Okada K, Ogawa A, Fukuda H. A positron emission tomography study of self-paced finger movements at different frequencies. Neuroscience 1999;92:107–112.

    Article  PubMed  CAS  Google Scholar 

  • Lafleur MF, Jackson PL, Malouin F, Richards CL, Evans AC, Doyon J. Motor Learning Produces Parallel Dynamic Functional Changes during the Execution and Imagination of Sequential Foot Movements. Neuroimage 2002;16:142–157.

    Article  PubMed  Google Scholar 

  • Liepert J, Bauder H, Wolfgang HR, Miltner WH, Taub E, Weiller C. Treatment-induced cortical reorganization after stroke in humans. Stroke 2000;31:1210–1216.

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Rouiller EM. Mechanisms of recovery of dexterity following unilateral lesion of the sensorimotor cortexin adult monkeys. Exp Brain Res 1999;128:149–159.

    Article  PubMed  CAS  Google Scholar 

  • Marshall RS, Perera GM, Lazar RM, Krakauer JW, Constantine RC, DeLaPaz RL. Evolution of cortical activation during recovery from corticospinal tract infarction. Stroke 2000;31:656–661.

    Article  PubMed  CAS  Google Scholar 

  • Meek JH, Elwell CE, Khan MJ, Romaya J, Wyatt JS, Delpy DT, et al. Regional changes in cerebral haemodynamics as a result of a visual stimulus measured by near infrared spectroscopy. Proc R Soc Lond B Bioi Sci 1995;261:351–356.

    Article  CAS  Google Scholar 

  • Miyai I, Blau AD, Reding MJ, Volpe BT. Patients with stroke confined to basal gangliahave diminished response to rehabilitation efforts. Neurology 1997;48:95–101.

    Article  PubMed  CAS  Google Scholar 

  • Miyai I, Reding M. Stroke Recovery and Rehabilitation. In Cerebrovascular Disease: Pathology, Diagnosis, and Management. Ginsberg MD, Bogousslavsky J, Eds. Blackwell Scientific Publications, Malden, MA, 1998,2043–2056.

    Google Scholar 

  • Miyai I, Suzuki T, Kii K, Kang J, Kubota K. Wallerian degeneration of the pyramidal tract does not affect stroke rehabilitation outcome. Neurology 1998;51: 1613–1616.

    Article  PubMed  CAS  Google Scholar 

  • Miyai I, Suzuki T, Kang J, Kubota K, Volpe BT. Middle cerebral artery stroke that includes the premotor cortex reduces mobility outcome. Stroke 1999;30:1380–1383.

    Article  PubMed  CAS  Google Scholar 

  • Miyai I, Fujimoto Y, Ueda Y, Yamamoto H, Nozaki S, Saito T, et al. Treadmill trainingwith body weight support: its effect on Parkinson’s disease. Arch Phys Med Rehabil 2000;81:849–852.

    Article  PubMed  CAS  Google Scholar 

  • Miyai I, Suzuki T, Kang J, Volpe BT. Improved functional outcome in patients with hemorrhagic strokein putamen and thalamus compared withthose with stroke restricted to the putamen or thalamus. Stroke 2000;31: 1365–1369.

    Article  PubMed  CAS  Google Scholar 

  • Miyai I, Suzuki T, Mikami A, Kubota K, Volpe BT. Patients with capsular infarct and Wallerian degeneration demonstrate persistent regional premotor cortex activation on functional MR!. J Stroke Cereb Dis 2001;10:210–216.

    Article  CAS  Google Scholar 

  • Miyai I, Tanabe HC, Sase I, Eda H, Oda I, Konishi I, et al. Cortical mapping of gait in humans: a near-infrared spectroscopic topography study. Neuroimage 2001;14:1186–1192.

    Article  PubMed  CAS  Google Scholar 

  • Miyai I, Yagura H, Kubota K, Suzuki T, Oda I, Konishi I, et al. Cortical activation patterns during hemiparetic gait are altered by rehabilitative intervention. A near-infrared spectoroscopic topography study. Soc Neurosci Abstr. 2001;27: 831.2.

    Google Scholar 

  • Miyai I, Fujimoto Y, Yamamoto H, Ueda Y, Saito T, Nozaki S, et al. Long-term effect of body weight-supported treadmill training in Parkinson’s disease: a randomized controlled trial. Arch Phys Med Rehabil 2002;83:1370–1373.

    Article  PubMed  Google Scholar 

  • Miyai I, Yagura H, Oda I, Konishi I, Eda H, Suzuki T, et al. Premotor cortex is involved in restoration of gait in stroke. Ann Neurol 2002;52:188–194.

    Article  PubMed  Google Scholar 

  • Miyai I, Yagura H, Oda I, Konishi I, Suzuki T, Kubota K. Cortical reorganization associated with locomotor recovery in stroke. An optical imaging study. Soc Neurosci Abst 2002;28: 664.12.

    Google Scholar 

  • Muellbacher W, Richards C, Ziemann D, Wittenberg G, Weltz O, Boroojerdi B, et al. Improving hand function in chronic stroke. Arch Neurol 2002;59:1278–1282.

    Article  PubMed  Google Scholar 

  • Nakayama H, Jorgensen HS, Raaschou HO, Olsen TS. Recovery of upper extremity function in stroke patients: the Copenhagen Stroke Study. Arch Phys Med Rehabil 1994;75:394–398.

    Article  PubMed  CAS  Google Scholar 

  • Nudo RJ, Wise BM, SiFuentes F, Milliken GW. Neural substrates for the effects of rehabilitative training on motor recovery after ischemic infarct. Science 1996;272: 1791–1794.

    Article  PubMed  CAS  Google Scholar 

  • Nutt JG, Marsden CD, Thompson PD. Human walking and higher-level gait disorders, particularly in the elderly. Neurology 1993;43(2):268–279.

    Article  PubMed  CAS  Google Scholar 

  • Obrig H, Hirth C, Junge-Hulsing JG, Doge C, Wenzel R, Wolf T, et al. Length of resting period between stimulation cycles modulates hemodynamic response to a motor stimulus. Adv Exp Med Biol 1997;411:471–480.

    Article  PubMed  CAS  Google Scholar 

  • Roth EJ, Merbitz C, Mroczek K, Dugan SA, Suh WW. Hemiplegic gait. Relationships between walking speed and other temporal parameters. Am J Phys Med Rehabil 1997;76:128–133.

    Article  PubMed  CAS  Google Scholar 

  • Pearson K, Gordon J. Locomotion. In: Kandel ER, Schwartz JH, Jessell TM (eds) Principles of neural science, 737–755, McGraw-Hill, New York, 2000.

    Google Scholar 

  • Sakatani K, Xie Y, Lichty W, Li S, Zuo H. Language-activated cerebral blood oxygenation and hemodynamic changes of the left prefrontal cortex in poststroke aphasic patients: a near-infrared spectroscopy study. Stroke 1998;29:1299–1304.

    Article  PubMed  CAS  Google Scholar 

  • Sato H, Takeuchi T, Sakai KL. Temporal cortex activation during speech recognition: an optical topography study. Cognition 1999;73:B55–66.

    Article  PubMed  CAS  Google Scholar 

  • Schindl MR, Forstner C, Kern H, Hesse S. Treadmill training with partial body weight support in nonambulatory patients with cerebral palsy. Arch Phys Med Rehabil 2000;81:301–306.

    Article  PubMed  CAS  Google Scholar 

  • Seitz RJ, Hoflich P, Binkofski F, Tellmann L, Herzog H, Freund HJ. Role of the premotor cortex in recovery from middle cerebral artery infarction. Arch Neurol 1998;55: 1081–1088.

    Article  PubMed  CAS  Google Scholar 

  • Staines WR, McIlroy WE, Graham SJ, Black SE. Bilateral movement enhances ipsilesional cortical activity in acute stroke: a pilot functional MRI study. Neurology 2001;56:401–404.

    Article  PubMed  CAS  Google Scholar 

  • Strangman G, Culver JP, Thompson JH, Boas DA. A quantitative comparison of simultaneous BOLD fMRI and NIRS recordings during functional brain activation. Neuroimage 2002;17:719–731.

    Article  PubMed  Google Scholar 

  • Swinnen SP. Intermanual coordination: from behavioural principles to neural-network interactions. Nat Rev Neurosci 2002;3:348–359.

    Article  PubMed  Google Scholar 

  • Suzuki M, Miyai I, Ono T, Yagura H, Oda I, Konishi I, Eda H, Tanabe HC, Kochiyama T, Kubota K. Running induces prefrontal activation. An optical imaging study. Soc Neurosci Abst 2002;28:854.10.

    Google Scholar 

  • Taga G, Konishi Y, Maki A, Tachibana T, Fujiwara M, Koizumi H. Spontaneous oscillation of oxy-and deoxy-hemoglobin changes with a phase difference throughout the occipital cortex of newborn infants observed using non-invasive optical topography. Neurosci Lett 2000;282:101–104.

    Article  PubMed  CAS  Google Scholar 

  • Takahashi K, Ogata S, Atsumi Y, Yamamoto R, Shiotsuka S, Maki A, et al. Activation of the visual cortex imaged by 24-channel near-infrared spectroscopy. J Biomed Opt 2000;5:93–96.

    Article  PubMed  CAS  Google Scholar 

  • Terakawa H, Abe K, Nakamura M, Okazaki T, Obashi J, Yanagihara T. Ipsilateral hemiparesis after putaminal hemorrhage due to uncrossed pyramidal tract. Neurology 2000;54:1801–1805.

    Article  PubMed  CAS  Google Scholar 

  • Villringer A, Planck J, Hock C, Schleinkofer L, Dirnagl U. Near infrared spectroscopy (NIRS): a new tool to study hemodynamic changes during activation of brain function in human adults. Neurosci Lett 1993;154:101–104.

    Article  PubMed  CAS  Google Scholar 

  • Villringer A, Obrig H: Near-infrared spectroscopy and imaging, In Toga, Mazziotta eds, Brain mapping. The methods, 2nd ed, Academic Press, San Diego, p141–158, 2002.

    Chapter  Google Scholar 

  • Visintin M, Barbeau H. The effects of body weight support on the locomotor pattern of A spastic paretic patients. Can J Neuro Sci 1989;16:315–325.

    CAS  Google Scholar 

  • Visintin M, Barbeau H, Korner-Bitensky N, Mayo NE. A new approach to retrain gait in stroke patients through body weight support and treadmill stimulation. Stroke 1998;29:1122–1128.

    Article  PubMed  CAS  Google Scholar 

  • Waldvogel D, van Gelderen P, Ishii K, Hallett M. The effect of movement amplitude on activation in functional magnetic resonance imaging studies. J Cereb Blood Flow Metab 1999;19:1209–1212.

    Article  PubMed  CAS  Google Scholar 

  • Watanabe E, Maki A, Kawaguchi F, Takashiro K, Yamashita Y, Koizumi H, et al. Noninvasive assessment of language dominance with near-infrared spectroscopic mapping. Neurosci Lett 1998;256:49–52.

    Article  PubMed  CAS  Google Scholar 

  • Weiller C, Chollet F, Friston KJ, Wise RJ, Frackowiak RS. Functional reorganization of the brain in recovery from striatocapsular infarction in man. Ann Neurol 1992;31:463–472.

    Article  PubMed  CAS  Google Scholar 

  • Weiller C, Ramsay SC, Wise RJ, Friston KJ, Frackowiak RS. Individual patterns of functional reorganization in the human cerebral cortex after capsular infarction. Ann Neurol 1993;33:181–189.

    Article  PubMed  CAS  Google Scholar 

  • Wernig A, Muller S. Laufband locomotion with body weight support improved walking in persons with severe spinal cord injuries. Paraplegia 1992;30:229–238.

    Article  PubMed  CAS  Google Scholar 

  • Wolf M, Wolf U, Toronov V, Michalos A, Paunescu LA, Choi JH, et al. Different time evolution of oxyhemoglobin and deoxyhemoglobin concentration changes in the visual and motor cortices during functional stimulation: a near-infrared spectroscopy study. Neuroimage 2002;16:704–712.

    Article  PubMed  Google Scholar 

  • Yagura H, Miyai I, Seike Y, Suzuki T, Yanagihara T. Benefit of In-patient Multidisciplinary Rehabilitation up to 1 Year after Stroke. Arch Phys Moo Rehab 2003, in press

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Miyai, I. (2004). Cortical Networks Associated with Locomotion in Man and Patients with Hemiparetic Stroke. In: Swinnen, S.P., Duysens, J. (eds) Neuro-Behavioral Determinants of Interlimb Coordination. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9056-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9056-3_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4777-4

  • Online ISBN: 978-1-4419-9056-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics