Regenerated Cellulose Reinforced Plastics

  • S. J. Eichhorn


Natural and regenerated cellulosic fiber reinforced composites a have lower fracture toughness than conventional glass fiber reinforced composites. The mechanisms by which defects are caused in the materials were elucidated, and Raman spectroscopy was found to be especially useful in determining the stresses and strains within a fiber embedded in a matrix. Finally, the use of regenerated cellulose, hybrid composites and biomimetics was found to be promising.


Fracture Toughness Natural Fiber Steam Explosion Regenerate Cellulose Flax Fiber 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Cox, H.L. and Pepper, K.W. Paper-base plastics. Part I. The preparation of phenolic laminated boards. J. Soc. Chem. Ind. 1944; 63:150–154.Google Scholar
  2. [2]
    Pepper, K.W. and Barwell, F.T. Paper-base plastics. Part II. Production at low pressure. J. Soc. Chem. Ind. 1944; 63: 321–329.CrossRefGoogle Scholar
  3. [3]
    Cox, H.L. The elasticity and strength of paper and other fibrous materials. British J. Appl. Phys. 1952; 3: 72–79.CrossRefGoogle Scholar
  4. [4]
    Robson, D., Hague, J., Newman, G., Jeronimidis, G. and Ansell, M. In Survey of Natural Materials for Use in Structural Composites as Reinforcement and Matrices, Crown Copyright. University of Wales: The Biocomposites Centre, 1993.Google Scholar
  5. [5]
    Hornsby, P.R., Hinrichsen, E. and Taverdi, K. Preparation and properties of polypropylene composites reinforced with wheat and flax straw fibers. J. Mat. Sci. 1997; 32: 443–449.CrossRefGoogle Scholar
  6. [6]
    Davies, G.C. and Bruce, D.M. Effect of environmental relative humidity and damage on the tensile properties of flax and nettle fibers. Textile Res. J. 1998; 68: 623–629.CrossRefGoogle Scholar
  7. [7]
    Bos, H.L., Van Den Oever, J.A. and Peters, O.C.J.J. Tensile and compressive properties of flax fibers for natural fiber reinforced composites. J. Mat. Sci. 2002; 37: 1683–1692.CrossRefGoogle Scholar
  8. [8]
    Eichhorn, S.J., Sirichaisit, J. and Young, R.J. Deformation mechanisms in cellulose fibers, paper and wood. J. Mat. Sci. 2001; 36:31 29–35.Google Scholar
  9. [9]
    Morton, W.E. and Hearle, J.W.S. Physical Properties of Textile Fibers. London: Heinemann, 1975.Google Scholar
  10. [10]
    Jones, F.R. Handbook of Polymer-Fiber Composites. Harlow: Longman Scientific and Technical, 1994.Google Scholar
  11. [11]
    Brouwer, W.D. Natural fiber composites: Where can flax compete with glass?. Sampe J. 2000; 36:18–23.Google Scholar
  12. [12]
    Hughes, M., Sebe, G., Hague, J., Hill, C, Spear, M. and Mott, L. An investigation into the effects of micro-compressive defects on interphase behaviour in hemp-epoxy composites using half-fringe photoelasticity. Composite Interfaces 2000; 7: 13–29.CrossRefGoogle Scholar
  13. [13]
    Hughes, M., Hill, C.A.S. and Hague, J.R.B. The fracture toughness of bast fiber reinforced polyester composites. Part 1. Evaluation and analysis. J. Mat. Sci. 2002; 37: 4669–4676.CrossRefGoogle Scholar
  14. [14]
    Vincent, J.F.V. A unified nomenclature for plant fibers for industrial use. Appl. Composite Mat. 2000; 7: 269–271.CrossRefGoogle Scholar
  15. [15]
    Codd, L.W., Dijkhoff, K., Fearon, J.H., van Oss, C.J., Roebersen, H.G. and Stanford, E.G. Materials and Technology. A Systematic Encyclopedia of the Technology of Materials Used in Industry and Commerce, Including Foodstuffs and Fuels. 6. Wood, Fibers, Plastics and Photography. Longman & J.H. De Bussy, 1973.Google Scholar
  16. [16]
    Kessler, R.W., Becker, U., Kohler, R. and Goth, B. Steam explosion of flax — A superior technique for upgrading fibre value. Biomass and Bioenergy 1998; 14:237–249.CrossRefGoogle Scholar
  17. [17]
    Garcia Jaldon, C, Dupeyre, D. and Vignon, M.R. Fibres from semi-retted hemp bundles by steam explosion treatment. Biomass and Bioenergy 1998; 14:251–260.CrossRefGoogle Scholar
  18. [18]
    Di Candilo, M., Ranali, P., Bozzi, C, Focher, B. and Mastromei, G. Preliminary results of tests facing with the controlled retting of hemp. Ind. Crops and Products 2000; 11: 197–203.CrossRefGoogle Scholar
  19. [19]
    Adamsen, A.P.S., Akin, D.E. and Rigsby, L.L. Chemical retting of flax straw under alkaline conditions. Textile Res. J. 2002; 72: 789–794.CrossRefGoogle Scholar
  20. [20]
    Eichhorn, S.J. and Young, R.J. Deformation micromechanics of natural cellulose fibre networks and composites. Composites Science and Technology — in press.Google Scholar
  21. [21]
    Batchelder, D.N. and Bloor, D. Strain dependence of the vibrational modes of the diacetylene crystal. J. Poly. Sci. Polymer Phys. Ed. 1979; 17: 569–581.CrossRefGoogle Scholar
  22. [22]
    Mitra, V.K., Risen, W.M., Jr. and Baughman, R.H. A laser Raman study of the stress dependence of vibrational frequencies of a mono-crystalline polydiacetylene. J. Chem. Phys. 1977; 66: 2731–2736.CrossRefGoogle Scholar
  23. [23]
    Young, R.J. Monitoring deformation processes in high-performance fibres using Raman spectroscopy. J. Textile Inst. 1995; 86: 360–381.CrossRefGoogle Scholar
  24. [24]
    Bos H.L. and Donald, A.M. In situ ESEM study of the deformation of elementary flax fibers. J. Mat. Sci. 1999; 34: 3029–3034.CrossRefGoogle Scholar
  25. [25]
    Muller, M., Czihak, C, Vogl, G., Fratzl, P., Schober, H. and Riekel, C. Direct observation of microfibril arrangement in a single native cellulose fiber by microbeam small-angle x-ray scattering. Macromol. 1998; 31: 3953–3957.CrossRefGoogle Scholar
  26. [26]
    Mercado, J.S. Using digital image analysis to determine the reinforcement of wood fiber polyurethane composites. M.Sc.Thesis, Michigan Technological University, 1992.Google Scholar
  27. [27]
    Zhao, Q., Frogley, M.D. and Wagner, H.D. Direction-sensitive strain-mapping with carbon nanotube sensors. Composites Science and Technology 2002; 62: 147–150.CrossRefGoogle Scholar
  28. [28]
    Arikan, A., Kaynak, C. and Tincer, T. Influences of liquid elastomer additive on the behaviour of short glass fibre reinforced epoxy. Polymer Composites 2002; 23: 790–805.CrossRefGoogle Scholar
  29. [29]
    Mohanty, A.K., Misra, M. and Drzal, L.T. Surface modifications of natural fibres and performance of the resulting biocomposites: An overview. Composite Interfaces 2001; 8: 313–343.CrossRefGoogle Scholar
  30. [30]
    Klemm, D., Phillip, B., Heinze, T., Heinze, U. and Wagenknecht, W. Comprehensive Cellulose Chemistry.Volume 1. Fundamentals and Analytical Methods. Weinheim: Wiley-VCH, 1998.CrossRefGoogle Scholar
  31. [31]
    Eichhorn, S.J., Baillie, C.A., Zafeiropoulos, N., Mwaikambo, L.Y., Ansell, M.P., Dufresne, A., Entwistle, K.M., Herrera-Franco, P.J., Escamilla, G.C., Groom, L., Hughes, M., Hill, C., Rials, T.G., and Wild, P.M. Current international research into cellulosic fibres and composites. J. Mat. Sci. 2001; 36: 2107–2131.CrossRefGoogle Scholar
  32. [32]
    Hepworth, D.G., Vincent, J.F.V., Jeronimidis, G. and Bruce, D.M. The penetration of epoxy resin into plant fibre cell walls increases the stiffness of plant fibre composites. Composites Part A — Applied Science and Manufacturing 2000; 31: 599–601.CrossRefGoogle Scholar
  33. [33]
    Harris, B. Engineering Composite Materials. IOM Communications Ltd., 1999.Google Scholar
  34. [34]
    Young, R.J. Evaluation of composite interfaces using Raman spectroscopy. Key Engineering Materials 1996; 116–117:173-92.Google Scholar
  35. [35]
    So, C.L., Bennett, J.A., Sirichaisit, J. and Young, R.J. Compressive behaviour of rigid rod polymer fibres and their adhesion to composite matrices. Plastics, Rubber and Composites 2003 — in press.Google Scholar
  36. [36]
    Clyne, T.W. and Withers, P.J. An Introduction to Metal Matrix Composites. Cambridge University Press, 1993.Google Scholar
  37. [37]
    Eichhorn, S.J. and Young, R.J. Deformation micromechanics of natural and regenerated cellulose fibers and composite materials. Proceedings of the 23rd Risø International Symposium on Materials Science. Sustainable Natural and Polymeric Composites — Science and Technology; 2002 September 2-5; Risø National Laboratory, Denmark.Google Scholar
  38. [38]
    Cross, C.F., Bevan, E.J. and Beadle, C. British Patent 8, 700.1893.Google Scholar
  39. [39]
    BIFSA, 92nd Session of the Sub-Committee “Terminology” 1989 May 23; Paris.Google Scholar
  40. [40]
    Northolt, M.G., Boerstoel, H., Maatman, H., Huisman, R., Veurink, J. and Elzerman, H. The structure and properties of cellulose fibers spun from an anisotropic phosphoric acid solution. Polymer 2001; 42: 8249–8264.CrossRefGoogle Scholar
  41. [41]
    Payen, A. Mémoire sur la composition du tissu propre des plantes et du ligneux. C.R.Hebd.Seances Acad.Sci. 1838; 7: 1052–1056.Google Scholar
  42. [42]
    Clark, R.A. and Ansell, M.P. Jute and glass-fiber hybrid composites. J. Mat. Sci. 1986; 21:269–276.CrossRefGoogle Scholar
  43. [43]
    Benevolenski, O.I., Karger-Kocsis, J., Mieck, K.P. and Reussmann, T. Instrumented perforation impact response of polypropylene composites with hybrid reinforcement. J. Thermoplastic Composite Materials 2000; 13: 481–496.CrossRefGoogle Scholar
  44. [44]
    Plackett, D.V. and Andersen, T.L. Biocomposites from natural fibers and biodegradable polymers: processing, properties and future prospects. Proceedings of the 23rd Risø International Symposium on Materials Science. Sustainable Natural and Polymeric Composites — Science and Technology; 2002 September 2-5; Risø National Laboratory, Denmark.Google Scholar
  45. [45]
    Gordon, J.E. and Jeronimidis, G. Composites with high work of fracture. Phil. Trans. Roy. Soc. Lond. Series A 1980; 294: 545–550.CrossRefGoogle Scholar
  46. [46]
    Vincent, J.F.V. Arthropod cuticle: A natural composite shell system. Composites Part A-Applied Science and Manufacturing 2002; 33: 1311–1315.CrossRefGoogle Scholar
  47. [47]
    Paillet, M. and Dufresne, A. Chitin whisker reinforced thermoplastic nanocomposites. Macromol. 2001; 34: 6527–6530.CrossRefGoogle Scholar
  48. [48]
    Mathew, A.P. and Dufresne, A. Morphological investigation of nanocomposites from sorbitol plasticized starch and tunicin whiskers. Biomacromol. 2002; 3: 609–617.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • S. J. Eichhorn
    • 1
  1. 1.Manchester Materials Science CentreUMIST/University of ManchesterManchesterUK

Personalised recommendations