Skip to main content

Serotonin Neurons in the Brainstem and Spinal Cord: Diverse Projections and Multiple Functions

  • Chapter
Neural Mechanisms of Cardiovascular Regulation
  • 219 Accesses

Abstract

Serotonin neurons are located in the midline of the brainstem. The axons of these neurons branch profusely throughout the entire neuraxis providing an innervation to neurons that are involved in activities as diverse as the sleep/wake cycle, autonomic control and motor control. Here we review some of the work that has been done in relation to serotonin neurons in the brainstem with particular regard to the anatomy and co-localisation of other neurotransmitters. Particular attention is paid to the role of serotonin neurons in control of the cardiovascular system, but the role played by these neurons in modulating pain, chemosensation, thermoregulation and motor control as well as the sleep/wake cycle and sexual function is also dealt with. We conclude that despite considerable work in the past, much remains to be learned about the serotonin containing neurons and the other neurotransmitters that are released from these aminergic neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adair, J.R., Hamilton, B.L., Scappaticci, K.A., Helke, C.J., Gillis R.A., 1977. Cardiovascular responses to electrical stimulation of the medullary raphe area of the cat. Brain Res. 128141–145.

    Article  PubMed  CAS  Google Scholar 

  • Adrien, J., 2002. Neurobiological bases for the relation between sleep and depression. Sleep Med. Rev. 6341–351.

    PubMed  Google Scholar 

  • Aicher, S.A., Reis, D.J., Nicolae, R., Milner, T.A., 1995. Monosynaptic projections from the medullary gigantocellular reticular formation to sympathetic preganglionic neurons in the thoracic spinal cord. J. Comp. Neurol. 363563–580.

    Article  PubMed  CAS  Google Scholar 

  • Allard, J., Giuliano, F., 2001. Central nervous system agents in the treatment of erectile dysfunction: how do they work? Curr. Urol. Rep. 2488–494.

    Article  PubMed  CAS  Google Scholar 

  • Allen, G.V., Cechetto, D.F., 1994. Serotoninergic and nonserotoninergic neurons in the medullary raphe system have axon collateral projections to autonomic and somatic cell groups in the medulla and spinal cord. J. Comp. Neurol. 350357–366.

    Article  PubMed  CAS  Google Scholar 

  • Andersson, K.E., 2001. Pharmacology of penile erection. Pharmacol. Rev. 53417–450.

    PubMed  CAS  Google Scholar 

  • Aoki, K., Stephens, D.S.?., Johnson, J., Johnson, J.M., 2003. Cutaneous vasoconstrictor response to whole body skin cooling is altered by time of day. J. Appl. Physiol. 94(3)930–934.

    PubMed  Google Scholar 

  • Aston-Jones, G., Card, J.P., 2000. Use of Pseudorabies virus to delineate multisynaptic circuits in brain: opportunities and limitations. J. Neurosci. Methods 10351–61.

    Article  PubMed  CAS  Google Scholar 

  • Ballantyne, D., Scheid, P., 2001. Central chemosensitivity of respiration: a brief overview. Respir. Physiol. 1295–12.

    Article  PubMed  CAS  Google Scholar 

  • Bancila, M., Giuliano, F., Rampin, O., Mailly, P., Brisorgueil, M.J., Calas, A., Verge, D., 2002. Evidence for a direct projection from the paraventricular nucleus of the hypothalamus to putative serotoninergic neurons of the nucleus paragigantocellularis involved in the control of erection in rats. Eur. J. Neurosci. 16,1240–1248.

    Article  PubMed  CAS  Google Scholar 

  • Barcroft, H., McMichael, J., Edholm, O.G., Sharpey-Schafer, E.P., 1944. Posthaemorrhagic fainting: Study by cardiac output and forearm flow. Lancet i489–491.

    Google Scholar 

  • Barman, S.M., Gebber, G.L., 1988. The axons of raphespinal sympathoinhibitory neurons branch in the cervical spinal cord. Brain Res. 441371–376.

    Article  PubMed  CAS  Google Scholar 

  • Barnes, N.M., Sharp, T., 1999. A review of central 5-HT receptors and their function. Neuropharmacology 381083–1152.

    Article  PubMed  CAS  Google Scholar 

  • Basbaum, A.I., Fields, H.L., 1984. Endogenous pain control systems: brainstem spinal pathways and endorphin circuitry. Annu. Rev. Neurosci. 7309–338.

    Article  PubMed  CAS  Google Scholar 

  • Basura, G.J., Zhou, S.Y., Walker, P.D., Goshgarian, H.G., 2001. Distribution of serotonin 2A and 2C receptor mRNA expression in the cervical ventral horn and phrenic motoneurons following spinal cord hemisection. Exp. Neurol. 169255–263.

    Article  PubMed  CAS  Google Scholar 

  • Berger, A.J., Bayliss, D.A., Viana, F., 1992. Modulation of neonatal rat hypoglossal motoneuron excitability by serotonin. Neurosci. Lett. 143164–168.

    Article  PubMed  CAS  Google Scholar 

  • Bernard, D.G., 1998. Cardiorespiratory responses to glutamate microinjected into the medullary raphe. Respir. Physiol. 11311–21.

    Article  PubMed  CAS  Google Scholar 

  • Bernard, D.G., Li, A., Nattie, E.E., 1996. Evidence for central chemoreception in the midline raphe. J. Appl. Physiol. 80108–115.

    PubMed  CAS  Google Scholar 

  • Bouhassira, D., Chitour, D., Villaneuva, L., Le Bars, D., 1995. The spinal transmission of nociceptive information: modulation by the caudal medulla. Neurosci. 69931–938.

    Article  CAS  Google Scholar 

  • Cervero, F., Lumb, B.M., 1988. Bilateral inputs and supraspinal control of viscerosomatic neurones in the lower thoracic spinal cord of the cat. J. Physiol. 403221–37.

    PubMed  CAS  Google Scholar 

  • Chalmers, J.P., Kapoor, V., Macrae, I.M., Minson, J.B., Pilowsky, P., West, M.J., 1985. New approaches to the study of bulbospinal (b3) serotonergic neurons in the control of blood-pressure. J. Hypertension 3S5–S9.

    CAS  Google Scholar 

  • Chalmers, J.P., Pilowsky, P.M., Minson, J.B., Kapoor, V., Mills, E., West, M.J., 1988. Central serotonergic mechanisms in hypertension. Am. J. Hypertension 179–83.

    CAS  Google Scholar 

  • Clark, F.M., Proudfit, H.K., 1991. Projections of neurons in the ventromedial medulla to pontine catecholamine cell groups involved in the modulation of nociception. Brain Res. 540105–115.

    Article  PubMed  CAS  Google Scholar 

  • Coates, E.L., Li, A., Nattie, E.E., 1993. Widespread sites of brain stem ventilatory chemoreceptors. J. Appl. Physiol. 755–14.

    PubMed  CAS  Google Scholar 

  • Cochrane, K.L., Nathan, M.A., 1989. Normotension in conscious rats after placement of bilateral electrolytic lesions in the rostral ventrolateral medulla. J. Auton. Nerv. Sys. 26199–211.

    Article  CAS  Google Scholar 

  • Cochrane, K.L., Nathan, M.A., 1993. Cardiovascular effects of lesions of the rostral ventrolateral medulla and the nucleus-reticularis parvocellularis in rats. J. Auton. Nerv. Sys. 4369–82.

    Article  CAS  Google Scholar 

  • Cochrane, K.L., Nathan, M.A., 1994. Pressor systems involved in the maintenance of arterial-pressure after lesions of the rostral ventrolateral medulla. J. Auton. Nerv. Sys. 469–18.

    Article  CAS  Google Scholar 

  • Coleman, M.J., Dampney, R.A., 1995. Powerful depressor and sympathoinhibitory effects evoked from neurons in the caudal raphe pallidus and obscurus. Am. J. Physiol. 268R1295–R1302.

    PubMed  CAS  Google Scholar 

  • Coleman, M.J., Dampney, R.A., 1998. Sympathoinhibition evoked from caudal midline medulla is mediated by GABA receptors in rostral VLM. Am. J. Physiol. 274R318–R323.

    PubMed  CAS  Google Scholar 

  • Coote, J.H., 1990. Bulbospinal serotonergic pathways in the control of blood pressure. J. Cardiovasc. Pharmacol. 15 Suppl 7S35–S41.

    PubMed  CAS  Google Scholar 

  • Cox, B.F., Brody, M.J., 1988. Evidence for two functionally distinct vasomotor subregions of rostral ventral medulla. Clin. Exp. Hypertension A 10 Suppl 111–18.

    Article  Google Scholar 

  • Cox, B.F., Brody, M.J., 1989. Subregions of rostral ventral medulla control arterial pressure and regional hemodynamics. Am. J. Physiol. 257R635–R640.

    PubMed  CAS  Google Scholar 

  • Dampney, R.A., 1981. Brain stem mechanisms in the control of arterial pressure. Clin. Exp. Hypertension 3379–391.

    Article  CAS  Google Scholar 

  • Dean, C., Marson, L., Kampine, J.P., 1993. Distribution and co-localization of 5-hydroxytryptamine, thyrotropin-releasing hormone and substance P in the cat medulla. Neurosci. 57811–822.

    Article  CAS  Google Scholar 

  • Duffield, G.E., McNulty, S., Ebling, F.J.P., 1999. Anatomical and functional characterisation of a dopaminergic system in the suprachiasmatic nucleus of the neonatal Siberian hamster. J. Comp. Neurol. 40873–96.

    Article  PubMed  CAS  Google Scholar 

  • Fields, H.L., 2000. Pain modulation: expectation, opioid analgesia and virtual pain. Prog. Brain Res. 122245–253.

    Article  PubMed  CAS  Google Scholar 

  • Fields, H.L., Bry, J., Hentall, I., Zorman, G., 1983. The activity of neurons in the rostral medulla of the rat during withdrawal from noxious heat. J. Neurosci. 32545–2552.

    PubMed  CAS  Google Scholar 

  • Fields, H.L., Heinricher, M.M., 1985. Anatomy and physiology of a nociceptive modulatory system. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 308361–374.

    Article  PubMed  CAS  Google Scholar 

  • Fields, H.L., Heinricher, M.M., Mason, P., 1991. Neurotransmitters in nociceptive modulatory circuits. Annu. Rev. Neurosci. 14219–245.

    Article  PubMed  CAS  Google Scholar 

  • Fields, H.L., Malick, A., Burstein, R., 1995. Dorsal horn projection targets of ON and OFF cells in the rostral ventromedial medulla. J. Neurophysiol. 741742–1759.

    PubMed  CAS  Google Scholar 

  • Filosa, J.A., Dean, J.B., Putnam, R.W., 2002. Role of intracellular and extracellular pH in the chemosensitive response of rat locus coeruleus neurones. J. Physiol. 541493–509.

    Article  PubMed  CAS  Google Scholar 

  • Fornai, C., Auerbach, S., Jacobs, B.L., 1985. Activity of serotonin-containing neurons in nucleus raphe magnus in freely moving cats. Exp. Neurol. 88590–608.

    Article  Google Scholar 

  • Gao, K., Mason, P., 2000. Serotonergic raphe magnus cells that respond to noxious tail heat are not ON or OFF cells. J. Neurophysiol. 841719–1725.

    PubMed  CAS  Google Scholar 

  • Gebber, G.L., Barman, S.M., 1988. Studies on the origin and generation of sympathetic nerve activity. Clin. Exp. Hypertension A 10 Suppl 133–44.

    Article  Google Scholar 

  • Gieroba, Z.J., Messenger, J.P., Blessing, W.W., 1995. Abdominal vagal-stimulation excites bulbospinal barosensitive neurons in the rostral ventrolateral medulla. Neurosci. 65355–364.

    Article  CAS  Google Scholar 

  • Giuliano, F.A., Rampin, O., Benoit, G., Jardin, A., 1995. Neural control of penile erection. Urol. Clin. North Am. 22747–766.

    PubMed  CAS  Google Scholar 

  • Goodchild, A.K., Dampney, R.A., Bandler, R., 1982. A method for evoking physiological responses by stimulation of cell bodies, but not axons of passage, within localized regions of the central nervous system. J. Neurosci. Methods 6351–363.

    Article  PubMed  CAS  Google Scholar 

  • Granata, A.R., Ruggiero, D.A., Park, D.H., Joh, T.H., Reis, D.J., 1985. Brain-stem area with c-1 epinephrine neurons mediates baroreflex vasodepressor responses. Am. J. Physiol. 248H547–H567.

    PubMed  CAS  Google Scholar 

  • Guertzenstein, P.G., Silver, A., 1974. Fall in blood pressure produced from discrete regions of the ventral surface of the medulla by glycine and lesions. J. Physiol. 242489–503.

    PubMed  CAS  Google Scholar 

  • Harris, J.A., 1996. Descending antinociceptive mechanisms in the brainstem: their role in the animal’s defensive system. J. Physiol. Paris 9015–25.

    Article  PubMed  CAS  Google Scholar 

  • Haxhiu, M.A., Erokwu, B.O., Cherniack, N.S., 1996. The brainstem network involved in coordination of inspiratory activity and cholinergic outflow to the airways. J. Auton. Nerv. Sys. 61155–161.

    Article  CAS  Google Scholar 

  • Haxhiu, M.A., Tolentino-Silva, F., Pete, G., Kc, P., Mack, S.O., 2001. Monoaminergic neurons, chemosensation and arousal. Respir. Physiol. 129191–209.

    Article  PubMed  CAS  Google Scholar 

  • Hedlund, P.B., Danielson, P.E., Thomas, E.A., Slanina, K., Carson, M.J., Sutcliffe, J.G., 2003. No hypothermic response to serotonin in 5-HT7 receptor knockout mice. Proc. Natl. Acad. Sci. U.S.A. 1001375–1380.

    Article  PubMed  CAS  Google Scholar 

  • Heinricher, M.M., Kaplan, H.J., 1991. GABA-mediated inhibition in rostral ventromedial medulla — role in nociceptive modulation in the lightly anesthetized rat. Pain 47105–113.

    Article  PubMed  CAS  Google Scholar 

  • Helke, C.J., McDonald, C.H., Phillips, E.T., 1993. Hypotensive effects of 5-HT1A receptor activation: ventral medullary sites and mechanisms of action in the rat. J. Auton. Nerv. Syst. 42177–188.

    Article  PubMed  CAS  Google Scholar 

  • Henderson, L.A., Keay, K.A., Bandler, R., 2000. Caudal midline medulla mediates behaviourally-coupled but not baroreceptor-mediated vasodepression. Neurosci. 98779–792.

    Article  CAS  Google Scholar 

  • Heslop, D.J., Keay, K.A., Bandler, R., 2002. Haemorrhage-evoked compensation and decompensation are mediated by distinct caudal midline medullary regions in the urethane-anaesthetised rat. Neurosci. 113555–567.

    Article  CAS  Google Scholar 

  • Hokfelt, T., Arvidsson, U., Cullheim, S., Millhorn, D., Nicholas, A.P., Pieribone, V., Seroogy, K., Ulfhake, B., 2000. Multiple messengers in descending serotonin neurons: localization and functional implications. J. Chem. Neuroanat. 1875–86.

    Article  PubMed  CAS  Google Scholar 

  • Howe, P.R., Kuhn, D.M., Minson, J.B., Stead, B.H., Chalmers, J.P., 1983. Evidence for a bulbospinal serotonergic pressor pathway in the rat brain. Brain Res. 27029–36.

    Article  PubMed  CAS  Google Scholar 

  • Hunt, S.P., Lovick, T.A., 1982. The distribution of serotonin, met-enkephalin and beta-lipotropin-like immunoreactivity in neuronal perikarya of the cat brainstem. Neurosci. Lett. 30139–145.

    Article  PubMed  CAS  Google Scholar 

  • Ito, S., Sved, A.F., 1997. Tonic glutamate-mediated control of rostral ventrolateral medulla and sympathetic vasomotor tone. Am. J. Physiol. 273R487–R494.

    PubMed  CAS  Google Scholar 

  • Jarolimek, W., Misgeld, U., Lux, H.D., 1990. Neurons sensitive to pH in slices of the rat ventral medulla oblongata. Pflugers Arch. 416247–253.

    Article  PubMed  CAS  Google Scholar 

  • Jensen, I., Llewellyn-Smith, I.J., Pilowsky, P., Minson, J.B., Chalmers, J., 1995. Serotonin inputs to rabbit sympathetic preganglionic neurons projecting to the superior cervical-ganglion or adrenal-medulla. J. Comp. Neurol. 353427–438.

    Article  PubMed  CAS  Google Scholar 

  • Jeske, I., Reis, D.J., Milner, T.A., 1995. Neurons in the barosensory area of the caudal ventrolateral medulla project monosynaptically on to sympathoexcitatory bulbospinal neurons in the rostral ventrolateral medulla. Neurosci. 65343–353.

    Article  CAS  Google Scholar 

  • Jiang, C., Xu, H., Cui, N., Wu, J., 2001. An alternative approach to the identification of respiratory central chemoreceptors in the brainstem. Respir. Physiol. 129141–157.

    Article  PubMed  CAS  Google Scholar 

  • Johansson, O., Hokfelt, T., Pernow, B., Jeffcoate, S.L., White, N., Steinbusch, H.W., Verhofstad, A.A., Emson, P.C., Spindel, E., 1981. Immunohistochemical support for three putative transmitters in one neuron: coexistence of 5-hydroxytryptamine, substance P-and thyrotropin releasing hormone-like immunoreactivity in medullary neurons projecting to the spinal cord. Neurosci. 61857–1881.

    Article  CAS  Google Scholar 

  • Kellogg, D.L., Jr., Crandall, C.G., Liu, Y., Charkoudian, N., Johnson, J.M., 1998. Nitric oxide and cutaneous active vasodilation during heat stress in humans. J. Appl. Physiol. 85824–829.

    PubMed  CAS  Google Scholar 

  • Kellogg, D.L., Jr., Pergola, P.E., Piest, K.L., Kosiba, W.A., Crandall, C.G., Grossmann, M., Johnson, J.M., 1995. Cutaneous active vasodilation in humans is mediated by cholinergic nerve cotransmission. Circ. Res. 771222–1228.

    Article  PubMed  CAS  Google Scholar 

  • Korner, P.I., Head, G.A., Bobik, A., Badoer, E., Aberdeen, J.A., 1984. Central and peripheral autonomic mechanisms involved in the circulatory actions of methyldopa. Hypertension 6II63–II70.

    PubMed  CAS  Google Scholar 

  • Kubin, L., Davies, R.O., Pack, A.I., 1998. Control of Upper Airway Motoneurons During REM Sleep. News Physiol. Sci. 1391–97.

    PubMed  Google Scholar 

  • Kubin, L., Tojima, H., Davies, R.O., Pack, A.I., 1992. Serotonergic excitatory drive to hypoglossal motoneurons in the decerebrate cat. Neurosci. Lett. 139243–248.

    Article  PubMed  CAS  Google Scholar 

  • Kubin, L., Tojima, H., Reignier, C., Pack, A.I., Davies, R.O., 1996. Interaction of serotonergic excitatory drive to hypoglossal motoneurons with carbachol-induced, REM sleep-like atonia. Sleep 19187–195.

    PubMed  CAS  Google Scholar 

  • Kwiat, G.C., Basbaum, A.I., 1992. The origin of brain-stem noradrenergic and serotonergic projections to the spinal-cord dorsal horn in the rat. Somatosensory and Motor Res. 957–173.

    Google Scholar 

  • Lalley, P.M., Benacka, R., Bischoff, A.M., Richter, D.W., 1997. Nucleus raphe obscurus evokes 5-HT-1A receptor-mediated modulation of respiratory neurons. Brain Res. 747156–159.

    Article  PubMed  CAS  Google Scholar 

  • Lan, C.T., Wu, W.C., Ling, E.A., Chai, C.Y., 1997. Evidence of a direct projection from the cardiovascular-reactive dorsal medulla to the intermediolateral cell column of the spinal cord in cats as revealed by light and electron microscopy. Neurosci. 77521–533.

    Article  CAS  Google Scholar 

  • Lee, S., Miselis, R., Rivier, C., 2002. Anatomical and functional evidence for a neural hypothalamic-testicular pathway that is independent of the pituitary. Endocrinology 1434447–4454.

    Article  PubMed  CAS  Google Scholar 

  • Leger, L., Gay, N., Cespuglio, R., 2002. Neurokinin NK1-and NK3-immunoreactive neurons in serotonergic cell groups in the rat brain. Neurosci. Lett. 323146–150.

    Article  PubMed  CAS  Google Scholar 

  • Leung, C.G., Mason, P., 1999. Physiological properties of raphe magnus neurons during sleep and waking. J. Neurophysiol. 81584–595.

    PubMed  CAS  Google Scholar 

  • Lipski, J., Bellingham, M.C., West, M.J., Pilowsky, P., 1988. Limitations of the technique of pressure microinjection of excitatory amino-acids for evoking responses from localized regions of the cns. J. Neurosci. Methods 26169–179.

    Article  PubMed  CAS  Google Scholar 

  • Loewy, A.D., 1998. Viruses as transneuronal tracers for defining neural circuits. Neurosci. Biobeh. Rev. 22679–684.

    Article  CAS  Google Scholar 

  • Loewy, A.D., McKellar, S., 1981. Serotonergic projections from the ventral medulla to the intermediolateral cell column in the rat. Brain Res. 211146–152.

    Article  PubMed  CAS  Google Scholar 

  • Lovick, T.A., Hunt, S.P., 1983. Substance P-immunoreactive and serotonin-containing neurones in the ventral brainstem of the cat. Neurosci. Lett. 36223–228.

    Article  PubMed  CAS  Google Scholar 

  • Marsala, J., Lukacova, N., Cizkova, D., Kafka, J., Katsube, N., Kucharova, K., Marsala, M., 2002. The case for the bulbospinal respiratory nitric oxide synthase-immunoreactive pathway in the dog. Exp. Neurol. 177115–132.

    Article  PubMed  CAS  Google Scholar 

  • Marson, L., Platt, K.B., McKenna, K.E., 1993. Central nervous system innervation of the penis as revealed by the transneuronal transport of Pseudorabies virus. Neurosci. 55263–280.

    Article  CAS  Google Scholar 

  • Martinov, V.N., Sefland, I., Walaas, S.I., Lomo, T., Nja, A., Hoover, F., 2002. Targeting functional subtypes of spinal motoneurons and skeletal muscle fibers in vivo by intramuscular injection of adenoviral and adeno-associated viral vectors. Anat. Embryol. 205215–221.

    Article  PubMed  CAS  Google Scholar 

  • Mason, P., 1997. Physiological identification of pontomedullary serotonergic neurons in the rat. J. Neurophysiol. 77,1087–1098.

    PubMed  CAS  Google Scholar 

  • Mason, P., 2001. Contributions of the medullary raphe and ventromedial reticular region to pain modulation and other homeostatic functions. Annu. Rev. Neurosci. 24737–77.

    Article  PubMed  CAS  Google Scholar 

  • Mason, P., Fields, H.L., 1989. Axonal trajectories and terminations of on-and off-cells in the cat lower brainstem. J. Comp. Neurol. 288185–207.

    Article  PubMed  CAS  Google Scholar 

  • Mason, P., Floeter, M.K., Fields, H.L., 1990. Somatodendritic morphology of on-cell and off-cells in the rostral ventromedial medulla. J. Comp. Neurol. 30123–43.

    Article  PubMed  CAS  Google Scholar 

  • McCall, R.B., Aghajanian, G.K., 1979. Serotonergic facilitation of facial motoneuron excitation. Brain Res. 16911–27.

    Article  PubMed  CAS  Google Scholar 

  • McCall, R.B., Clement, M.E., 1989. Identification of serotonergic and sympathetic neurons in medullary raphe nuclei. Brain Res. 477172–182.

    Article  PubMed  CAS  Google Scholar 

  • McCall, R.B., Harris, L.T., 1987. Sympathetic alterations after midline medullary raphe lesions. Am. J. Physiol. 253R91–R100.

    PubMed  CAS  Google Scholar 

  • Meston, C.M., Frohlich, P.F., 2001. Update on female sexual function. Curr. Opin. Urol. 11603–609.

    Article  PubMed  CAS  Google Scholar 

  • Minson, J.B., Llewellyn-Smith, I.J., Arnolda, L.F., Pilowsky, P.M., Oliver, J.R., Chalmers, J.P., 1994. Disinhibition of the rostral ventral medulla increases blood-pressure and fos expression in bulbospinal neurons. Brain Res. 64644–52.

    Article  PubMed  CAS  Google Scholar 

  • Miura, M., Okada, J., Takayama, K., 1996. Parapyramidal rostroventromedial medulla as a respiratory rhythm modulator. Neurosci. Lett. 20341–44.

    Article  PubMed  CAS  Google Scholar 

  • Miyawaki, T., Goodchild, A.K., Pilowsky, P.M., 2001. Rostral ventral medulla 5-HT1A receptors selectively inhibit the somatosympathetic reflex. Am. J. Physiol-Reg. Int. Comp. Physiol. 280R1261–R1268.

    CAS  Google Scholar 

  • Miyawaki, T., Goodchild, A.K., Pilowsky, P.M., 2002. Activation of mu-opioid receptors in rat ventrolateral medulla selectively blocks baroreceptor reflexes while activation of delta opioid receptors blocks somato-sympathetic reflexes. Neurosci. 109133–144.

    Article  CAS  Google Scholar 

  • Miyawaki, T., Minson, J., Amolda, L., Llewellyn-Smith, I., Chalmers, J., Pilowsky, P.M., 1996. AMPA/kainate receptors mediate sympathetic chemoreceptor reflex in the rostral ventrolateral medulla. Brain Res. 726, 64-68.

    Google Scholar 

  • Morgan, M.M., Fields, H.L., 1993. Activity of nociceptive modulatory neurons in the rostral ventromedial medulla associated with volume expansion-induced antinociception. Pain 52, 1-9.

    Google Scholar 

  • Morrison, S.F., 2001. Differential regulation of brown adipose and splanchnic sympathetic outflows in rat: Roles of raphe and rostral ventrolateral medulla neurons. Clin. Exp. Pharmacol. Physiol. 28, 138-143.

    Google Scholar 

  • Nagashima, K., Nakai, S., Tanaka, M., Kanosue, K., 2000. Neuronal circuitries involved in thermoregulation. Auton Neurosci 20;8518–25.

    Article  CAS  Google Scholar 

  • Nakamura, K., Matsumura, K., Kaneko, T., Kobayashi, S., Katoh, H., Negishi, M., 2002. The rostral raphe pallidus nucleus mediates pyrogenic transmission from the preoptic area. J. Neurosci. 224600–4610.

    PubMed  CAS  Google Scholar 

  • Nattie, E., 1999. C02, brainstem chemoreceptors and breathing. Prog. Neurobiol. 59299–331.

    Article  PubMed  CAS  Google Scholar 

  • Nattie, E., Li, A., Meyerand, E., Dunn, J.F., 2002. Ventral medulla pHi measured in vivo by 31P NMR is not regulated during hypercapnia in anesthetized rat. Respir. Physiol. Neurobiol. 130139–149.

    Article  PubMed  Google Scholar 

  • Nattie, E.E., Li, A., 2001. C02 dialysis in the medullary raphe of the rat increases ventilation in sleep. J. Appl. Physiol. 901247–1257.

    PubMed  CAS  Google Scholar 

  • Neubauer, J.A., Gonsalves, S.F., Chou, W., Geller, H.M., Edelman, N.H., 1991. Chemosensitivity of medullary neurons in explant tissue cultures. Neurosci. 45701–708.

    Article  CAS  Google Scholar 

  • Ochi, T., Ohkubo, Y., Mutoh, S., 2002. FR143166 attenuates spinal pain transmission through activation of the serotonergic system. Eur. J. Pharmacol. 452319–324.

    Article  PubMed  CAS  Google Scholar 

  • Odeh, F., Antal, M., Zagon, A., 2003. Heterogeneous synaptic inputs from the ventrolateral periaqueductal gray matter to neurons responding to somatosensory stimuli in the rostral ventromedial medulla of rats. Brain Res. 959287–294.

    Article  PubMed  CAS  Google Scholar 

  • Pelaez, N.M., Schreihofer, A.M., Guyenet, P.G., 2002. Decompensated hemorrhage activates serotonergic neurons in the subependymal parapyramidal region of the rat medulla. Am. J. Physiol-Reg. Int. Comp. Physiol. 283R688–R697.

    CAS  Google Scholar 

  • Pergola, P.E., Kellogg, D.L., Jr., Johnson, J.M., Kosiba, W.A., 1994. Reflex control of active cutaneous vasodilation by skin temperature in humans. Am. J. Physiol. 266H1979–H1984.

    PubMed  CAS  Google Scholar 

  • Perrier, J.F., Alaburda, A., Hounsgaard, J., 2003. 5-HT1A receptors increase excitability of spinal motoneurons by inhibiting a TASK-1-like K+ current in the adult turtle. J. Physiol. 548485–492.

    Article  PubMed  CAS  Google Scholar 

  • Phillips, J.K., Goodchild, A.K., Dubey, R., Sesiashvili, E., Takeda, M., Chalmers, J., Pilowsky, P.M., Lipski, J., 2001. Differential expression of catecholamine biosynthetic enzymes in the rat ventrolateral medulla. J. Comp. Neurol. 43220–34.

    Article  PubMed  CAS  Google Scholar 

  • Pilowsky, P.M., West, M., Chalmers, J., 1985. Renal sympathetic-nerve responses to stimulation, inhibition and destruction of the ventrolateral medulla in the rabbit. Neurosci. Lett. 6051–55.

    Article  PubMed  CAS  Google Scholar 

  • Pilowsky, P.M., deCastro, D., Llewellyn-Smith, I., Lipski, J., Voss, M.D., 1990. Serotonin immunoreactive boutons make synapses with feline phrenic motoneurons. J. Neurosci. 101091–1098.

    PubMed  CAS  Google Scholar 

  • Pilowsky, P.M., Goodchild, A.K., 2002. Baroreceptor reflex pathways and neurotransmitters: 10 years on. J. Hypertension 201675–1688.

    Article  CAS  Google Scholar 

  • Pilowsky, P.M., Kapoor, V., Minson, J.B., West, M.J., Chalmers, J.P., 1986a. Spinal-cord serotonin release and raised blood-pressure after brain-stem kainic acid injection. Brain Res. 366354–357.

    Article  PubMed  Google Scholar 

  • Pilowsky, P.M., Llewellyn-Smith, I.J., Minson, J.B., Amolda, L.F., Chalmers, J.P., 1995a. Substance-P and serotonergic inputs to sympathetic preganglionic neurons. Clin. Exp. Hypertension 17335–344.

    Article  Google Scholar 

  • Pilowsky, P.M., Miyawaki, T., Minson, J.B., Sun, Q.J., Amolda, L.F., Llewellyn-Smith, I.J., Chalmers, J.P., 1995b. Bulbospinal sympatho-excitatory neurons in the rat caudal raphe. J. Hypertension 131618–1623.

    Google Scholar 

  • Pilowsky, P.M., Morris, M.J., Kapoor, V., West, M.J., Chalmers, J.P., 1986b. Role of renal nerve activity, plasma-catecholamines and plasma vasopressin in cardiovascular-responses to intracisternal neurotoxins in the rabbit. J. Auton. Nerv. Sys. 17109–120.

    Article  Google Scholar 

  • Popova, N.K., Amstislavskaya, T.G., 2002. 5-HT2A and 5-HT2C serotonin receptors differentially modulate mouse sexual arousal and the hypothalamo-pituitary-testicular response to the presence of a female. Neuroendocrinol. 7628–34.

    Article  CAS  Google Scholar 

  • Potrebic, S.B., Fields, H.L., Mason, P., 1994. Serotonin immunoreactivity is contained in one physiological cell class in the rat rostral ventromedial medulla. J. Neurosci. 141655–1665.

    PubMed  CAS  Google Scholar 

  • Proudfít, H.K., Larson, A.A., Anderson, E.G., 1980. The role of GABA and serotonin in the mediation of raphe-evoked spinal cord dorsal root potentials. Brain Res. 195149–165.

    Article  PubMed  Google Scholar 

  • Rathner, J.A., Owens, N.C., McAllen, R.M., 2001. Cold-activated raphe-spinal neurons in rats. J. Physiol. 535841–854.

    Article  PubMed  CAS  Google Scholar 

  • Remmers, J.E., Torgerson, C., Harris, M., Perry, S.F., Vasilakos, K., Wilson, R.J., 2001. Evolution of central respiratory chemoreception: a new twist on an old story. Respir. Physiol. 129211–217.

    Article  PubMed  CAS  Google Scholar 

  • Ribeiro-do-Valle, L.E., Lucena, R.L., 2001. Behavioral correlates of the activity of serotonergic and non-serotonergic neurons in caudal raphe nuclei. Braz. J. Med. Biol. Res. 34919–937.

    Article  PubMed  CAS  Google Scholar 

  • Richerson, G.B., 1995. Response to C02 of neurons in the rostral ventral medulla in vitro. J. Neurophysiol. 73933–944.

    PubMed  CAS  Google Scholar 

  • Richerson, G.B., Wang, W., Tiwari, J., Bradley, S.R., 2001. Chemosensitivity of serotonergic neurons in the rostral ventral medulla. Respir. Physiol. 129175–189.

    Article  PubMed  CAS  Google Scholar 

  • Ritucci, N.A., Chambers-Kersh, L., Dean, J.B., Putnam, R.W., 1998. Intracellular pH regulation in neurons from chemosensitive and nonchemosensitive areas of the medulla. Am. J. Physiol. 275R1152–R1163.

    PubMed  CAS  Google Scholar 

  • Romanovsky, A.A., Kulchitsky, V.A., Simons, C.T., Sugimoto, N., Szekely, M., 1997. Cold defense mechanisms in vagotomized rats. Am. J. Physiol. 273R784–R789.

    PubMed  CAS  Google Scholar 

  • Ross, C.A., Ruggiero, D.A., Park, D.H., Joh, T.H., Sved, A.F., Fernandez-Pardal, J., Saavedra, J.M., Reis, D.J., 1984. Tonic vasomotor control by the rostral ventrolateral medulla: effect of electrical or chemical stimulation of the area containing C1 adrenaline neurons on arterial pressure, heart rate, and plasma catecholamines and vasopressin. J. Neurosci. 4474–494.

    PubMed  CAS  Google Scholar 

  • Ruda, M., Allen, ?., Gobel, S., 1981. Ultrastructure of descending serotoninergic axonal endings in layers I and II of the dorsal horn. J. Physiol. (Paris) 77205–209.

    CAS  Google Scholar 

  • Salonia, A., Maga, ?., Colombo, R., Scattoni, V., Briganti, A., Cestari, A., Guazzoni, G., Rigatti, P., Montorsi, F., 2002. A prospective study comparing paroxetine alone versus paroxetine plus sildenafil in patients with premature ejaculation. J. Urol. 1682486–2489.

    Article  PubMed  CAS  Google Scholar 

  • Schadt, J.C., Ludbrook, J., 1991. Hemodynamic and neurohumoral responses to acute hypovolemia in conscious mammals. Am. J. Physiol. 260H305–H318.

    PubMed  CAS  Google Scholar 

  • Schlaefke, M.E., 1981. Central chemosensitivity: a respiratory drive. Rev. Physiol. Biochem. Pharmacol. 90171–244.

    Article  PubMed  CAS  Google Scholar 

  • Schreihofer, A.M., Guyenet, P.G., 2002. The baroreflex and beyond: Control of sympathetic vasomotor tone by GABAergic neurons in the ventrolateral medulla. Clin. Exp. Pharmacol. Physiol. 29514–521.

    Article  PubMed  CAS  Google Scholar 

  • Schwarzacher, S.W., Pestean, A., Gunther, S., Ballanyi, K., 2002. Serotonergic modulation of respiratory motoneurons and interneurons in brainstem slices of perinatal rats. Neurosci. 1151247–1259.

    Article  CAS  Google Scholar 

  • Smith, J.E., Jansen, A.S., Gilbey, M.P., Loewy, A.D., 1998. CNS cell groups projecting to sympathetic outflow of tail artery: neural circuits involved in heat loss in the rat. Brain Res. 786153–164.

    Article  PubMed  CAS  Google Scholar 

  • Sorkin, L.S., McAdoo, D.J., 1993. Amino acids and serotonin are released into the lumbar spinal cord of the anesthetized cat following intradermal capsaicin injections. Brain Res. 60789–98.

    Article  PubMed  CAS  Google Scholar 

  • Sorkin, L.S., McAdoo, D.J., Willis, W.D., 1993. Raphe magnus stimulation-induced antinociception in the cat is associated with release of amino acids as well as serotonin in the lumbar dorsal horn. Brain Res. 61895–108.

    Article  PubMed  CAS  Google Scholar 

  • Stephens, D.P., Aoki, K., Kosiba, W.A., Johnson, J.M., 2001. Nonnoradrenergic mechanism of reflex cutaneous vasoconstriction in men. Am. J. Physiol. Heart Circ. Physiol. 280H1496–H1504.

    PubMed  CAS  Google Scholar 

  • Stornetta, R.L., Guyenet, P.G., 1999. Distribution of glutamic acid decarboxylase mRNA-containing neurons in rat medulla projecting to thoracic spinal cord in relation to monoaminergic brainstem neurons. J. Comp. Neurol. 407367–380.

    Article  PubMed  CAS  Google Scholar 

  • Strack, A.M., Sawyer, W.B., Hughes, J.H., Platt, K.B., Loewy, A.D., 1989. A general pattern of CNS innervation of the sympathetic outflow demonstrated by transneuronal Pseudorabies viral infections. Brain Res. 491156–162.

    Article  PubMed  CAS  Google Scholar 

  • Sugaya, K., Ogawa, Y., Hatano, T., Koyama, Y., Miyazato, T., Oda, M., 1998. Evidence for involvement of the subcoeruleus nucleus and nucleus raphe magnus in urine storage and penile erection in decerebrate rats. J. Urol. 1592172–2176.

    Article  PubMed  CAS  Google Scholar 

  • Sun, Q.J., Berkowitz, R.G., Goodchild, A.K., Pilowsky, P.M., 2002. Serotonin inputs to inspiratory laryngeal motoneurons in the rat. J. Comp. Neurol. 45191–98.

    Article  PubMed  CAS  Google Scholar 

  • Swanson, L.W., 1998. Brain Maps: Sturcture of the Rat Brain: A Laboratory Guide with Printed and Electronic Templates for Data, Models, and Schematics. Elsevier Science Ltd.

    Google Scholar 

  • Szelenyi, Z., Hinckel, P., 1987. Changes in cold-and heat-defence following electrolytic lesions of raphe nuclei in the guinea-pig. Pflugers Arch. 409175–181.

    Article  PubMed  CAS  Google Scholar 

  • Tallaksen-Greene, S.J., Elde, R., Wessendorf, M.W., 1993. Regional distribution of serotonin and substance P co-existing in nerve fibers and terminals in the brainstem of the rat. Neurosci. 531127–1142.

    Article  CAS  Google Scholar 

  • Tanaka, M., Nagashima, K., McAllen, R.M., Kanosue, K., 2002. Role of the medullary raphe in thermoregulatory vasomotor control in rats. J. Physiol. 540657–664.

    Article  PubMed  CAS  Google Scholar 

  • Tanaka, M., Okamura, H., Tamada, Y., Nagatsu, I., Tanaka, Y., Ibata, Y., 1994. Catecholaminergic input to spinally projecting serotonin neurons in the rostral ventromedial medulla oblongata of the rat. Brain Res. Bull. 3523–30.

    Article  PubMed  CAS  Google Scholar 

  • Terui, N., Saeki, Y., Kumada, M., 1986. Barosensory neurons in the ventrolateral medulla in rabbits and their responses to various afferent inputs from peripheral and central sources. Japanese J. Physiol. 361141–1164.

    Article  CAS  Google Scholar 

  • Terui, N., Saeki, Y., Kumada, M., 1988. Barosensory neurons in the rostral ventrolateral medulla mediate the renal-sympathetic reflex in rabbits. Clin. Exp. Hypertension A-Theory and Practice 10269–274.

    Article  Google Scholar 

  • Thomas, D.A., McGowan, M.K., Hammond, D.L., 1995. Microinjection of baclofen in the ventromedial medulla of rats — antinociception at low-doses and hyperalgesia at high-doses. J. Pharmacol. Exp. Ther. 275274–284.

    PubMed  CAS  Google Scholar 

  • Urban, M.O., Coutinho, S.V., Gebhart, G.F., 1999. Biphasic modulation of visceral nociception by neurotensin in rat rostral ventromedial medulla. J. Pharmacol. Exp. Ther. 290207–213.

    PubMed  CAS  Google Scholar 

  • Urban, M.O., Smith, D.J., Gebhart, G.F., 1996. Involvement of spinal cholecystokininB receptors in mediating neurotensin hyperalgesia from the medullary nucleus raphe magnus in the rat. J. Pharmacol. Exp. Ther. 27890–96.

    PubMed  CAS  Google Scholar 

  • Ursin, R., 2002. Serotonin and sleep. Sleep Med. Rev. 655–69.

    Article  PubMed  Google Scholar 

  • Vanegas, H., Barbaro, N.M., Fields, H.L., 1984. Tail-flick related activity in medullospinal neurons. Brain Res. 321135–141.

    Article  PubMed  CAS  Google Scholar 

  • Wang, H., Stornetta, R.L., Rosin, D.L., Guyenet, P.G., 2001. Neurokinin-1 receptor-immunoreactive neurons of the ventral respiratory group in the rat. J. Comp. Neurol. 434128–146.

    Article  PubMed  CAS  Google Scholar 

  • Wang, W., Bradley, S.R., Richerson, G.B., 2002. Quantification of the response of rat medullary raphe neurones to independent changes in pH(o) and P(C02). J. Physiol. 540951–970.

    Article  PubMed  CAS  Google Scholar 

  • Wang, W., Pizzonia, J.H., Richerson, G.B., 1998. Chemosensitivity of rat medullary raphe neurones in primary tissue culture. J. Physiol. 511433–450.

    Article  PubMed  CAS  Google Scholar 

  • Wang, W., Richerson, G.B., 1999. Development of chemosensitivity of rat medullary raphe neurons. Neurosci. 901001–1011.

    Article  CAS  Google Scholar 

  • Wang, W., Tiwari, J.K., Bradley, S.R., Zaykin, R.V., Richerson, G.B., 2001. Acidosis-stimulated neurons of the medullary raphe are serotonergic. J. Neurophysiol. 852224–2235.

    PubMed  CAS  Google Scholar 

  • Willette, R.N., Punnen, S., Krieger, A.J., Sapru, H.N., 1984. Interdependence of rostral and caudal ventrolateral medullary areas in the control of blood pressure. Brain Res. 321169–174.

    Article  PubMed  CAS  Google Scholar 

  • Wing, L.M., Chalmers, J.P., 1974. Participation of central serotonergic neurons in the control of the circulation of the unanesthetized rabbit. A study using 5,6-dihydroxytryptamine in experimental neurogenic and renal hypertension. Circ. Res. 35504–513.

    Article  PubMed  CAS  Google Scholar 

  • Wisor, J.P., Wurts, S.W., Hall, F.S., Lesch, K.P., Murphy, D.L., Uhi, G.R., Edgar, D.M., 2003. Altered rapid eye movement sleep timing in serotonin transporter knockout mice. Neuroreport 14233–238.

    Article  PubMed  CAS  Google Scholar 

  • Zagon, A., 1993. Innervation of serotonergic medullary raphe neurons from cells of the rostral ventrolateral medulla in rats. Neurosci. 55849–867.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pilowsky, P.M. (2004). Serotonin Neurons in the Brainstem and Spinal Cord: Diverse Projections and Multiple Functions. In: Dun, N.J., Machado, B.H., Pilowsky, P.M. (eds) Neural Mechanisms of Cardiovascular Regulation. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9054-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9054-9_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4776-7

  • Online ISBN: 978-1-4419-9054-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics