The Presympathetic Cells of the Rostral Ventrolateral Medulla (RVLM): Anatomy, Physiology and Role in the Control of Circulation

  • Patrice G. Guyenet
  • Ruth L. Stornetta


The ventrolateral aspect of the medulla oblongata (RVLM) contains presympathetic (PS) neurons that are highly active and receive strong inhibitory inputs from baroreceptors. These bulbospinal and barosensitive (BSBS) neurons are glutamatergic and express several other phenotypes including adrenergic (C1 cells). BSBS neurons selectively target sympathetic preganglionic neurons (SPGNs) that control the heart, kidney, adrenal medulla and the resistance vessels and are therefore essential for blood pressure maintenance and stabilization. In tissue slices, RVLM PS neurons display intrinsic beating properties that can be upregulated by slow transmitters such as angiotensin IL Glutamate, GABA and glycine are the best known mediators of fast synaptic transmission in these cells. Both glutamatergic and GABAergic inputs to BSBS neurons are regulated presynaptically by catecholamines, opioids and, probably, serotonin. The on-going activity of RVLM BSBS neurons in vivo is probably due to inotropic synaptic inputs and slow transmitters that upregulate the intrinsic beating properties of the cells. In vivo, RVLM BSBS neurons are subject to an intense GABAergic inhibitory tone indicating that dishinhibition could be crucial for the regulation of sympathetic tone. Mono or oligosynaptic inputs to BSBS neurons originate from numerous regions of the spinal cord, medulla oblongata, pons, midbrain and hypothalamus. The relative weight of these various inputs depends on the behavior or physiological status of the animal. Under anesthesia some of these brain regions are active causing excitation or disinhibition of RVLM BSBS neurons. Increased activity of RVLM BSBS neurons is suspected to contribute to the increased sympathetic tone associated with hypertension and, possibly, heart failure.

Key words

RVLM C1 adrenergic cells epinephrine neural control of circulation blood pressure medulla oblongata 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen, A.M., 2002. Inhibition of the hypothalamic paraventricular nucleus in spontaneously hypertensive rats dramatically reduces sympathetic vasomotor tone. Hypertension 39275–280.PubMedCrossRefGoogle Scholar
  2. Allen, A.M., McKinley, M.J., Oldfield, B.J., Dampney, R.A., Mendelsohn, F.A., 1988. Angiotensin II receptor binding and the baroreflex pathway. Clinical & Experimental Hypertension — Part ATheory & Practice 10 Suppl 163–78.Google Scholar
  3. Allen, A.M., Moeller, I., Jenkins, T.A., Zhuo, J., Aldred, G.P., Chai, S.Y., Mendelsohn, F.A.O., 1998. Angiotensin receptors in the nervous system. Brain Res. Bull 4717–28.PubMedCrossRefGoogle Scholar
  4. Amendt, K., Czachurski, J., Dembowsky, K., Seller, H., 1978. Neurones within the “chemosensitive area” on the ventral surface of the brainstem which project to the intermediolateral column. Pflugers Archiv. — Eur. J. Physiol. 375289–292.CrossRefGoogle Scholar
  5. Andreatta-Van Leyen, S., Averill, D.B., Ferrario, C.M., 1990. Cardiovascular actions of vasopressin at the ventrolateral medulla. Hypertension 15 (2 Suppl)Il02–I106.CrossRefGoogle Scholar
  6. Arnolda, L., Wang, H.H., Minson, J., Llewellyn-Smith, I., Suzuki, S., Pilowsky, P., Chalmers, J., 1997. Central control mechanisms in hypertension. Austr. & New Zealand J. Medicine 27(4)474–478.CrossRefGoogle Scholar
  7. Bago, M., Dean, C., 2001. Sympathoinhibition from ventrolateral periaqueductal gray mediated by 5-HT1A receptors in the RVLM. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 280R976–R984.PubMedGoogle Scholar
  8. Baraban, S.C., Stornetta, R.L., Guyenet, P.G., 1995. Effects of morphine and morphine withdrawal on adrenergic neurons of the rat rostral ventrolateral medulla. Brain Res. 676245–257.PubMedCrossRefGoogle Scholar
  9. Barman, S.M., Gebber, G.L., 1985. Axonal projection patterns of ventrolateral medullospinal sympathoexcitatory neurons. J. Neurophys. 53,1551–1566.Google Scholar
  10. Barman, S.M., Gebber, G.L., 1988. The axons of raphespinal sympathoinhibitory neurons branch in the cervical spinal cord. Brain Res. 441371–376.PubMedCrossRefGoogle Scholar
  11. Barman, S.M., Gebber, G.L., Orer, H.S., 2000. Medullary lateral tegmental field: an important source of basal sympathetic nerve discharge in the cat. Am. J. Physiol.-Reg. Integr. Comp. Physiol. 278R995–R1004.Google Scholar
  12. Batten, T.F.C., 1995. Immunolocalization of putative neurotransmitters innervating autonomic regulating neurones of cat ventral medulla. Brain Res. Bull. 37487–506.PubMedCrossRefGoogle Scholar
  13. Berger, A.J., Bayliss, D.A., Viana, F., 1996. Development of hypoglossal motoneurons. J. Appl. Physiol. 811039–1048.PubMedGoogle Scholar
  14. Blessing, W.W., 1997. Arterial pressure and blood flow to the tissues. The lower brainstem and bodily homeostasis. New York: Oxford University Press, p 165–268.Google Scholar
  15. Brown, D.L., Guyenet, P.G., 1984. Cardiovascular neurons of brain stem with projections to spinal cord. Am. J. Physiol. 247R1009–R1016.PubMedGoogle Scholar
  16. Brown, D.L., Guyenet, P.G., 1985. Electrophysiological study of cardiovascular neurons in the rostral ventrolateral medulla in rats. Circ. Res. 56359–369.PubMedCrossRefGoogle Scholar
  17. Campos Junior, R.R., Possasd O.S., Cravo, S.L., Lopes, O.U., Guertzenstein, P.G., 1994. Putative pathways involved in cardiovascular responses evoked from the caudal pressor area. Brazilian J. Med. & Biol. Res. 272467–2479.Google Scholar
  18. Campos, R.R., McAllen, R.M., 1997. Cardiac sympathetic premotor neurons. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 272R615–R620.Google Scholar
  19. Campos, R.R., McAllen, R.M., 1999. Tonic drive to sympathetic premotor neurons of rostral ventrolateral medulla from caudal pressor area neurons. Am. J. Physiol.-Reg. Integr. Comp. Physiol. 276R1209–R1213.Google Scholar
  20. Cao, W.H., Morrison, S.F., 2001. Differential chemoreceptor reflex responses of adrenal preganglionic neurons. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 281R1825–R1832.PubMedGoogle Scholar
  21. Carrive, P., Bandler, R., Dampney, R.A., 1989. Viscerotopic control of regional vascular beds by discrete groups of neurons within the midbrain periaqueductal gray. Brain Res. 493385–390.PubMedCrossRefGoogle Scholar
  22. Ceccatelli, S., Villar, M.J., Goldstein, M., Hòkfelt, T., 1989. Expression of c-Fos immunoreactivity in transmitter-characterized neurons after stress. Proc. Nat. Acad. Sci. (USA) 869569–9573.CrossRefGoogle Scholar
  23. Chan, R.K.W., Chan, Y.S., Wong, T.M., 1991. Electrophysiological properties of neurons in the rostral ventrolateral medulla of normotensive and spontaneously hypertensive rats. Brain Res. 549,118–126.PubMedCrossRefGoogle Scholar
  24. Chan, R.K.W., Sawchenko, P.E., 1994. Spatially and temporally differentiated patterns of c-fos expression in the brainstem catecholaminergic cell groups induced by cardiovascular challenges in the rat. J. Comp. Neurol. 348433–460.PubMedCrossRefGoogle Scholar
  25. Chan, R.K.W., Sawchenko, P.E., 1998. Organization and transmitter specificity of medullary neurons activated by sustained hypertension: implications for understanding baroreceptor reflex circuitry. J. Neurosci. 18,371–387.PubMedGoogle Scholar
  26. Chan, S.H.H., Wang, L.L., Wang, S.H., Chan, J.Y.H., 2001. Differential cardiovascular responses to blockade of nNOS or iNOS in rostral ventrolateral medulla of the rat. Br. J. Pharmacol. 133606–614.PubMedCrossRefGoogle Scholar
  27. Chen, C.T., Hwang, L.L., Chang, J.K., Dun, N.J., 2000. Pressor effects of orexins injected intracisternally and to rostral ventrolateral medulla of anesthetized rats. Am. J. Physiol.-Reg. Integr. Comp. Physiol. 278R692–R697.Google Scholar
  28. Cravo, S.L., Morrison, S.F., Reis, D.J., 1991. Differentiation of two cardiovascular regions within caudal ventrolateral medulla. Am. J. Physiol. 261R985–R994.PubMedGoogle Scholar
  29. Czirjak, G., Fischer, T., Spat, A., Lesage, F., Enyedi, P., 2000. TASK (TWIK-related acid-sensitive K+ channel) is expressed in glomerulosa cells of rat adrenal cortex and inhibited by angiotensin II. Molecular Endocrinology 14863–874.PubMedCrossRefGoogle Scholar
  30. Dampney, R.A., Goodchild, A.K., McAllen, R.M., 1987. Vasomotor control by subretrofacial neurones in the rostral ventrolateral medulla. Can. J. Physiol. Pharmacol. 65,1572–1579.PubMedCrossRefGoogle Scholar
  31. Dampney, R.A.L., 1994. Functional organization of central pathways regulating the cardiovascular system. Physiol. Rev. 74323–364.PubMedCrossRefGoogle Scholar
  32. Dampney, R.A.L., Coleman, M.J., Fontes, M.A.P., Hirooka, Y., Horiuchi, J., Li, Y.W., Poison, J.W., Potts, P.D., Tagawa, T., 2002. Central mechanisms underlying short-and long-term regulation of the cardiovascular system. Clin. Exp. Pharmacol. Physiol. 29261–268.PubMedCrossRefGoogle Scholar
  33. Dampney, R.A.L., Hirooka, Y., Potts, P.D., Head, G.A., 1996. Functions of angiotensin peptides in the rostral ventrolateral medulla. Clin. Exp. Pharmacol. Physiol. 23S105–S111.PubMedCrossRefGoogle Scholar
  34. Dampney, R.A.L., Tagawa, T., Horiuchi, J., Potts, P.D., Fontes, M., Poison, J.W., 2000. What drives the tonic activity of presympathetic neurons in the rostral ventrolateral medulla? Clin. Exp. Pharmacol. Physiol. 271049–1053.CrossRefGoogle Scholar
  35. Darnall, R.A., Guyenet, P.G., 1990. Respiratory modulation of pre-and postganglionic lumbar vasomotor sympathetic neurons in the rat. Neurosci. Lett. 119,148–152.PubMedCrossRefGoogle Scholar
  36. de Almeida Colombari, D.S., Portelinha, L.S., Campos, R.R. Jr., Lopes, O.U., 2002. Haemodynamic effects of hypothalamic disconnection in anaesthetized rats. Auton. Neurosci. 2851–54.CrossRefGoogle Scholar
  37. Dean, C., Bago, M., 2002. Renal sympathoinhibition mediated by 5-HT1A receptors in the RVLM during severe hemorrhage in rats. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 282R122–R130.PubMedGoogle Scholar
  38. Del Negro, C.A., Koshiya, N., Butera, R.J., Jr., Smith, J.C., 2002. Persistent sodium current, membrane properties and bursting behavior of pre-Botzinger complex inspiratory neurons in vitro. J. Neurophys. 882242–2250.CrossRefGoogle Scholar
  39. Dembowsky, K., McAllen, R.M., 1990. Baroreceptor inhibition of subretrofacial neurons: evidence from intracellular recordings in the cat. Neurosci. Lett. 111139–143.PubMedCrossRefGoogle Scholar
  40. Deuchars, S.A., Morrison, S.F., Gilbey, M.P., 1995. Medullary-evoked EPSPs in neonatal rat sympathetic preganglionic neurones in vitro. J. Physiol. (Lond.) 487453–463.Google Scholar
  41. Dun, N.J., Dun, S.L., Shen, E., Tang, H., Huang, R., Chiu, T.H., 1995. C-fos expression as a marker of central cardiovascular neurons. Biol. Signals 4117–123.PubMedCrossRefGoogle Scholar
  42. Dun, N.J., Dun, S.L., Chen, C.T., Hwang, L.L., Kwok, E.H., Chang, J.K., 2000. Orexins: a role in medullary sympathetic outflow. Regul. Pept. 96,65–70.PubMedCrossRefGoogle Scholar
  43. Dun, S.L., Ng, Y.K., Brailoiu, G.C., Ling, E.A., Dun, N.J., 2002. Cocaine-and amphetamine-regulated transcript peptide-immunoreactivity in adrenergic C1 neurons projecting to the intermediolateral cell column of the rat. J. Chem. Neuroanat. 23123–132.PubMedCrossRefGoogle Scholar
  44. Granata, A.R., Ruggiero, D.A., 1998. Evidence of disynaptic projections from the rostral ventrolateral medulla to the thoracic spinal cord. Brain Res. 781329–334.PubMedCrossRefGoogle Scholar
  45. Guertzenstein, P.G., Silver, A., 1974. Fall in blood pressure produced from discrete regions of the ventral surface of the medulla by glycine and lesions. J. Physiol. (Lond.) 242,489–503.Google Scholar
  46. Guyenet, P.G., 1997. Is the hypotensive effect of Clonidine and related drugs due to imidazoline binding sites? Am. J. Physiol.-Reg. Integr. Comp. Physiol. 273R1580–R1584.Google Scholar
  47. Guyenet, P.G., 2000. Neural structures that mediate sympathoexcitation during hypoxia. Respir. Physiol. 121147–162.PubMedCrossRefGoogle Scholar
  48. Guyenet, P.G., Damali, R.A., Riley, T.A., 1990. Rostral ventrolateral medulla and sympathorespiratory integration in rats. Am. J. Physiol. 2591063–R1074.Google Scholar
  49. Guyenet, P.G., Koshiya, N., 1992. Respiratory-sympathetic integration in the medulla oblongata. In: Kunos, G., Ciriello, J.editors. Central neural mechanisms in cardiovascular regulation, vol. II. Boston: Birkhauser, p 226–247.CrossRefGoogle Scholar
  50. Guyenet, P.G., Koshiya, N., Huangfu, D., Baraban, S.C., Stornetta, R.L., Li, Y.-W., 1996. Role of medulla oblongata in generation of sympathetic and vagal outflows. Prog. Brain Res. 107,127–144.PubMedCrossRefGoogle Scholar
  51. Guyenet, P.G., Stornetta, R.L., 1998. Central nervous system regulation of the sympathetic and cardiovagal vasomotor outflows. In: Yaksh, T.L., Lynch, C., Zapol, W.M., Maze, M., Biebuyck, J.F., Saidman, L.J., editors. Anesthesia: biologic foundations. Philadelphia: Lippincott-Raven, p 1205–1232.Google Scholar
  52. Guyenet, P.G., Stornetta, R.L., Schreihofer, A.M., Pelaez, N.M., Hayar, A., Aicher, S., Llewellyn-Smith, I.J., 2002. Opioid signalling in the rat rostral ventrolateral medulla. Clin. Exp. Pharmacol. Physiol. 29238–242.PubMedCrossRefGoogle Scholar
  53. Habler, HJ., Janig, W., Michaelis, M., 1994. Respiratory modulation in the activity of sympathetic neurones. Prog. Neurobiol. 43567–606.PubMedCrossRefGoogle Scholar
  54. Hancock, M.B., Nicholas, A.P., 1987. Oxytocin-immunoreactive projections onto medullary adrenaline neurons. Brain Res. Bull. 1813–220.CrossRefGoogle Scholar
  55. Haselton, J.R., Guyenet, P.G., 1989. Central respiratory modulation of medullary sympathoexcitatory neurons in rat. Am. J. Physiol.-Reg. Integr. Comp. Physiol. 256R739–R750.Google Scholar
  56. Haselton, J.R., Guyenet, P.G., 1990. Ascending collaterals of medullary barosensitive neurons and C1 cells in rats. Am. J. Physiol.-Reg. Integr. Comp. Physiol. 258R1051–R1063.Google Scholar
  57. Hayar, A., Guyenet, P.G., 1998. Pre-and postsynaptic inhibitory actions of methionine-enkephalin on identified bulbospinal neurons of the rat RVL. J. Neurophysiol. 802003–2014.PubMedGoogle Scholar
  58. Hayar, A., Guyenet, P.G., 1999. α2-adrenoceptor-mediated presynaptic inhibition in bulbospinal neurons of rostral ventrolateral medulla. Am. J. Physiol. Heart. Circ. Physiol. 277H1069–H1080.Google Scholar
  59. Hayar, A., Guyenet, P.G., 2000. Prototypical imidazoline-1 receptor ligand moxonidine activates alpha2-adrenoceptors in bulbospinal neurons of the RVL. J. Neurophys. 83766–776.Google Scholar
  60. Heike, C.J., Capuano, S., Tran, N., Zhuo, H., 1997. Immunocytochemical studies of the 5-HT1A receptor in ventral medullary neurons that project to the intermediolateral cell column and contain serotonin or tyrosine hydroxylase immunoreactivity. J. Comp. Neurol. 379261–270.CrossRefGoogle Scholar
  61. Heike, C.J., Sayson, S.C., Keeler, J.R., Charlton, C.G., 1986. Thyrotropin-releasing hormone-immunoreactive neurons project from the ventral medulla to the intermediolateral cell column: partial coexistence with serotonin. Brain Res. 3811–7.CrossRefGoogle Scholar
  62. Henderson, L.A., Keay, K.A., Bandler, R., 1998b. Hypotension following acute hypovolemia depends on the caudal midline medulla. NeuroReport 9,1839–1844.PubMedCrossRefGoogle Scholar
  63. Henderson, L.A., Keay, K.A., Bandler, R., 1998a. The ventrolateral periaqueductal gray projects to caudal brainstem depressor regions, a functional-anatomical and physiological study. Neurosci. 82201–221.CrossRefGoogle Scholar
  64. Hirooka, Y., Head, G.A., Potts, P.D., Godwin, S.J., Bendle, R.D., Dampney, R.A.L., 1996a. Medullary neurons activated by angiotensin II in the conscious rabbit. Hypertension 27287–296.PubMedCrossRefGoogle Scholar
  65. Hirooka, Y., Poison, J.W., Dampney, R.A.L., 1996b. Pressor and sympathoexcitatory effects of nitric oxide in the rostral ventrolateral medulla. J. Hypertension 14,1317–1324.CrossRefGoogle Scholar
  66. Hirooka, Y., Potts, P.D., Dampney, R.A.L., 1997. Role of angiotensin II receptor subtypes in mediating the sympathoexcitatory effects of exogenous and endogenous angiotensin peptides in the rostral ventrolateral medulla of the rabbit. Brain Res. 772107–114.PubMedCrossRefGoogle Scholar
  67. Hökfelt, T., Fuxe, K., Goldstein, M., Johansson, O., 1974. Immunohistochemical evidence for the existence of adrenaline neurons in the rat brain. Brain Res. 66235–251.CrossRefGoogle Scholar
  68. Huangfu, D., Hwang, L.J., Riley, T.A., Guyenet, P.G., 1994. Role of serotonin and catecholamines in sympathetic responses evoked by stimulation of rostral medulla. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 266R338–R352.Google Scholar
  69. Huangfu, D., Schreihofer, A.M., Guyenet, P.G., 1997. Effect of cholinergic agonists on bulbospinal C1 neurons in rats. Am. J. Physiol.-Reg. Integr. Comp. Physiol. 272R249–R258.Google Scholar
  70. Hwang, L.L., Dun, N.J., 1998. 5-hydroxytryptamine responses in immature rat rostral ventrolateral medulla neurons in vitro. J. Neurophys. 80,1033–1041.Google Scholar
  71. Iadecola, C., Faris, P.L., Hartman, B.K., Xu, X.H., 1993. Localization of NADPH diaphorase in neurons of the rostral ventral medulla-possible role of nitric oxide in central autonomic regulation and oxygen chemoreception. Brain Res. 603,173–179.PubMedCrossRefGoogle Scholar
  72. Ishide, T., Hara, Y., Maher, T.J., Ally, A., 2000. Glutamate neurotransmission and nitric oxide interaction within the ventrolateral medulla during cardiovascular responses to muscle contraction. Brain Res. 874,107–115.PubMedCrossRefGoogle Scholar
  73. Ito, S., Komatsu, K., Tsukamoto, K., Sved, A.F., 2000. Excitatory amino acids in the rostral ventrolateral medulla support blood pressure in spontaneously hypertensive rats. Hypertension 35,413–417.PubMedCrossRefGoogle Scholar
  74. Ito, S., Komatsu, K., Tsukamoto, K., Sved, A.F., 2001. Tonic excitatory input to the rostral ventrolateral medulla in Dahl salt-sensitive rats. Hypertension 37 (2 PT 2), 687–691.CrossRefGoogle Scholar
  75. Ito, S., Sved, A.F., 1997. Tonic glutamate-mediated control of rostral ventrolateral medulla and sympathetic vasomotor tone. Am. J. Physiol.-Reg. Integr. Comp. Physiol. 273R487–R494.Google Scholar
  76. Ito, S., Sved, A.F., 2000. Pharmacological profile of depressor response elicited by sarthran in rat ventrolateral medulla. Am. J. Physiol. Heart Circ. Physiol. 279H2961–H2966.PubMedGoogle Scholar
  77. Jansen, A.S., Ter Horst, G.J., Mettenleiter, T.C., Loewy, A.D., 1992. CNS cell groups projecting to the submandibular parasympathetic preganglionic neurons in the rat: a retrograde transneuronal viral cell body labeling study. Brain Res. 572253–260.PubMedCrossRefGoogle Scholar
  78. Jansen, A.S.P., Nguyen, X.V., Karpitskiy, V., Mettenleiter, T.C., Loewy, A.D., 1995a. Central command neurons of the sympathetic nervous system, basis of the fight-or flight response. Science 270644–646.PubMedCrossRefGoogle Scholar
  79. Jansen, A.S.P., Wessendorf, M.W., Loewy, A.D., 1995b. Transneuronal labeling of CNS neuropeptide and monoamine neurons after Pseudorabies virus injections into the stellate ganglion. Brain Res. 6831–24.PubMedCrossRefGoogle Scholar
  80. Jeske, I., Morrison, S.F., Cravo, S.L., Reis, D.J., 1993. Identification of baroreceptor reflex interneurons in the caudal ventrolateral medulla. Am. J. Physiol.-Reg. Integr. Comp. Physiol. 264R169–R178.Google Scholar
  81. Jeske, I., Reis, D.J., Milner, T.A., 1995. Neurons in the barosensory area of the caudal ventrolateral medulla project monosynaptically on to sympathoexcitatory bulbospinal neurons in the rostral ventrolateral medulla. Neurosci. 65343–353.CrossRefGoogle Scholar
  82. Kangrga, I.M., Loewy, A.D., 1995. Whole-cell recordings from visualized C1 adrenergic bulbospinal neurons, Ionic mechanisms underlying vasomotor tone. Brain Res. 670215–232.PubMedCrossRefGoogle Scholar
  83. Kerman, I.A., McAllen, R.M., Yates, B.J., 2000a. Patterning of sympathetic nerve activity in response to vestibular stimulation. Brain Res. Bull. 5311–16.PubMedCrossRefGoogle Scholar
  84. Kerman, I.A., Yates, B.J., McAllen, R.M., 2000b. Anatomic patterning in the expression of vestibulosympathetic reflexes. Am. J. Physiol. Regul. Integr. Comp. Physiol. 279R109–R117.PubMedGoogle Scholar
  85. Kishi, E., Ootsuka, Y.O., Terui, N., 2000. Different cardiovascular neuron groups in the ventral reticular formation of the rostral medulla in rabbits, single neurone studies. J. Auton. Nerv. Syst. 7974–83.PubMedCrossRefGoogle Scholar
  86. Kishi, T., Hirooka, Y., Ito, K., Sakai, K., Shimokawa, H., Takeshita, A., 2002. Cardiovascular effects of overexpression of endothelial nitric oxide synthase in the rostral ventrolateral medulla in stroke-prone spontaneously hypertensive rats. Hypertension 39264–268.PubMedCrossRefGoogle Scholar
  87. Kishi, T., Hirooka, Y., Sakai, K., Shigematsu, H., Shimokawa, H., Takeshita, A., 2001. Overexpression of eNOS in the RVLM causes hypotension and bradycardia via GABA release. Hypertension 38896–901.PubMedGoogle Scholar
  88. Koshiya, N., Guyenet, P.G., 1994. Role of the pons in the carotid sympathetic chemoreflex. Am. J. Physiol. 267R508–R518.PubMedGoogle Scholar
  89. Koshiya, N., Huangfu, D., Guyenet, P.G., 1993. Ventrolateral medulla and sympathetic chemoreflex in the rat. Brain Res. 609174–184.PubMedCrossRefGoogle Scholar
  90. Kumada, M., Terui, N., Kuwaki, T., 1990. Arterial baroreceptor reflex, its central and peripheral neural mechanisms. Prog. in Neurobiol. 35331–361.CrossRefGoogle Scholar
  91. Lewis, D.I., Coote, J.H., 1995. Chemical mediators of spinal inhibition of rat sympathetic neurones on stimulation in the nucleus tractus solitarii. J. Physiol. (Lond.) 486483–494.Google Scholar
  92. Lewis, D.I., Coote, J.H., 1996. Baroreceptor-induced inhibition of sympathetic neurons by GABA acting at a spinal site. Am. J. Physiol. Heart Circ. Physiol. 270H1885–H1892.Google Scholar
  93. Li, D.P., Chen, S.R., Pan, H.L., 2002b. Nitric oxide inhibits spinally projecting paraventricular neurons through potentiation of presynaptic GABA release. J. Neurophys. 882664–2674.CrossRefGoogle Scholar
  94. Li, D.P., Pan, H.L., 2000. Responses of neurons in rostral ventrolateral medulla to activation of cardiac receptors in rats. Am. J. Physiol. Heart Circ. Physiol. 279H2549–H2557.PubMedGoogle Scholar
  95. Li, Y.F., Roy, S.K., Channon, K.M., Zucker, I.H., Patel, K.P., 2002a. Effect of in vivo gene transfer of nNOS in the PVN on renal nerve discharge in rats. Am. J. Physiol. Heart Circ. Physiol. 282H594–H601.PubMedGoogle Scholar
  96. Li, Y.W., Bayliss, D.A., Guyenet, P.G., 1995. CI neurons of neonatal rats, Intrinsic beating properties and alpha2-adrenergic receptors. Am. J. Physiol.-Reg. Integr. Comp. Physiol. 269R1356–R1369.Google Scholar
  97. Li, Y.W., Dampney, R.A.L., 1994. Expression of Fos-like protein in the brain following sustained hypertension and hypotension in conscious rabbits. Neurosci. 61613–634.CrossRefGoogle Scholar
  98. Li, Y.W., Gieroba, Z.J., McAllen, R.M., Blessing, W.W., 1991. Neurons in rabbit caudal ventrolateral medulla inhibit bulbospinal barosensitive neurons in rostral medulla. Am. J. Physiol.-Reg. Integr. Comp. Physiol. 261R44–R51.Google Scholar
  99. Li, Y.W., Guyenet, P.G., 1995. Neuronal excitation by angiotensin II in the rostral ventrolateral medulla of the rat in vitro. Am. J. Physiol. 268R272–R277.PubMedGoogle Scholar
  100. Li, Y.W., Guyenet, P.G., 1996. Angiotensin II decreases a resting K+ conductance in rat bulbospinal neurons of the C1 area. Circ. Res. 78274–282.PubMedCrossRefGoogle Scholar
  101. Li, Y.W., Guyenet, P.G., 1997. Effect of substance P on C1 and other bulbospinal cells of the RVLM in neonatal rats. Am. J. Physiol.-Reg. Integr. Comp. Physiol. 273R805–R813.Google Scholar
  102. Li, Y.W., Guyenet, P.G., Bayliss, D.A., 1998. Voltage-dependent calcium currents in bulbospinal neurons of neonatal rat rostral ventrolateral medulla, Modulation by alpha2-adrenergic receptors. J. Neurophys. 79583–594.Google Scholar
  103. Lin, H.H., Wu, S.Y., Lai, C.C., Dun, N.J., 1998. GABA-and glycine-mediated inhibitory postsynaptic potentials in neonatal rat rostral ventrolateral medulla neurons in vitro. Neurosci. 82,429–442.CrossRefGoogle Scholar
  104. Lipski, J., Kanjhan, R., Kruszewska, B., Rong, W.F., 1996. Properties of presympathetic neurones in the rostral ventrolateral medulla in the rat, An intracellular study ’in vivo’. J. Physiol. (Lond.) 490729–744.Google Scholar
  105. Lipski, J., Kanjhan, R., Kruszewska, B., Smith, M., 1995. Barosensitive neurons in the rostral ventrolateral medulla of the rat in vivo, Morphological properties and relationship to C1 adrenergic neurons. Neurosci. 69601–618.CrossRefGoogle Scholar
  106. Lipski, J., Kawai, Y., Qi, J., Comer, A., Win, J., 1998. Whole cell patch-clamp study of putative vasomotor neurons isolated from the rostral ventrolateral medulla. Am. J. Physiol. Regul. Integr. Comp. Physiol. 274R1099–R1110.Google Scholar
  107. Llewellyn-Smith, I.J., Schreihofer, A.M., Guyenet, P.G., 2001. Distribution and amino acid content of enkephalin-immunoreactive inputs onto juxtacellularly-labeled bulbospinal barosensitive neurons in rat rostral ventrolateral medulla. Neurosci. 108307–322.CrossRefGoogle Scholar
  108. Loewy, A.D., 1998. Viruses as transneuronal tracers for defining neural circuits. Neurosci. Biobehav. Rev. 22679–684.PubMedCrossRefGoogle Scholar
  109. Lovick, T.A., 1987. Differential control of cardiac and vasomotor activity by neurones in nucleus paragigantocellularis lateralis in the cat. J. Physiol. (London) 38923–36.Google Scholar
  110. Lovick, T.A., 1992. Midbrain influences on ventrolateral medullo-spinal neurones in the rat. Exp. Brain Res. 90,147–152.PubMedCrossRefGoogle Scholar
  111. Machado, B.H., Bonagamba, L.G., Dun, S.L., Kwok, E.H., Dun, N.J., 2002. Pressor response to microinjection of orexin/hypocretin into rostral ventrolateral medulla of awake rats. Regul. Pept. 10475–81.PubMedCrossRefGoogle Scholar
  112. Madden, C.J., Ito, S., Rinaman, L., Wiley, R.G., Sved, A.F., 1999. Lesions of the C1 catecholaminergic neurons of the ventrolateral medulla in rats using anti-dopamine beta-hydroxylase-saporin. Am. J. Physiol. 277R1063–R1075.PubMedGoogle Scholar
  113. Martins-Pinge, M.C., Araújo, G.C., Lopes, O.U., 1999. Nitric oxide-dependent guanylyl cyclase participates in the glutamatergic neurotransmission within the rostral ventrolateral medulla of awake rats. Hypertension 34748–751.PubMedCrossRefGoogle Scholar
  114. McAllen, R.M., 1987. Central respiratory modulation of subretrofacial bulbospinal neurons in the cat. J. Physiol. (London) 388533–545.Google Scholar
  115. McAllen, R.M., Badoer, E., Shafton, A.D., Oldfìeld, B.J., McKinley, M.J., 1992. Hemorrhage induces c-fos immunoreactivity in spinally projecting neurons of cat subretrofacial nucleus. Brain Res. 575329–332.PubMedCrossRefGoogle Scholar
  116. McAllen, R.M., May, C.N., Shafton, A.D., 1995. Functional anatomy of sympathetic premotor cell groups in the medulla. Clin. Exp. Hypertension 17209–221.CrossRefGoogle Scholar
  117. McCulloch, P.F., Panneton, W.M., Guyenet, P.G., 1999. The rostral ventrolateral medulla mediates the sympathoactivation produced by chemical stimulation of the rat nasal mucosa. J. Physiol. (Lond.) 516,471–484.CrossRefGoogle Scholar
  118. Milner, T.A., Drake, C.T., Aicher, S.A., 2002. C1 adrenergic neurons are contacted by presynaptic profiles containing delta-opioid receptor immunoreactivity. Neurosci. 110691–701.CrossRefGoogle Scholar
  119. Milner, T.A., Pickel, V.M., Morrison, S.F., Reis, D.J., 1989. Adrenergic neurons in the rostral ventrolateral medulla: ultrastructure and synaptic relations with other transmitter-identified neurons. Prog. Brain Res. 81,29–47.PubMedCrossRefGoogle Scholar
  120. Milner, T.A., Pickel, V.M., Reis, D.J., 1990. Tyrosine hydroxylase and enkephalin in the rostral ventrolateral medulla: major synaptic contacts from opioid terminals on catecholaminergic neurons. Prog.Clin. Biol. Res. 328,195–198.PubMedGoogle Scholar
  121. Milner, T.A., Reis, D.J., Pickel, V.M., Aicher, S.A., Giuliano, R., 1993. Ultrastructural localization and afferent sources of corticotropin-releasing factor in the rat rostral ventrolateral medulla, implications for central cardiovascular regulation. J. Comp. Neurol. 333,151–167.PubMedCrossRefGoogle Scholar
  122. Milner, T.A., Rosin, D.L., Lee, A., Aicher, S.A., 1999. Alpha2A-adrenergic receptors are primarily presynaptic heteroreceptors in the C1 area of the rat rostral ventrolateral medulla. Brain Res. 821200–211.PubMedCrossRefGoogle Scholar
  123. Minson, J., Arnolda, L., Llewellyn-Smith, I., Pilowsky, P., Chalmers, J., 1996. Altered c-fos in rostral medulla and spinal cord of spontaneously hypertensive rats. Hypertension 27433–441.PubMedCrossRefGoogle Scholar
  124. Miyawaki, T., Goodchild, A.K., Pilowsky, P.M., 2001. Rostral ventral medulla 5-HT1A receptors selectively inhibit the somatosympathetic reflex. Am. J. Physiol. Regul. Integr. Comp. Physiol. 280R1261–R1268.PubMedGoogle Scholar
  125. Miyawaki, T., Goodchild, A.K., Pilowsky, P.M., 2002. Activation of mu-opioid receptors in rat ventrolateral medulla selectively blocks baroreceptor reflexes while activation of delta opioid receptors blocks somato-sympathetic reflexes. Neurosci. 109,133–144.CrossRefGoogle Scholar
  126. Miyawaki, T., Minson, J., Amolda, L., Chalmers, J., Llewellyn-Smith, I., Pilowsky, P., 1996a. Role of excitatory amino acid receptors in cardiorespiratory coupling in ventrolateral medulla. Am. J. Physiol.-Reg. Integr. Comp. Physiol. 271R1221–R1230.Google Scholar
  127. Miyawaki, T., Minson, J., Amolda, L., Llewellyn-Smith, I., Chalmers, J., Pilowsky, P., 1996b. AMPA/kainate receptors mediate sympathetic chemoreceptor reflex in the rostral ventrolateral medulla. Brain Res. 72664–68.PubMedGoogle Scholar
  128. Miyawaki, T., Pilowsky, P., Sun, Q.J., Minson, J., Suzuki, S., Amolda, L., Llewellyn-Smith, I., Chalmers, J., 1995. Central inspiration increases barosensitivity of neurons in rat rostral ventrolateral medulla. Am. J. Physiol. 268R909–R918.PubMedGoogle Scholar
  129. Morrison, S.F., 2001. Differential control of sympathetic outflow. Am. J. Physiol. Regul. Integr. Comp. Physiol. 281R683–R698.PubMedGoogle Scholar
  130. Morrison, S.F., Callaway, J., Milner, T.A., Reis, D.J., 1989b. Glutamate in the spinal sympathetic intermediolateral nucleus: localization by light and electron microscopy. Brain Res. 5035–15.PubMedCrossRefGoogle Scholar
  131. Morrison, S.F., Cao, W.H., 2000. Different adrenal sympathetic preganglionic neurons regulate epinephrine and norepinephrine secretion. Am. J. Physiol. Regul. Integr. Comp. Physiol. 279R1763–R1775.PubMedGoogle Scholar
  132. Morrison, S.F., Emsberger, P., Milner, T.A., Callaway, J., Gong, A., Reis, D.J., 1989a. A glutamate mechanism in the intermediolateral nucleus mediates sympathoexcitatory responses to stimulation of the rostral ventrolateral medulla. Prog. Brain Res. 81159–169.PubMedCrossRefGoogle Scholar
  133. Morrison, S.F., Milner, T.A., Reis, D.J., 1988. Reticulospinal vasomotor neurons of the rat rostral ventrolateral medulla: relationship to sympathetic nerve activity and the CI adrenergic cell group. J. Neurosci. 81286–1301.PubMedGoogle Scholar
  134. Morrison, S.F., Reis, D.J., 1989c. Reticulospinal vasomotor neurons in the RVL mediate the somatosympathetic reflex. Am. J. Physiol. 256R1084–R1097.PubMedGoogle Scholar
  135. Natarajan, M., Morrison, S.F., 2000. Sympathoexcitatory CVLM neurons mediate responses to caudal pressor area stimulation. Am. J. Physiol. Regul. Integr. Comp. Physiol. 279R364–R374.PubMedGoogle Scholar
  136. Nauli, S.M., Pearce, W.J., Amer, A., Mher, T.J., Ally, A., 2001. Effects of nitric oxide and GABA interaction within ventrolateral medulla on cardiovascular responses during static muscle contraction. Brain Res. 922234–242.PubMedCrossRefGoogle Scholar
  137. Nicholas, A.P., Hancock, M.B., 1988. Immunocytochemical evidence for substance P and serotonin input to medullary bulbospinal adrenergic neurons. Synapse 2569–576.PubMedCrossRefGoogle Scholar
  138. Numao, Y., Koshiya, N., Gilbey, M.P., Spyer, K.M., 1987. Central respiratory drive-related activity in sympathetic nerves of the rat: the regional differences. Neurosci. Lett. 81279–284.PubMedCrossRefGoogle Scholar
  139. Ohta, A., Takagi, H., Matsui, T., Hamai, Y., Iida, S., Esumi, H., 1993. Localization of nitric oxide synthase immunoreactive neurons in the solitary nucleus and ventrolateral medulla-oblongata of the rat — their relation to catecholaminergic neurons. Neurosci. Lett. 158333–335.CrossRefGoogle Scholar
  140. Ootsuka, Y., Rong, W.F., Kishi, E., Koganezawa, T., Terui, N., 2002. Rhythmic activities of the sympatho-excitatory neurons in the medulla of rabbits, neurons controlling cutaneous vasomotion. Auton. Neurosci. 101,48–59.PubMedCrossRefGoogle Scholar
  141. Ootsuka, Y., Terui, N., 1997. Functionally different neurons are organized topographically in the rostral ventrolateral medulla of rabbits. J. Auton. Nerv. Syst. 6767–78.PubMedCrossRefGoogle Scholar
  142. Oz, M., Renaud, L.P., 2002. Angiotensin AT(l)-receptors depolarize neonatal spinal motoneurons and other ventral horn neurons via two different conductances. J. Neurophys. 882857–2863.CrossRefGoogle Scholar
  143. Patón, J.F., Boscan, P., Murphy, D., Kasparov, S., 2001. Unravelling mechanisms of action of angiotensin II on cardiorespiratory function using in vivo gene transfer. Acta Physiol. Scand. 173127–137.PubMedCrossRefGoogle Scholar
  144. Peyron, C., Tighe, D.K., Van den Pol, A.N., De Lecea, L., Heller, H.C., Sutcliffe, J.G., Kilduff, T.S., 1998. Neurons containing hypocretin (orexin) project to multiple neuronal systems. J. Neurosci. 189996–10015.PubMedGoogle Scholar
  145. Possas, O.S., Campos, R.R., Cravo, S.L., Lopes, O.U., Guertzenstein, P.G., 1994. A fall in arterial blood pressure produced by inhibition of the caudalmost ventrolateral medulla: The caudal pressure area. J. Auton. Nerv. Syst. 49235–246.PubMedCrossRefGoogle Scholar
  146. Reis, D.J., Granata, A.R., Joh, T.H., Ross, C.A., Ruggiero, D.A., Park, D.H., 1984. Brain stem catecholamine mechanisms in tonic and reflex control of blood pressure. Hypertension 6II7–II15.PubMedGoogle Scholar
  147. Reis, D.J., Piletz, J.E., 1997. The imidazoline receptor in control of blood pressure by Clonidine and allied drugs. Am. J. Physiol.-Reg. Integr. Comp. Physiol. 273R1569–R1571.Google Scholar
  148. Reja, V., Goodchild, A.K., Pilowsky, P.M., 2002. Catecholamine-related gene expression correlates with blood pressures in SHR. Hypertension 40342–347.PubMedCrossRefGoogle Scholar
  149. Ritter, S., Bugarith, K., Dinh, T.T., 2001. Immunotoxic destruction of distinct catecholamine subgroups produces selective impairment of glucoregulatory responses and neuronal activation. J. Comp. Neurol. 432197–216.PubMedCrossRefGoogle Scholar
  150. Ritter, S., Llewellyn-Smith, I., Dinh, T.T., 1998. Subgroups of hindbrain catecholamine neurons are selectively activated by 2-deoxy-D-glucose induced metabolic challenge. Brain Res. 80541–54.PubMedCrossRefGoogle Scholar
  151. Ross, C.A., Armstrong, D.M., Ruggiero, D.A., Pickel, V.M., Joh, T.H., Reis, D.J., 1981. Adrenaline neurons in the rostral ventrolateral medulla innervate thoracic spinal cord: a combined immunocytochemical and retrograde transport demonstration. Neurosci. Lett. 25257–262.PubMedCrossRefGoogle Scholar
  152. Ross, C.A., Ruggiero, D.A., Park, D.H., Joh, T.H., Sved, A.F., Fernandez-Pardal, J., Saavedra, J.M., Reis, D.J., 1984. Tonic vasomotor control by the rostral ventrolateral medulla: Effect of electrical or chemical stimulation of the area containing CI adrenaline neurons on arterial pressure, heart rate, and plasma catecholamines and vasopressin. J. Neurosci. 4,474–494.PubMedGoogle Scholar
  153. Saavedra, J.M., Grobecker, H., Axelrod, J., 1976. Adrenaline-forming enzyme in brainstem, elevation in genetic and experimental hypertension. Science 191483–484.PubMedCrossRefGoogle Scholar
  154. Sartor, D.M., Verberne, A.J., 2002. Cholecystokinin selectively affects presympathetic vasomotor neurons and sympathetic vasomotor outflow. Am. J. Physiol.-Reg. Integr. Comp. Physiol. 282R1174–R1184.Google Scholar
  155. Sato, M.A., Menani, J.V., Lopes, O.U., Colombari, E., 2001. Lesions of the commissural nucleus of the solitary tract reduce arterial pressure in spontaneously hypertensive rats. Hypertension 38560–564.CrossRefGoogle Scholar
  156. Sawchenko, P.E., Imaki, T., Potter, E., Kovacs, K., Imaki, J., Vale, W., 1993. The functional neuroanatomy of corticotropin-releasing factor. Ciba Foundation Symposium 1725–21.PubMedGoogle Scholar
  157. Schreihofer, A.M., Guyenet, P.G., 1997. Identification of C1 presympathetic neurons in rat rostral ventrolateral medulla by juxtacellular labeling in vivo. J. Comp. Neurol. 387524–536.PubMedCrossRefGoogle Scholar
  158. Schreihofer, A.M., Guyenet, P.G., 2000. Sympathetic reflexes after depletion of bulbospinal catecholaminergic neurons with anti-D ßH-saporin. Am. J. Physiol. — Regul. Integr. Comp. Physiol. 279R729–R742.PubMedGoogle Scholar
  159. Schreihofer, A.M., Guyenet, P.G., 2002. The baroreflex and beyond: Control of sympathetic vasomotor tone by GABAergic neurons in the ventrolateral medulla. Clin. Exp. Pharmacol. Physiol. 29514–521.PubMedCrossRefGoogle Scholar
  160. Schreihofer, A.M., Stornetta, R.L., Guyenet, P.G., 2000. Regulation of sympathetic tone and arterial pressure by rostral ventrolateral medulla after depletion of CI cells in rat. J. Physiol. (Lond.) 529221–236.CrossRefGoogle Scholar
  161. Seyedabadi, M., Goodchild, A.K., Pilowsky, P.M., 2002. Site-specific effects of apelin-13 in the rat medulla oblongata on arterial pressure and respiration. Auton. Neurosci. 10132–38.PubMedCrossRefGoogle Scholar
  162. Sofroniew, M.V., Schrell, U., 1981. Evidence for a direct projection from oxytocin and vasopressin neurons in the hypothalamic paraventricular nucleus to the medulla oblongata, immunohistochemical visualization of both the horseradish peroxidase transported and the peptide produced by the same neurons. Neurosci. Lett. 22211–217.CrossRefGoogle Scholar
  163. Stornetta, R.L., Akey, P.J., Guyenet, P.G., 1999. Location and electrophysiological characterization of rostral medullary adrenergic neurons that contain neuropeptide Y mRNA in rat. J. Comp. Neurol. 415482–500.PubMedCrossRefGoogle Scholar
  164. Stornetta, R.L., Morrison, S.F., Ruggiero, D.A., Reis, D.J., 1989. Neurons of rostral ventrolateral medulla mediate somatic pressor reflex. Am. J. Physiol. 256R448–R462.PubMedGoogle Scholar
  165. Stornetta, R.L., Schreihofer, A.M., Pelaez, N.M., Sevigny, C.P., Guyenet, P.G., 2001. Preproenkephalin mRNA is expressed by C1 and non-Cl barosensitive bulbospinal neurons in the rostral ventrolateral medulla of the rat. J. Comp. Neurol. 435111–126.PubMedCrossRefGoogle Scholar
  166. Stornetta, R.L., Sevigny, C.P., Guyenet, P.G., 2002a. Vesicular glutamate transporter DNPI/VGLUT2 mRNA is present in C1 and several other groups of brainstem catecholaminergic neurons. J. Comp. Neurol. 444191–206.PubMedCrossRefGoogle Scholar
  167. Stornetta, R.L., Sevigny, C.P., Schreihofer, A.M., Rosin, D.L., Guyenet, P.G., 2002b. Vesicular glutamate transporter DNPI/GLUT2 is expressed by both C1 adrenergic and nonaminergic presympathetic vasomotor neurons of the rat medulla. J. Comp. Neurol. 444207–220.PubMedCrossRefGoogle Scholar
  168. Stornetta, R.L., Sevigny, C.P., Guyenet, P.G., 2003. Inspiratory augmenting bulbospinal neurons express both glutamatergic and enkephalinergic phenotypes. J. Comp. Neurol. 455113–124.PubMedCrossRefGoogle Scholar
  169. Strack, A.M., Loewy, A.D., 1990. Pseudorabies virus: a highly specific transneuronal cell body marker in the sympathetic nervous system. J. Neurosci. 102139–2147.PubMedGoogle Scholar
  170. Sun, M.K., 1995. Central neural organization and control of sympathetic nervous system in mammals. Prog. Neurobiol. 47,157–233.PubMedCrossRefGoogle Scholar
  171. Sun, M.K., 1996. Pharmacology of reticulospinal vasomotor neurons in cardiovascular regulation. Pharm. Rev. 48465–494.PubMedGoogle Scholar
  172. Sun, M.K., Guyenet, P.G., 1985. GABA-mediated baroreceptor inhibition of reticulospinal neurons. Am. J. Physiol. 249R672–R680.PubMedGoogle Scholar
  173. Sun, M.K., Guyenet, P.G., 1986a. Hypothalamic glutamatergic input to medullary sympathoexcitatory neurons in rats. Am. J. Physiol. 251R798–R810.PubMedGoogle Scholar
  174. Sun, M.K., Guyenet, P.G., 1986b. Medullospinal sympathoexcitatory neurons in normotensive and spontaneously hypertensive rats. Am. J. Physiol. 250R910–R917.PubMedGoogle Scholar
  175. Sun, M.K., Guyenet, P.G., 1987. Arterial baroreceptor and vagal inputs to sympathoexcitatory neurons in rat medulla. Am. J. Physiol. 252R699–R709.PubMedGoogle Scholar
  176. Sun, M.K., Guyenet, P.G., 1989. Effects of vasopressin and other neuropeptides on rostral medullary sympathoexcitatory neurons’ in vitro’. Brain Res. 492261–270.PubMedCrossRefGoogle Scholar
  177. Sun, M.K., Young, B.S., Hackett, J.T., Guyenet, P.G., 1988a. Reticulospinal pacemaker neurons of the rat rostral ventrolateral medulla with putative sympathoexcitatory function: an intracellular study in vitro. Brain Res. 442229–239.PubMedCrossRefGoogle Scholar
  178. Sun, M.K., Young, B.S., Hackett, J.T., Guyenet, P.G., 1988b. Rostral ventrolateral medullary neurons with intrinsic pacemaker properties are not catecholaminergic. Brain Res. 451345–349.PubMedCrossRefGoogle Scholar
  179. Sun, Q.J., Llewellyn-Smith, I., Minson, J., Arnolda, L., Chalmers, J., Pilowsky, P., 1996. Thyrotropin-releasing hormone immunoreactive boutons form close appositions with medullary expiratory neurons in the rat. Brain Res. 715,136–144.PubMedCrossRefGoogle Scholar
  180. Sved, A.F., Ito, S., Yajima, Y., 2002. Role of excitatory amino acid inputs to the rostral ventrolateral medulla in cardiovascular regulation. Clin. Exp. Pharmacol. Physiol. 29503–506.PubMedCrossRefGoogle Scholar
  181. Sved, A.F., Mancini, D.L., Graham, J.C., Schreihofer, A.M., Hoffman, G.E., 1994. PNMT-containing neurons of the C1 cell group express c-fos in response to changes in baroreceptor input. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 266R361–R367.Google Scholar
  182. Tagawa, T., Dampney, R.A., 1999. AT(1) receptors mediate excitatory inputs to rostral ventrolateral medulla pressor neurons from hypothalamus. Hypertension 341301–1307.PubMedCrossRefGoogle Scholar
  183. Terui, N., Masuda, N., Saeki, Y., Kumada, M., 1990. Activity of barosensitive neurons in the caudal ventrolateral medulla that send axonal projections to the rostral ventrolateral medulla in rabbits. Neurosci. Lett. 118211–214.PubMedCrossRefGoogle Scholar
  184. Tsuruo, Y., Hökfelt, T., Visser, T., 1987. Thyrotropin releasing hormone (TRH)-immunoreactive cell groups in the rat central nervous system. Exp. Brain Res. 68213–217.PubMedCrossRefGoogle Scholar
  185. Urbanski, R.W., Murugaian, J., Krieger, A.J., Sapru, H.N., 1989. Cardiovascular effects of substance P receptor stimulation in the ventrolateral medullary pressor and depressor areas. Brain Res. 491383–389.PubMedCrossRefGoogle Scholar
  186. Verberne, A.J.M., Guyenet, P.G., 1992. Medullary pathway of the Bezold-Jarisch reflex in the rat. Am. J. Physiol. 263R1195–R1202.PubMedGoogle Scholar
  187. Wang, H., Germanson, T.P., Guyenet, P.G., 2002. Depressor and tachypneic responses to chemical stimulation of the ventral respiratory group are reduced by ablation of neurokinin-1 receptor-expressing neurons. J. Neurosci. 223755–3764.PubMedGoogle Scholar
  188. Wang, W.H., Lovick, T.A., 1992b. Excitatory 5-HT2-mediated effects on rostral ventrolateral medullary neurones in rats. Neurosci. Lett. 14189–92.PubMedCrossRefGoogle Scholar
  189. Wang, W.H., Lovick, T.A., 1992a. Inhibitory serotonergic effects on rostral ventrolateral medullary neurons. Pflugers Archiv. — Eur. J. Physiol. 42293–97.CrossRefGoogle Scholar
  190. Weiss, M.L., Kenney, M.J., Musch, T.I., Patel, K.P., 2003. Modifications to central neural circuitry during heart failure. Acta Physiol. Scand. 17757–67.PubMedCrossRefGoogle Scholar
  191. Yamamoto, H., Lee, C.E., Marcus, J.N., Williams, T.D., Overton, J.M., Lopez, M.E., Hollenberg, A.N., Baggio, L., Saper, C.B., Drucker, D.J., Elmquist, J.K., 2002. Glucagon-like peptide-1 receptor stimulation increases blood pressure and heart rate and activates autonomic regulatory neurons. J. Clin. Invest. 110,43–52.PubMedGoogle Scholar
  192. Zhang, K., Li, Y.F., Patel, K.P., 2002. Reduced endogenous GABA-mediated inhibition in the PVN on renal nerve discharge in rats with heart failure. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 282R1006–R1015.PubMedGoogle Scholar
  193. Zhong, S., Huang, Z.S., Gebber, G.L., Barman, S.M., 1993. Role of the brainstem in generating the 2-6Hz oscillation in sympathetic nerve discharge. Am. J. Physiol. 265R1026–R1035.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Patrice G. Guyenet
    • 1
  • Ruth L. Stornetta
    • 1
  1. 1.Department of PharmacologyUniversity of VirginiaCharlottesvilleUSA

Personalised recommendations