Semiconductor Nanoparticles

Synthesis, properties, and integration into polymers for the generation of novel composite materials
  • Habib Skaff
  • Todd Emrick
Part of the Nanostructure Science and Technology book series (NST)

Abstract

Semiconductors are key components of devices used everyday, including computers, light emitting diodes, sensors, etc. Semiconductors are a unique class of materials in that they can assume characteristic properties of both metals and insulators, depending on conditions that determine the electronic nature of the valence and conduction bands. In the ground state, the valence band is completely filled and separated from the conduction band by a narrow band gap (Eg). When sufficient energy is applied to a semiconductor, it becomes conducting by excitation of electrons from the valence band into the conduction band. This excitation process leaves holes in the valence band, and thus creates “electron-hole pairs” (EHPs). When these EHPs are in intimate contact (i.e., the electrons and holes have not dissociated) they are termed “excitons.” In the presence of an external electric field, the electron and the hole will migrate (in opposite directions) in the conduction and valence bands, respectively (Figure 2.1).

Keywords

Surfactant Cadmium Selenium Pyridine Vinyl 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hummel, R E. Electronic Properties of Materials; 2 ed.; Springer-Verlag, 1993.Google Scholar
  2. 2.
    Klabunde, K. J. Nanoscale Materials in Chemistry, John Wiley & Sons, 2001.Google Scholar
  3. 3.
    Bawendi, M. G.; Wilson, W. L.; Rothberg, L.; Carroll, P. J.; Jedju, T. M.; Steigerwald, M. L.; Brus, L. E. Phys. Rev. Lett. 1990, 65, 1623–1626.CrossRefGoogle Scholar
  4. 4.
    Brus, L. Appl. Phys. A-Mater. Sci. Process. 1991, 53, 465–474.CrossRefGoogle Scholar
  5. 5.
    Brus, L. E.; Szajowski, P. F.; Wilson, W. L.; Harris, T. D.; Schuppler, S.; Citrin, P. H. J. Am. Chem. Soc. 1995, 117, 2915–2922.CrossRefGoogle Scholar
  6. 6.
    Chen, C. C.; Herhold, A. B.; Johnson, C. S.; Alivisatos, A. P. Science. 1997, 276, 398–401.CrossRefGoogle Scholar
  7. 7.
    Chestnoy, N.; Hull, R.; Brus, L. E. J. Chem. Phys. 1986, 85, 2237–2242.CrossRefGoogle Scholar
  8. 8.
    Empedocles, S. A.; Bawendi, M. G. Science. 1997, 278, 2114–2117.CrossRefGoogle Scholar
  9. 9.
    Empedocles, S.; Bawendi, M. Accounts of Chemical Research 1999, 32, 389–396.CrossRefGoogle Scholar
  10. 10.
    Nirmal, M.; Dabbousi, B. O.; Bawendi, M. G.; Macklin, J. J.; Trautman, J. K.; Harris, T. D.; Brus, L. E. Nature 1996, 383, 802–804.CrossRefGoogle Scholar
  11. 11.
    Nirmal, M.; Brus, L. Accounts Chem. Res. 1999, 32, 407–414.CrossRefGoogle Scholar
  12. 12.
    Shim, M.; Wang, C. J.; Guyot-Sionnest, P. J. Phys. Chem. B 2001, 105, 2369–2373.CrossRefGoogle Scholar
  13. 13.
    Shim, M.; Guyot-Sionnest, P. Phys. Rev. B 2001, 6424, 245342.CrossRefGoogle Scholar
  14. 14.
    Shim, M.; Wang, C. J.; Noms, D. J.; Guyot-Sionnest, P. MRS Bull. 2001, 26, 1005–1008.CrossRefGoogle Scholar
  15. 15.
    Gaponenko, S. v. Optical Porperties of Semiconductor Nanocrystals; Cambridge University Press: New York, 1998.CrossRefGoogle Scholar
  16. 16.
    Brus, L. J. Phys. Chem. Solids. 1998, 59, 459–465.CrossRefGoogle Scholar
  17. 17.
    Alivisatos, A. P.; Harris, T. D.; Brus, L. E.; Jayaraman, A. J. Chem. Phys. 1988, 89, 5979–5982.CrossRefGoogle Scholar
  18. 18.
    De Schryver, F. C. Pure Appl. Chem. 1998, 70, 2147.CrossRefGoogle Scholar
  19. 19.
    Li, L. S.; Hu, J. T.; Yang, W. D.; Alivisatos, A. P. Nano Lett. 2001, 1, 349–351.CrossRefGoogle Scholar
  20. 20.
    Marcus, M. A.; Flood, W.; Stiegerwald, M.; Brus, L.; Bawendi, M. J. Phys. Chem. 1991, 95, 1572–1576.CrossRefGoogle Scholar
  21. 21.
    Rabani, E.; Hetenyi, B.; Berne, B. J.; Brus, L. E. J. Chem. Phys. 1999, 110, 5355–5369.CrossRefGoogle Scholar
  22. 22.
    Rossetti, R.; Ellison, J. L.; Gibson, J. M.; Brus, L. E. J. Chem. Phys. 1984, 80, 4464–4469.CrossRefGoogle Scholar
  23. 23.
    Tully, D. C.; Wilder, K.; Frechet, J. M. J.; Trimble, A. R.; Quate, C. F. Adv. Mater. 1999, 11, 314–318.CrossRefGoogle Scholar
  24. 24.
    Bosman, A. W.; Heumann, A.; Klaerner, G.; Benoit, D.; Frechet, J. M. J.; Hawker, C. J. J. Am. Chem. Soc. 2001, 123, 6461–6462.CrossRefGoogle Scholar
  25. 25.
    Calander, N.; Willander, M. Phys. Rev. Lett. 2002, 89, 143603.CrossRefGoogle Scholar
  26. 26.
    Townsend, P.; Olivares, J. Appl. Surf. Sci. 1997, 110, 275–282.CrossRefGoogle Scholar
  27. 27.
    Boal, A. K.; Ilhan, F.; DeRouchey, J. E.; Thurn-Albrecht, T.; Russell, T. P.; Rotello, V. M. Nature 2000, 404, 746–748.CrossRefGoogle Scholar
  28. 28.
    Haw, M. D.; Poon, W. C. K.; Pusey, P. N. Phys. Rev. E 1997, 56, 1918–1933.CrossRefGoogle Scholar
  29. 29.
    Bunning, T. J.; Kirkpatrick, S. M.; Natarajan, L. V.; Tondiglia, V. P.; Tomlin, D. W. Chem. Mat. 2000, 12, 2842.CrossRefGoogle Scholar
  30. 30.
    Brott, L. L.; Naik, R. R.; Pikas, D. J.; Kirkpatrick, S. M.; Tomlin, D. W.; Whitlock, P. W.; Clarson, S. J.; Stone, M. O. Nature 2001, 413, 291–293.CrossRefGoogle Scholar
  31. 31.
    Htoo, M. S., Ed. Microelectronic Polymers; M. Dekker, 1989.Google Scholar
  32. 32.
    Sneh, O.; Clark-Phelps, R. B.; Londergan, A. R.; Winkler, J.; Scidel, T. E. Thin Solid Films 2002, 402, 248–261.CrossRefGoogle Scholar
  33. 33.
    Hong, L.; Vilar, R. M.; Wang, Y. M. J. Mater. Sci. 1997, 32, 5545–5550.CrossRefGoogle Scholar
  34. 34.
    Brown, T. L.; Swaminathan, S.; Chandrasekar, S.; Compton, W. D.; King, A. H.; Trumble, K. P. J. Mater. Res. 2002, 17, 2484–2488.CrossRefGoogle Scholar
  35. 35.
    Steigerwald, M. L.; Alivisatos, A. P.; Gibson, J. M.; Harris, T. D.; Kortan, R.; Muller, A. J.; Thayer, A. M.; Duncan, T. M.; Douglass, D. C; Brus, L. E. J. Am. Chem. Soc. 1988, 110, 3046–3050.CrossRefGoogle Scholar
  36. 36.
    Steigerwald, M. L.; Brus, L. E. Annu. Rev. Mater. Sci. 1989, 19, 471–495.CrossRefGoogle Scholar
  37. 37.
    Fojtik, A.; Weiler, H.; Koch, U.; Henglein, A. Ber. Bunsen-Ges. Phys. Chem. Chem. Phys. 1984, 88, 969–977.CrossRefGoogle Scholar
  38. 38.
    Murray, C. B.; Noms, D. J.; Bawendi, M. G. J. Am. Chem. Soc. 1993, 115, 8706–8715.CrossRefGoogle Scholar
  39. 39.
    Peng, X. G.; Schlamp, M. C.; Kadavanich, A. V.; Alivisatos, A. P. J. Am. Chem. Soc. 1997, 119, 7019–7029.CrossRefGoogle Scholar
  40. 40.
    Dabbousi, B. O.; RodriguezViejo, J.; Mikulec, F. V.; Heine, J. R.; Mattoussi, H.; Ober, R.; Jensen, K. F.; Bawendi, M. G. J. Phys. Chem. B 1997, 101, 9463–9475.CrossRefGoogle Scholar
  41. 41.
    Gerion, D.; Pinaud, F.; Williams, S. C.; Parak, W. J.; Zanchet, D.; Weiss, S.; Alivisatos, A. P. J. Phys. Chem. B 2001, 105, 8861–8871.CrossRefGoogle Scholar
  42. 42.
    Pathak, S.; Choi, S. K; Arnheim, N.; Thompson, M. E. J. Am. Chem. Soc. 2001, 123, 4103–4104.CrossRefGoogle Scholar
  43. 43.
    Qu, L. H.; Peng, Z. A.; Peng, X. G. Nano Lett. 2001, 1, 333–337.CrossRefGoogle Scholar
  44. 44.
    Peng, Z. A.; Peng, X. G. J. Am. Chem. Soc. 2001, 123, 183–184.CrossRefGoogle Scholar
  45. 45.
    Peng, Z. A.; Peng, X. G. I Am. Chem. Soc. 2002, 124, 3343–3353.CrossRefGoogle Scholar
  46. 46.
    Qu, L. H.; Peng, X. G. J. Am. Chem. Soc. 2002, 124, 2049–2055.CrossRefGoogle Scholar
  47. 47.
    Battaglia, D.; Peng, X. G. Nano Lett. 2002, 2, 1027–1030.CrossRefGoogle Scholar
  48. 48.
    Guzelian, A. A.; Katari, J. E. B.; Kadavanich, A. V.; Banin, U.; Hamad, K.; Juban, E.; Alivisatos, A. P.; Wolters, R. H.; Arnold, C. C.; Heath, J. R. J. Phys. Chem. 1996, 100, 7212–7219.CrossRefGoogle Scholar
  49. 49.
    Olshavsky, M. A.; Goldstein, A. N.; Alivisatos, A. P. J. Am. Chem. Soc. 1990, 112, 9438–9439.CrossRefGoogle Scholar
  50. 50.
    Becerra, L. R.; Murray, C. B.; Griffin, R. G.; Bawendi, M. G. J. Chem. Phys. 1994, 100, 3297–3300.CrossRefGoogle Scholar
  51. 51.
    Wang, Y. A.; Li, J. J.; Chen, H.; Peng, X. G. J. Am. Chem. Soc. 2002, 124, 2293–2298.CrossRefGoogle Scholar
  52. 52.
    Balazs, A.; Ginzburg, V. V.; Qui, F.; Peng, G.; Jasnow, D. J. Phys. Chem. B 2000, 104, 3411–3422.CrossRefGoogle Scholar
  53. 53.
    Colvin, V. L.; Schlamp, M. C.; Alivisatos, A. P. Nature 1994, 370, 354–357.CrossRefGoogle Scholar
  54. 54.
    Dameron, C. T.; Reese, R. N.; Mehra, R. K.; Kortan, A. R.; Carroll, P. J.; Steigerwald, M. L.; Brus, L. E.; Winge, D. R. Nature 1989, 338, 596–597.CrossRefGoogle Scholar
  55. 55.
    Godovsky, D. Y. In Biopolymers/Pva Hydrogels/Anionic Polymerisation Nanocomposites, 2000; Vol. 153, pp 163–205.CrossRefGoogle Scholar
  56. 56.
    Harrison, M. T.; Kershaw, S. V.; Burt, M. G.; Rogach, A. L.; Kornowski, A.; Eychmuller, A.; Weiler, H. Pure Appl. Chem. 2000, 72, 295–307.CrossRefGoogle Scholar
  57. 57.
    Huynh, W. U.; Peng, X. G.; Alivisatos, A. P. Adv. Mater. 1999, 11, 923.CrossRefGoogle Scholar
  58. 58.
    Huynh, W. U.; Dittmer, J. J.; Alivisatos, A. P. Science. 2002, 295, 2425–2427.CrossRefGoogle Scholar
  59. 59.
    Lee, J.; Sundar, V. C.; Heine, J. R.; Bawendi, M. G.; Jensen, K. F. Adv. Mater. 2000, 12, 1311–1311.Google Scholar
  60. 60.
    Michalet, X.; Pinaud, F.; Lacoste, T. D.; Dahan, M.; Bruchez, M. P.; Alivisatos, A. P.; Weiss, S. Single Mol. 2001, 2, 261–276.CrossRefGoogle Scholar
  61. 61.
    Salafsky, J. S. Solid-State Electron. 2001, 45, 53–58.CrossRefGoogle Scholar
  62. 62.
    Fogg, D. E.; Radzilowski, L. H.; Blanski, R.; Schrock, R. R.; Thomas, E. L. Macromolecules 1997, 30, 417–426.CrossRefGoogle Scholar
  63. 63.
    Sankaran, V.; Cummins, C. C.; Schrock, R. R.; Cohen, R. E.; Silbey, R. J. J. Am. Chem. Soc. 1990, 112, 6858–6859.CrossRefGoogle Scholar
  64. 64.
    Moffitt, M.; McMahon, L.; Pessel, V.; Eisenberg, A. Chem. Mat. 1995, 7, 1185–1192.CrossRefGoogle Scholar
  65. 65.
    Zhao, H. Y.; Douglas, E. P.; Harrison, B. S.; Schanze, K. S. Langmuir 2001, 17, 8428–8433.CrossRefGoogle Scholar
  66. 66.
    Qi, L.; Colfen, H.; Antonietti, M. Nano Lett. 2001, 1, 61–65.CrossRefGoogle Scholar
  67. 67.
    Gu, Y. D.; Nederberg, F.; Kange, R; Shah, R. R.; Hawker, C. J.; Moller, M.; Hedrick, J. L.; Abbott, N. L. ChemPhysChem 2002, 3, 448.CrossRefGoogle Scholar
  68. 68.
    Petrash, S.; Cregger, T.; Zhao, B.; Pokidysheva, E.; Foster, M. D.; Brittain, W. J.; Sevastianov, V.; Majkrzak, C. F. Langmuir 2001, 17, 7645–7651.CrossRefGoogle Scholar
  69. 69.
    Moller, M.; Nederberg, F.; Lim, L. S.; Kange, R.; Hawker, C. J.; Hedrick, J. L.; Gu, Y. D.; Shah, R; Abbott, N. L. J. Polym. Sci. Pol. Chem. 2001, 39, 3529–3538.CrossRefGoogle Scholar
  70. 70.
    Juang, A.; Scherman, O. A.; Grubbs, R. H.; Lewis, N. S. Langmuir 2001, 17, 1321–1323.CrossRefGoogle Scholar
  71. 71.
    Zhao, B.; Brittain, W. J. Macromolecules 2000, 33, 8813–8820.CrossRefGoogle Scholar
  72. 72.
    Rajagopalan, P.; McCarthy, T. J. Macromolecules 1998, 31, 4791–4797.CrossRefGoogle Scholar
  73. 73.
    Chen, W.; McCarthy, T. J. Macromolecules 1998, 31, 3648–3655.CrossRefGoogle Scholar
  74. 74.
    Carrot, G.; Scholz, S.M.; Plummer, C. J. G.; Hilborn, J. G.; Hedrick, J. L. Chem. Mat. 1999, 11, 3571–3577.CrossRefGoogle Scholar
  75. 75.
    Skaff, H.; Emrick, T. Chem. Comm. 2002, in press.Google Scholar
  76. 76.
    Farmer, S. C.; Patten, T. E. Chem. Mat. 2001, 13, 3920–3926.CrossRefGoogle Scholar
  77. 77.
    Watson, K. J.; Zhu, J.; Nguyen, S. T.; Mirkin, C. A. J. Am. Chem. Soc. 1999, 121, 462–463.CrossRefGoogle Scholar
  78. 78.
    Skaff, H.; Ilker, M. F.; Coughlin, E. B.; Emrick, T. J. Am. Chem. Soc. 2002, 124, 5729–5733.CrossRefGoogle Scholar
  79. 79.
    Schwab, P.; Grubbs, R. H.; Ziller, J. W. J. Am. Chem. Soc. 1996, 118, 100.CrossRefGoogle Scholar
  80. 80.
    Murray, C. B.; Kagan, C. R.; Bawendi, M. G. Science. 1995, 270, 1335–1338.CrossRefGoogle Scholar
  81. 81.
    Mamedov, A. A.; Belov, A.; Giersig, M.; Mamedova, N. N.; Kotov, N. A. J. Am. Chem. Soc. 2001, 123, 7738–7739.CrossRefGoogle Scholar
  82. 82.
    Russell, T. P.; Sackmann, E. Curr. Opin. Colloid Interface Sci. 1998, 3, 3–4.CrossRefGoogle Scholar
  83. 83.
    Misner, M. J.; Skaff, H.; Emrick, T.; Russell, T. P. Adv. Mater. 2002, in press.Google Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Habib Skaff
    • 1
  • Todd Emrick
    • 1
  1. 1.Department of Polymer Science & EngineeringUniversity of Massachusetts, Conte Center for Polymer ResearchAmherst

Personalised recommendations