Skip to main content

Abstract

This chapter addresses the role of afferent feedback and reflexes in the regulation of interlimb coordination in animals and humans with a focus on locomotion. From the work on cats it is known that the rhythmic muscle activities during gait are generated by specialized neural circuits located in the spinal cord (the so-called central pattern generator, “CPGs”). These CPGs are coordinated by neurons, which interconnect both sides or which transmit information between the cervical and lumbar spine. It is argued that afferent input, especially load-related information, plays a major role in shaping the resulting coordination of these CPGs. Induced changes are seen not only with a general loading of the animal but also with the selective loading of a given limb. Such principles also apply to human locomotion. Studies on infants have shown that basic coordination patterns exist, very similar to those found in the cat. The effects of afferents (notably those related to load and to hip position) play an important role in phase transitions, much as was described in feline models. In adults, the role of proprioceptive afferents was studied by muscle vibration (selective stimulus for la afferents) and by adding load (activating mainly Ib afferents). When applied during gait, tendon vibration has little effect on intra - and interlimb coordination. In contrast, load manipulations produce more profound changes. During gait, the loading of one of the limbs induces adaptations in inter-limb coordination in the 3 remaining limbs, thereby providing rhythm constancy (stable cadence). This is in line with other evidence indicating that the coordination between arm and leg movements is quite robust across various types of locomotion, suggesting a strong coupling between both homologous and non-homologous limbs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andersson OS, Forssberg, Grillner S, Lindquist M (1978) Phasic gain control of the transmission in cutaneous reflex pathways to motoneurones during “fictive” locomotion. Brain Res 149: 503–507

    Article  PubMed  CAS  Google Scholar 

  • Andersson O, Grillner S (1981) Peripheral control of the eat’s step cycle 1. Phase dependent effects of ramp-movements of the hip during “fictive locomotion”. Acta Physiol Scand 113: 89–101

    Article  PubMed  CAS  Google Scholar 

  • Andersson O, Grillner S (1983) Peripheral control of the eat’s step cycle. II. Entrainment of the central pattern generators for locomotion by sinusoidal hip movements during “fictive locomotion”. Acta Physiol Scand 118: 229–239

    Article  PubMed  CAS  Google Scholar 

  • Arshavsky YuI, Gelfand IM, Orlovsky GN, Pavlova GA, Popova LB. (1984) Origin of signals conveyed by the ventral spino-cerebellar tract and spino-reticulo-cerebellar pathway. Exp Brain Res.;54(3):426–31.

    Article  PubMed  Google Scholar 

  • Baldissera F, Cavallari P (2001). Neural compensation for mechanical loading of the hand during coupled oscillations of the hand and foot. Exp Brain Res 139: 18–29

    Article  PubMed  CAS  Google Scholar 

  • Beek PJ, Peper CE, Stegeman DF (1995) Dynamical models of movement coordination. Hum Mov Sci 14: 573–608

    Article  Google Scholar 

  • Behrman ATP, Cauraugh JH (1998) Verbal instructional sets to normalise the temporal and spatial gait variables in Parkinson’s disease. J Neurol Neurosurg Psychiatry 65: 580–582

    Article  PubMed  CAS  Google Scholar 

  • Berger W, Altenmueller E, Dietz V (1984) Normal and impaired development of children’s gait. Human Neurobiology 3: 163–170

    PubMed  CAS  Google Scholar 

  • Berger W, Quintern J, Dietz V (1987) Afferent and efferent control of stance and gait: developmental changes in children. Electroencephalography & Clinical Neurophysiology 66: 244–52

    Article  CAS  Google Scholar 

  • Bloedel JR, Courville J (1981) Cerebellar afferent systems. In: Brooks VB (ed) Handbook of physiology, sect 1. The nervous system, motor control, vol 2:2. Am Physiol Soc, Bethesda, MD, pp 735–829

    Google Scholar 

  • Bonnard M, Pailhous J (1991). Intentional compensation for selective loading affecting human gait phases. Journal of Motor Behavior 23: 4–12

    Article  PubMed  CAS  Google Scholar 

  • Bosco G, Rankin A, Poppele R (1996) Representation of passive hindlimb postures in cat spinocerebellar activity. J Neurophysiol 76: 715–726

    PubMed  CAS  Google Scholar 

  • Bosco G, Poppele RE (2001) Proprioception from a spinocerebellar perspective. Physiol Rev 81: 539–568

    PubMed  CAS  Google Scholar 

  • Brady RA, Pavol MJ, Owings TM, Grabiner MD (2000) Foot displacement but not velocity predicts the outcome of a slip induced in young subjects while walking. J Biomech 33 (7): 803–8

    Article  PubMed  CAS  Google Scholar 

  • Bril B, Breniere Y (1998) Development of postural control of gravity forces in children during the first 5 years of walking. Exp Brain Res 121(3): 255–62

    Article  PubMed  Google Scholar 

  • Bril B, Ledebt A, Breniere Y *(1998) The build-up of anticipatory behaviour. An analysis of the development ofgait initiation in children. Exp Brain Res 120 (1): 9–17

    Article  PubMed  Google Scholar 

  • Brooke JD, Cheng J, Collins DF, Mcilroy WE, Misiaszek JE, Staines WR (1997) Sensorisensory afferent conditioning with leg movement: gain control in spinal retlex and ascending paths. Progress in Neurobiology 51: 393–421

    Article  PubMed  CAS  Google Scholar 

  • Brown TG (1912) The factors in rhythmic activity of the nervous system. Proc R Soc London Ser B84: 278–289

    Google Scholar 

  • Buford JA, Smith JL (1990) Adaptive control of backward quadrupedal walking. II. Hindlimb musclesynergies. J Neurophysiol 64: 756–766.

    PubMed  CAS  Google Scholar 

  • Buford JA Smith JL (1993) Adaptive control for backward quadrupedal walking. Ill. Stumbling corrective reactions and cutaneous retlex sensitivity. J Neurophysiol 70:1102–1114.

    PubMed  CAS  Google Scholar 

  • Burke RE, Degtyarenko AM, Simon ES. (2001) Patterns of locomotor drive to motoneurons and last-order interneurons: clues to the structure of the CPG. J Neurophysiol.;86(1):447–62.

    PubMed  CAS  Google Scholar 

  • Butt SJB, Lebret JM, Kiehn O (2002) Organization of left-right coordination in the mammalian locomotor network. Brain Research Reviews 40 (1-3): 107–117

    Article  PubMed  Google Scholar 

  • Canu MH, Falempin M, Orsal D. (2001) Fictive motora ctivity in rat after 14 days of hindlimb unloading. Experimental Brain Research 139(1): 30–38

    Article  CAS  Google Scholar 

  • Canu MH, Falempin M (1998) Effect of hindlimb unloadingon interlimb coordination during treadmill locomotion in the rat. Eur J Appl Physiol Occup Physiol 78(6): 509–15

    Article  PubMed  CAS  Google Scholar 

  • Capaday C AND Stein RB. (1986) Amplitude modulation of the soleus H-retlex in the human during walking and standing. J. Neurosci. 6: 1308–1313

    PubMed  CAS  Google Scholar 

  • Carlson-Kuhta P, Trank TV, Smith JL (1998) Forms of forward quadrupedal locomotion. II. A comparison of posture, hindlimb kinematics, and motor patterns for upslope and level walking. J Neurophysiol 79:1687–1701.

    PubMed  CAS  Google Scholar 

  • Clarac F (1984). Spatial and temporal co-ordination during walking in Crustacea. Trends Neurosci 7:3293–3298.

    Article  Google Scholar 

  • Clarac F (1990) Introduction to a comparative neurobiological approach to locomotion. In: Gravity, posture and locomotion in primate, edited by F.J. Jouffrouy and C. Niemitz Stock. Florence: II Sedicesimo,.33–44.

    Google Scholar 

  • Collins JJ, Stewart IN (1993) Coupled nonlinear oscillators and the symmetries of animal gaits. J. Nonlinear Sci 3: 349–392

    Article  Google Scholar 

  • Courtine G, Pozzo T, Lucas B, Schieppati M. (2001) Continuous, bilateral Achilles' tendon vibration is not detrimental to human walk.Brain Res Bull. 55(1):107–15.

    Article  PubMed  CAS  Google Scholar 

  • Craik RL, Herman RM, Finley FR (1976) The human solutions for locomotion: Interlimb coordination. In: Herman RM, Grillner S, Stein PS (eds) Neural control of locomotion. Plenum Press, New York, pp 51–63

    Google Scholar 

  • Cruse H, Warnecke H. (1992) Coordination of the legs of a slow-walking cat. Exp Brain Res. 89(1):147–56.

    Article  PubMed  CAS  Google Scholar 

  • Delwaide PFC, Richelle C (1977) Effects of postural changes of the upper limb on retlex transmission in the lower limb. Journal of Neurology, Neuosurgery, and Psychiatry 40: 616–621

    Article  CAS  Google Scholar 

  • Dietz V, Discher M, Faist M and Trippel M. (1990a) Amplitude modulation of the human quadriceps tendon jerk reflex during gait. Exp. Brain Res. 82: 211–213.

    Article  PubMed  CAS  Google Scholar 

  • Dietz V, Faist M AND Pierrot-Deseilligny E. (1990b) Amplitude modulation of the quadriceps H-reflex in the human during the early stance phase of gait. Exp. Brain Res. 79: 221–224.

    Article  PubMed  CAS  Google Scholar 

  • Dietz V, Zijlstra W, Duysens J (1994) Human neuronal interlimb coordination during splitbelt locomotion. Exp Brain Res 101: 513–520

    Article  PubMed  CAS  Google Scholar 

  • Dietz V.(2002) Proprioception and locomotor disorders. Nat Rev Neurosci. 3(10):781–90.

    Google Scholar 

  • Donker SF, Beek PJ (2002) Interlimb coordination in prosthetic walking: Effects of asymmetry and walking velocity. Acta Psychologica 110:265–288

    Article  PubMed  Google Scholar 

  • Donker SF, Mulder T, Nienhuis B, Duysens J (2002) Adaptations in arm movements for added mass to wrist or ankle during walking. Exp Brain Res 146: 26–32

    Article  PubMed  CAS  Google Scholar 

  • Donker SF (2002) Flexibility of Human Walking: A studyon Interlimb Coordination. Thesis. RUG, Groningen, The Netherlands

    Google Scholar 

  • Duysens J (1977a) Fluctuations in sensitivity to rhythm resetting effects during the eat’s step cycle Brain Res 133: 190–195

    Article  PubMed  CAS  Google Scholar 

  • Duysens J (1977b) Reflex control locomotion as revealed by stimulation of cutaneous afferents in spontaneously walking premammillary cats. J. Neurophysiol 40: 737–751

    PubMed  CAS  Google Scholar 

  • Duysens J, and Stein RB (1978) Reflexes induced by nerve stimulation in walking cats with implanted cuff electrodes. Exp. Brain Res. 32: 213–224

    Article  PubMed  CAS  Google Scholar 

  • Duysens J, Pearson KG (1980) Inhibition of flexor burst generation by loading ankle extensor muscles in walking cats. Brain Res 187:321–332

    Article  PubMed  CAS  Google Scholar 

  • Duysens J, Tax T (1994) Interlimb reflexes during gait in cats and humans. In: Swinnen SP, Heuer H, Massion J, Casaer P (eds) Interlimb coordination. Neural, dynamical, and cognitive restraints. Academic Press, San Diego, pp 97–119

    Google Scholar 

  • Duysens J, Tax AAM, Murrer L, Dietz V (1996) Backward and forward walking use different patternsof phase-dependent modulation of cutaneous reflexes in humans. J Neurophysiol 76: 301–310

    PubMed  CAS  Google Scholar 

  • Duysens J, Van de Crommert HW (1998) Neural control of locomotion: the central pattern generator from cats to humans. Gait and Posture 7: 131–141

    Article  PubMed  Google Scholar 

  • Duysens J, Clarac F, Cruse H (2000) Load-regulating mechanisms in gait and posture: comparative aspects. Physiol Rev 80: 83–133

    PubMed  CAS  Google Scholar 

  • Eke-Okoro ST (1991) Functional dispositions of the spinal stepping generators and their halfcentres. Electromyogr Clin Neurophysiol 31:81–83

    PubMed  CAS  Google Scholar 

  • Elftman H (1939) The functions of the armsin walking. Human Biology 11:529–535

    Google Scholar 

  • English AW (1979) Interlimb coordination during stepping in the cat: an electromyographic analysis. J Neurophysiol 42:229–243.

    PubMed  CAS  Google Scholar 

  • English AW, Lennard PR. (1982) Interlimb coordination during stepping in the cat: in-phase stepping and gait transitions. Brain Res. Aug 12;245(2):353–64.

    Article  CAS  Google Scholar 

  • Faist M, Blahak C, Duysens J, Berger W (1999) Modulation of the biceps femoris tendon jerk reflex during human locomotion. Exp Brain Res 125:265–270

    Article  PubMed  CAS  Google Scholar 

  • Fedirchuk B, Hultborn H, Bennett DJ, Gorassini M (1995) Dorsal spinocerebellar tract neurons can be influenced by the neural circuitry producing fictive locomotion in the cat. Soc Neurosci Abstr 21:1199

    Google Scholar 

  • Fernandez-Ballesteros ML, Buchthal F, Rosenfalck P (1965) The patternof muscular activity during the armswingof naturalwalking. Acta Physiol Scand 63:296–310

    Article  Google Scholar 

  • Fouad K, Pearson KG (1997) Effects of extensormuscleafferents on the timingof locomotor activity duringwalking in adult rats. Brain Res 749:320–329

    Article  PubMed  CAS  Google Scholar 

  • Fouad K, Bastiaanse CM, Dietz V (2001) Reflex adaptations during treadmill walking with increased bodyload. Exp Brain Res 137(2):133–40

    Article  PubMed  CAS  Google Scholar 

  • Forssberg HS, Grillner J, Halbertsma, Rossignol, S (1980) The locomotion of the low spinal cat: II. Interlimb coordination. Acta Physiol Scand 108:283–295

    Article  PubMed  CAS  Google Scholar 

  • Freedland RL, Bertenthal BI (1994) Developmental changes in interlimb coordination: transition to hands-and-knees crawling. Psychological Science 5:26–32.

    Article  Google Scholar 

  • Giuliani CA, Smith JL (1987) Stepping behaviors in chronic spinal cats with one hindlimb deafferented. J. Neurosci 7:2537–2546

    PubMed  CAS  Google Scholar 

  • Grillner S, Rossignol S (1978) On the initiation of the swing phase oflocomotion in chronic spinal cats. Brain Res 146:269–277

    Article  PubMed  CAS  Google Scholar 

  • Grillner S (1981) Control of locomotion in bipeds, tetrapods, and fish. In: Handbook of Physiology, section 1, The Nervous System, vol. 11 (Brookhart JM, Mountcastle VB, ed), pp 1179–1236. Bethesda: American Physiological Society.

    Google Scholar 

  • Grillner S (1985) Neurobiological bases on rhythmic motor acts in vertebrates. Science 228:143–149

    Article  PubMed  CAS  Google Scholar 

  • Grillner S, Wallen P (1985) Central pattern generators for locomotion, with special reference to vertebrates, Ann. Rev. Neurosci 8:233–261

    Article  PubMed  CAS  Google Scholar 

  • Harkema SJ, Hurley SL, Patel UK, Requejo PS, Dobkin BK, Edgerton VR (1997) Human lumbosacral spinal cord interpretsloadingduring stepping. J. Neurophysiol 77:797–811

    PubMed  CAS  Google Scholar 

  • Hiebert GW, Whelan PJ, Prochazka A, Pearson KG (1996) Contribution of hindlimb flexor muscle afferents to the timing of phase transitions in the cat step cycle. J Neurophysiol 81:758–770

    Google Scholar 

  • Hiebert GW, Gorassini MA, Jiang W, Prochazka A, Pearson KG (1994) Corrective responses to loss of ground support during walking11. Comparison of intact and chronic spinal cats. J. Neurophysiol 71(2): 611–622

    PubMed  CAS  Google Scholar 

  • Hollands MA, Sorensen KL, Patla AE (2001) Effects of head immobilization on the coordination and control of head and body reorientation and translation during steering. Exp Brain Res 140:223–233

    Article  PubMed  CAS  Google Scholar 

  • Holt KG, Hamill J, Andres RO (1990) The force-driven harmonic oscillator as a model for human locomotion. Hum Mov Sci 9:55–68

    Article  Google Scholar 

  • Holt KG, Hamill J, Andres RO (1991) Predicting the minimal energy costs of human walking. Medicine and science in sports and exercise 23:491–498

    Article  PubMed  CAS  Google Scholar 

  • Ivanenko YP, Grasso R, Lacquaniti F. (2000) Influence of leg muscle vibration on human walking. J Neurophysiol. 84(4):1737–47.

    PubMed  CAS  Google Scholar 

  • Jackson KM, Joseph J, Wyard SJ (1983) Upper limbs during human walking part two: function. Electromyogr Clin Neurophysiol 23:435–446

    PubMed  CAS  Google Scholar 

  • Jankowska E, Jukes MGM, Lund S, Lundberg A (1967) The effects of DOPAon the spinal cord. 5 Reciprocal organization of pathways transmitting excitatory action to alpha motoneuroned of flexorsand extensors. Acta Physiol Scand 70:369–388

    Article  PubMed  CAS  Google Scholar 

  • Jankowska E, Hammar I, Slawinska U, Maleszak K, Edgley SA (2003) Neuronal basis of crossed actions from the reticular formation on feline hindlimb motoneurons. J Neurosci 23(5):1867–78

    PubMed  CAS  Google Scholar 

  • Jeka JJ, Kelso JAS (1995) Manipulating symmetry in the coordination dynamics of human movement. Journal of Experimental Psychology: Human Perception and Performance 21:360–374

    Article  PubMed  CAS  Google Scholar 

  • Jensen L, Prokop T, Dietz V (1998) Adaptional effects during human split-belt walking: influence of afferent input. Exp Brain Res 118:126–130

    Article  PubMed  CAS  Google Scholar 

  • Kato M (1994) Interlimb coordination during locomotor activities. Spinal-intact cats and chronic cats with horizontal and longitudinal seperationof the spinal cord. In: Swinnen SP, Heuer H, Massion J, Casaer P (eds) Interlimb coordination. Neural, dynamical, and cognitiverestraints. Academic Press, San Diego, pp 76–94

    Google Scholar 

  • Kautz SA, Brown DA, Van der Loos HF, Zajac FE (2002) Mutability of bifunctional thigh muscle activity in pedaling due to contralateral leg force generation. J Neurophysiol 88(3):1308–17

    PubMed  CAS  Google Scholar 

  • La Fiandra M, Wagenaar RC, Holt KG, Obusek JP (2003) How do load carriageand walking speed inlfuencetrunk coordinationand stride parameters? Journal of Biomechanics 26:87–95

    Article  Google Scholar 

  • Lam T, Wolstenholme C, Yang JF. How do infants adapt to loading of the limb during the swingphase of stepping? J Neurophysiol. 2003 Apr; 89(4):1920–8.

    Article  PubMed  Google Scholar 

  • Lam T, Yang JF (2000) Could different directions of infant stepping be controlled by the same locomotor central pattern generator? J Neurophysiol 83:2814–2824

    Google Scholar 

  • Ledebt A (2000) Changes in arm posture during the early acquisition of walking. Infant Behavior & Development 23:79–89

    Article  Google Scholar 

  • Marigold DS, Patla AE (2002) Strategies for dynamic stability during locomotion on a slippery surface: effects of prior experience and knowledge. J. Neurophysiol88 (1):339–353

    PubMed  Google Scholar 

  • Marigold DS, Bethune AJ, Patla AE. (2003) Role of the unperturbed limb and arms in the reactive recovery response to an unexpected slip during locomotion. J Neurophysiol. 89(4):1727–37

    Article  PubMed  Google Scholar 

  • Matsushima T, Grillner S (1992) Neural mechanisms of intersegmental coordination in lamprey: local excitability changes modify the phase coupling along the spinal cord. J Neurophysiol 67:373–388.

    PubMed  CAS  Google Scholar 

  • Matsuyama K, Drew T. (2000) Vestibulospinal and reticulospinal neuronal activity during locomotion in the intact cat. I. Walkingon a level surface. J. Neurophysiol. 84(5):2237–56.

    PubMed  CAS  Google Scholar 

  • Miller S, Van Der Burg J, Van der Meche FGA (1975a). Locomotion in the cat: basic programmes of movement. Brain Res 91:239–253.

    Article  PubMed  CAS  Google Scholar 

  • Miller S, Van Der Burg J, Van der Meche (1975b) Coordination of movements of the hindlimbs and forelimbs in different forms of locomotion in normal and decerebrate cats. Brain Res 91:217–237.

    Article  PubMed  CAS  Google Scholar 

  • Miller S, Van der Meche FGA (1976) Coordinated stepping of all four limbs in the high sinal cat. Brain Res 109: 395–398

    Article  PubMed  CAS  Google Scholar 

  • Misiaszek JE, Stephens MJ, Yang JF, Pearson KG. (2000) Early corrective reactionsof the leg to perturbations at the torso during walkingin humans. Exp Brain Res.131(4):511–23.

    Article  PubMed  CAS  Google Scholar 

  • Morin C, Katz R, Mazieres L, and Pierrot-Deseilligny E. (1982) Comparison of soleus H reflex facilitation at theonsetof soleuscontractions produced voluntarily andduring the stancephase of human gait. Neurosci. Lett. 33: 47–53.

    Article  PubMed  CAS  Google Scholar 

  • Nieuwenhuijzen PHJA, Schillings AM, Galen G P van and Duysens J. (2000) Modulation of the Startle Response During Human Gait. J. Neurophysiol. 84, pp 65–74

    PubMed  CAS  Google Scholar 

  • Okamoto T, Kumamoto M (1972) Electromyographic study of the leaming process of walkingin infants. Electromyography and ClinicalNeurophysiology 12:149-158

    Google Scholar 

  • Orsal D, Cabelguen JM, Perret C (1990) Interlimb coordination during fictive locomotion in the thalamiccat. Exp Brain Res 82(3):536–46

    Article  PubMed  CAS  Google Scholar 

  • Pang MYC, Yang JF (2000) The initiation of the swing phase in human infant stepping; the importance of hip position and leg loading. J Physiol 528:389–404

    Article  PubMed  CAS  Google Scholar 

  • Pang MYC, Yang JF (2002) Sensory gating for the initiation of the swing phase in different directions of humaninfant stepping. J of Neurosci 22(13):5734–40

    CAS  Google Scholar 

  • Pang MYC, Yang JF (2001) Interlimb coordination in human infant stepping. J Physiol (Lond) 533:617–625

    Article  CAS  Google Scholar 

  • Pang MY, Lam T, Yang JF. (2003) Infants adapt their stepping to repeated trip-inducing stimuli. J Neurophysiol. (in press)

    Google Scholar 

  • Patla AE, Adkin A, Ballard T (1999) Online steering: coordination and control of body center of mass, head and body reorientation. Exp Brain Res 129:629–634

    Article  PubMed  CAS  Google Scholar 

  • Pearson KG (1993) Common principles of motor control in vertebrates and invertebrates. Annu Rev Neurosci 16:265–297.

    Article  PubMed  CAS  Google Scholar 

  • Pearson KG, Misiaszek JE, Fouad K (1998) Enhancement and resetting oflocomotor activity by muscle afferents. Ann N Y Acad Sci 860:203–15

    Article  PubMed  CAS  Google Scholar 

  • Pearson KG. (2000) Neural adaptation in the generation of rhythmic behavior. Annu Rev Physiol. 62:723–53.

    Article  PubMed  CAS  Google Scholar 

  • Perell KI, Gregor RJ, Buford JA, Smith JL (1993) Adaptive controlfor backward quadrupedal walking. IV. Hindlimb kineticsduring stanceand swing. J Neurophysiol 70:2226–2240.

    PubMed  CAS  Google Scholar 

  • Perret C, Cabelguen, JM (1980) Main characteristics of the hindlimb locomotor cycle in the decorticate cat with specialreference to bifunctional muscles. Brain Res 187:333–352

    Article  PubMed  CAS  Google Scholar 

  • Poppele RE, Rankin A, Eian J (2003) Dorsal spinocerebellar tract neurons respond to contralateral limb stepping Exp Brain Res 149:361–370

    PubMed  CAS  Google Scholar 

  • Prochazka A, Stephens, JA, Wand P (1979) Muscle spindle discharge in normal and obstructed movements. J Physiol 287:57–66

    PubMed  CAS  Google Scholar 

  • Redfern MS, Cham R, Gielo-Perczak K, Gronqvist R, Hirvonen M, Lanshammar H, Marpet M, Pai CY, Powers C (2001) Biomechanics of slips. Ergonomics 44(13):1138–66

    Article  PubMed  CAS  Google Scholar 

  • Rossignol SP, Saltiel MC, Perreault T, Drew K, Pearson KG, Belanger, M (1993) Intralimb and interlimb coordination in the cat during real and fictive rhythmic motor programs. Semin Neurosci 5:67–75

    Article  Google Scholar 

  • Rossignol S (1996) Neural control of stereotypic limb movement. Handbook of physiology. Exercise: regulation and integration of multiplesystems. Am Physiol Sco, Bethesda, MD, pp 173–216

    Google Scholar 

  • Scheibel ME, Scheibel AB (1969) Terminal patterns in cat spinal cord. 3. Primary afferent collaterals. Brain Res 13:417–443

    Article  PubMed  CAS  Google Scholar 

  • Schillings AM, Wezel BMH van, Mulder Th and Duysens J. (2000) Muscular responses and movement strategies during stumbling over obstacles. J. Neurophysiol. 83, pp 2093–2102

    PubMed  CAS  Google Scholar 

  • Schot PK, Decker MJ (1998) The force driven harmonic oscillator model accurately predicts the preferred stride frequency for backward walking. Hum Mov Sci 17:67–76

    Article  Google Scholar 

  • Serrien DJ, Swinnen SP (1997) Coordination constraints induced by effector combination under isofrequency and multifrequency conditions. Journal of Experimental Psychology: Human Perception and Performance 23:1493–1510

    Article  Google Scholar 

  • Serrien DJ, Swinnen SP (1998) Load compensation during homologous and non-homologous coordination. Exp Brain Res 121: 223–229

    Article  PubMed  CAS  Google Scholar 

  • Sherrington CS (1910) Flexorreflex of the limb, crossed extension reflex, and reflex stepping and standing. J Physiol 40:28–121

    PubMed  CAS  Google Scholar 

  • Sinkjaer T, Andersen JB, Ladouceur M, Christensen LO, Nielsen JB. (2000) Major role for sensory feedback in soleus EMG activity in the stance phase of walking in man. J Physiol. 523 vol 3:817–27.

    Article  PubMed  CAS  Google Scholar 

  • Stein PSG, Smith JL (1997) Neuraland biomechanical controlstrategies for different forms of vertebrae hindlimb moto tasks. In: Stein PSG, Grillner S, Selverston AI, Stuart DG (eds) Neurons, networks and motor behavior, MIT press, Cambridge, MA

    Google Scholar 

  • Stein PSG, Victor JC, Field EC and Currie SN (1995) Bilateral control of hindlimb scratsching in the spinal turtle: contralateral spinal circuitry contributes to the normal ipsilateral motor pattern of fictive rostral scratching. J. Neurosci 15:4343–4355

    PubMed  CAS  Google Scholar 

  • Stephens MJ, Yang JF (1999) Loading during the stance phase of walking in humans increases the extensor EMG amplitude but does not change the duration of the step cycle. Exp Brain Res 124:363–370

    Article  PubMed  CAS  Google Scholar 

  • Stolze H, Kuhtz-Buschbeck JP, Mondwurf C, Boczek-Funcke A, Johnk K, Deuschl G, IIIert M (1997) Gait analysis during treadmill and overground locomotion in children and adults. Electromyography and motor control. Electroencephalography and Clinical Neurophysiology 105:490–497

    Article  PubMed  CAS  Google Scholar 

  • Sutherland DH, Olshen R, Cooper L, Woo SL (1980) The development of mature gait. Journal of Bone and Joint Surgery 62:336–353

    PubMed  CAS  Google Scholar 

  • Swinnen SP. Intermanual coordination: from behavioural principles to neural-network interactions. Nat Rev Neurosci. 2002 May; 3(5):348–59.

    Article  PubMed  CAS  Google Scholar 

  • Swinnen SP, Dounskaia N, Verschueren S, Serrien DJ, Daelman A (1995) Relative phase destabilization during interlimb coordination: the disruptive role of kinesthetic afferences inducedby passive movement. Exp Brain Res 105:439–454

    PubMed  CAS  Google Scholar 

  • Swinnen SP, Dounskaia N, Walter CB Serrien DJ (1997) Preferredand induced coordination modes during the acquisition of bimanual movements with a 2:I frequency ratio. J Exp Psychol [Hum. Percept.] e 23, 1087–1110

    Article  Google Scholar 

  • Swinnen SP, Heuer H, Massion J, Casaer P (eds) (1994) Interlimb coordination. Neural, dynamical, and cognitive restraints. Academic Press, San Diego

    Google Scholar 

  • Swinnen SP, Young DE, Walter CB, Serrien DJ (1991) Control of asymmetrical bimanual movements. Exp Brain Res 85:163–173

    Article  PubMed  CAS  Google Scholar 

  • Tang P, Woollacott MH (1999) J Gerontol A Biol Sci Med Sci (2):M89–102!!!

    Article  Google Scholar 

  • Tang P, Woollacott MH, Chong RKY (1998) Contol of reactive balance adjustments in perturbedhuman walking: roles of proximal and distal postural muscleactivity. Exp Brain Res 119 (2):141–52

    Article  PubMed  CAS  Google Scholar 

  • Timoszyk WK, de Leon RD, London N, Roy RR, Edgerton VR, Reinkensmeyer DJ (2002) The rat lumbosacral spinal cord adapts to robotic loading applied during stance. J Neurophysiol 88:3108–3117

    Article  PubMed  CAS  Google Scholar 

  • Ting LH, Raasch CC, Brown DA, Kautz SA, Zajac FE (1998) Sensorimotor state of the contralateral leg affects ipsilateral muscle coordination of pedaling. J Neurophysiol 80(3):1341–51

    PubMed  CAS  Google Scholar 

  • Ting LH., Kautz SA, Brown DA and Zajec FE (2000). Contralateral movement and extensor force generation after flexion phase muscle coordiation in pedaling. J. Neurophysiol 83, 3351–3365.

    PubMed  CAS  Google Scholar 

  • Vallis LA, Patla AE, Adkin AL (2001) Control of steering in the presenceof unexpected head yaw movements. Influenceon sequencingof subtasks. Exp Brain Res 138:128–134

    Article  PubMed  CAS  Google Scholar 

  • Van de Crommert HWAA, Faist M, Berger W, Duysens J (1996) Biceps femoris tendonjerk reflexesare enhancedat the end of the swing phase. Brain Res 734: 341–344

    Article  PubMed  Google Scholar 

  • Verschueren SMP, Swinnen SP, Desloovere K and Duysens J (2002) The effects of tendon vibrationon the spatiotemporal characteristics of humanlocomotion. Exp. Brain Res., 143, 231–239.

    Article  PubMed  Google Scholar 

  • Verschueren SMP, Swinnen SP, Desloovere K and Duysens J (2003) Vibration-induced changes in EMG during human locomotion. J. Neurophysiology, 89, 1299–1307.

    Article  Google Scholar 

  • Viala DVC (1978) Evidence for distinct spinal locomotion generators supplyingrespectively fore-and hindlimbs in the rabbit. Brain Res 155:182–186

    Article  PubMed  CAS  Google Scholar 

  • Visintin M, Barbeau, H (1994) The effects of parallel bars, body weight supportand speed on the modulation of the locomotor pattern of spastic paretic gait. A preliminary communication. Paraplegia, 32(8):540–553

    Article  PubMed  CAS  Google Scholar 

  • Von Holst E (1939/1973) Relativecoordination as a phenomenon and as a methodof analysis of central nervous function. In: Martin R (ed) The collected papers of Erich von Holst. Vol. I. The behavioral physiology of animal and man. University of Miami Press, Coral Gables, Fl.

    Google Scholar 

  • Walmsley B, Nicol MJ (1990) Location and morphology of dorsal spinocerebellar tract neurons that receive monosynaptic afferent input from ankle extensor muscles in cat hindlimb. J Neurophysiol 63:286–293

    PubMed  CAS  Google Scholar 

  • Wannier T, Bastiaanse C, Colombo G, Dietz V (2001) Arm to leg coordination in humans during walking, creeping and swimming activities. Exp Brain Res 141:375–379

    Article  PubMed  CAS  Google Scholar 

  • Webb D, Tuttle RH (1989) The effects of stride frequency on the motion of the upper limbs in human walking. American Journal of Physiological Anthropology 78:321–322

    Google Scholar 

  • Webb D, Tuttle RH, Baksh M (1994) Pendular activity of human upper limbs during slow and normal walking. American Journal of Physical Anthropology 93:477–89

    Article  PubMed  CAS  Google Scholar 

  • Whelan PJ, Hiebert GW, Pearson KG (1995) Stimulation of the group I extensor afferents prolongs the stance phase in walking cats. Exp Brain Res 103:20–30

    Article  PubMed  CAS  Google Scholar 

  • Wisleder D, Zernicke RF, Smith JL (1990) Speed-related changes in hindlimb intersegmental dynamics during the swing phase of cat locomotion. Exp Brain Res 79:651–660

    Article  PubMed  CAS  Google Scholar 

  • Yanagihara D, Udo M, Kondo I, Yoshida T. (1993) A new learning paradigm: adaptive changes in interlimb coordination during perturbed locomotion in decerebrate cats. Neurosci Res. Dec;18(3):241–4.

    Article  PubMed  CAS  Google Scholar 

  • Yang JF, Pang MY (2000) The initiation of the swing phase in human infant stepping: importance ofhip position and leg loading. J Physiol 15(528):389–404

    Google Scholar 

  • Yang JF, Stephens MJ, Vishram R (1998) Transient disturbances to one limb produce coordinated, bilateral responses during infant stepping. J. Neurophysiol 79:2329–2337

    PubMed  CAS  Google Scholar 

  • Zehr EP, Collins DF, Chua R (2001a) Human interlimb reflexes evoked by electrical stimulation of cutaneous nerves innervating the hand and foot. Exp Brain Res 140:495–504

    Article  PubMed  CAS  Google Scholar 

  • Zehr EP, Collins DF, Frigon A, Hoogenboom N (2003) Neural control of rhythmic human arm movement: phase-dependence and task-modulation of Hoffmann reflexes. J Neurophysioll:12–21

    Google Scholar 

  • Zehr EP, Hesketh KL, Chua R (2001b) Differential regulation of cutaneous and If-reflexes during leg cycling in humans. J Neurophysiol 85: 1178–1185

    PubMed  CAS  Google Scholar 

  • Zehr EP, Kido A Neural control of rhythmic, cyclical human arm movement: task dependency, nerve specificity and phase modulation of cutaneous reflexes. J Physiol (2001) 537:1033–1045

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Duysens, J., Donker, S., Verschueren, S.M.P., Smits-Engelsman, B.C.M., Swinnen, S.P. (2004). Sensory Influences on Interlimb Coordination During Gait. In: Swinnen, S.P., Duysens, J. (eds) Neuro-Behavioral Determinants of Interlimb Coordination. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9056-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9056-3_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4777-4

  • Online ISBN: 978-1-4419-9056-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics