Advertisement

Regulation of Smooth Muscle Contraction by Calcium, Monomeric Gtpases of the Rho Subfamily and Their Effector Kinases

  • G. Pfitzer
  • A. Wirth
  • C. Lucius
  • D. Brkic-Koric
  • E. Manser
  • P. de Lanerolle
  • A. Arner
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 538)

Abstract

A key event in the activation of smooth muscle contraction ist the phosphorylation of the regulatory light chains of myosin (r-MLC) at Ser19 which is predominantly catalyzed by the Ca2+ and calmodulin dependent myosin light chain kinase, MLCK (Gallager et al., 1997). Recently, it has been suggested that, in addition, r-MLC phosphorylation and contraction may be induced in a Ca2+-independent manner by several protein kinases, such as Rho associated kinase, ZIP kinase, and integrin linked kinase, ILK (reviewed in Ganitkevich et al, 2002). These kinases may, hence, be involved in Ca2+-independent contractions (Kureishi et al., 1999) leading to an increased Ca2+-sensitivity of r-MLC phosphorylation and contraction. Although the physiological role of these kinases is far from clear, they may be of importance during the maintained phase of a contraction when intracellular [Ca2+] has returned to near resting values (Himpens and Somlyo, 1988; Lucius et al., 1998). One goal of this study, therefore, was to test whether Ca2+ is required for tension maintenance of an agonist induced contraction using the membrane permeant form of the caged Ca-chelator, diazo2.

Keywords

Okadaic Acid Smooth Muscle Contraction Myosin Light Chain Kinase Regulatory Light Chain Smooth Muscle Myosin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, S.R., Kao, J.P.Y., and Tsien, R.Y., 1989. Biologically useful chelators that take up Ca2+ upon illumination, J Am. Chem. Soc. 111:7957.CrossRefGoogle Scholar
  2. Arner, A., Malmqvist, U., and Rigler, R., 1998. Calcium transients and the effect of a photolytically released calcium chelator during electrically induced contractions in rabbit rectococcygeus smooth muscle, Biophys. J.75:1895.PubMedCrossRefGoogle Scholar
  3. Chew, T.L., Masaracchia, R.A., Goeckeler, Z.M., and Wysolmerski, R.B., 1998, Phosphorylation of non-muscle myosin II regulatory light chain by p21-activated kinase (gamma-PAK).J. Muscle Res. Cell Motil. 19:839.PubMedCrossRefGoogle Scholar
  4. Deng, J.T., Sutherland, C, Brautigan, D.L., Eto, M. and Walsh, M.P., 2002, Phosphorylation of the myosin phosphatase inhibitors, CPI-17 and PHI-1, by integrin-linked kinase, Biochem. J. 367:517PubMedCrossRefGoogle Scholar
  5. Gallagher, P.J., Herring, B.P., and Stall, J.T., 1997. Myosin light chain kinases, J. Muscle Res. Cell Motil. 18:1.PubMedCrossRefGoogle Scholar
  6. Ganitkevich, V., Hasse, V., and Pfitzer, G., 2002, Ca2+-dependent and Ca2+-independent regulation of smooth muscle contraction.J Muscle Res. Cell Motil. 23:47.PubMedCrossRefGoogle Scholar
  7. Gong, M.C., Fujihara, H., Somlyo, A.V., and Somlyo, A.P., Translocation of rhoA associated with Ca2+ sensitization of smooth muscle, J. Biol Chem.272:10704Google Scholar
  8. Hartshorne, D.J., Ito, M., and Erdödi, F. 1998. Myosin light chain phosphatase: subunit composition, interactions and regulation, J. Muscle Res. Cell Motil. 19:325PubMedCrossRefGoogle Scholar
  9. Himpens, B., and Somlyo, A.P. 1988. Free-calcium and force transients during depolarization and pharmacomechanical coupling in guinea-pig smooth muscle, J. Physiol 395:507.PubMedGoogle Scholar
  10. Just, I., Selzer, J., Wilm. M., von Eichel-Streiber, C, Mann, M., and Aktories, K., 1995. Glucosylation of Rho proteins by Clostridium difficile toxin B, Nature 375:500.PubMedCrossRefGoogle Scholar
  11. Kasturi, R., Vasulka, C, and Johnson, J.D., 1993, Ca2+, caldesmon, and myosin light chain kinase exchange with calmodulin, J. Biol. Client. 268:7958.Google Scholar
  12. Khromov, A., Somlyo, A.V., Trentham, D.R., Zimmermann, B., and Somlyo, A.P., 1995. The role of MgADP in force maintenance by dephosphorylated cross-bridges in smooth muscle: a flash photolysis study, Biophys. J.69:2611.PubMedCrossRefGoogle Scholar
  13. Kimura, K., Ito, M., Amano, M., Chihara, K., Fukata, Y., Nakafuku, M., Yamamori, B., Feng, J., Nakano, T., Okawa, K., Iwamatsu, A., and Kaibuchi, K., 1996, Regulation of myosin phosphatase by Rho and Rho-associated kinase (Rho-kinase), Science 273:245.PubMedCrossRefGoogle Scholar
  14. Kitazawa, T., Khalequzzaman, M.D., Woodsome, T.P., and Eto, M., 2002, Evaluation of signaling pathways for Ca2+-sensitization in smooth muscle, Biophys. J. 82:421a.Google Scholar
  15. Kitazawa, T., Takizawa, N., Ikebe, M., and Eto, M. 1999. Reconstitution of protein kinase C-induced contractile Ca2+ sensitization in triton X-100-demembranated rabbit arterial smooth muscle, J. Physiol. 520:139.PubMedCrossRefGoogle Scholar
  16. Koyama, M., Ito, M., Feng, J., Seko, T., Shiraki, K., Takase K., Hartshorne, D.J., and Nakano, T., 2000. Phosphorylation of CPI-17, an inhibitory phosphoprotein of smooth muscle myosin phosphatase, by Rho-kinas, FEBS Lett. 475:197.PubMedCrossRefGoogle Scholar
  17. Kureishi Y., Ito, M., Feng, J., Okinaka, T., Isaka, N., and Nakano, T. 1999, Regulation of Ca2+-independent smooth muscle contraction by alternative staurosporine-sensitive kinase, Eur. 7. Pharmacol. 376:315Google Scholar
  18. Lucius, C, Amer, A., Steusloff, A., Troschka, M., Hofmann, F., Aktories, K., and Pfitzer, G. 1998. Clostridium difficile toxin B inhibits carbachol-induced force and myosin light chain phosphorylation in guinea-pig smooth muscle: role of Rho proteins, J. Physiol. 506:83.PubMedCrossRefGoogle Scholar
  19. MacDonald, J.A., Borman, M.A., Muranyi, A., Somlyo, A.V., Hartshorne, D.J., and Haystead, T.A., 2001, Identification of the endogenous smooth muscle myosin phosphatase-associated kinase, Proc. Natl. Acad. Sci. USA 98:2419.PubMedCrossRefGoogle Scholar
  20. Manser, E., Leung, T., Salihuddin, H., Zhao, Z., and Lim, L., 1994, A brain serine/threonine protein kinase activated by Cdc42 and Racl, Nature 367:40.PubMedCrossRefGoogle Scholar
  21. Manser, E., Huang, H.Y., Loo, T.H., Chen, X.Q., Dong, J.M., Leung, T., Um, L., 1997, Expression of constitutively active alpha-PAK reveals effects of the kinase on actin and focal complexes, Mol. Cell Biol. 17:1129.PubMedGoogle Scholar
  22. Matsui, T., Amano, M., Yamamoto, T., Chihara, K., Nakafuku, M., Ito, M., Nakano, T., Okawa, K., Iwamatsu, A., and Kaibuchi, K., 1996. Rho-associated kinase, a novel serine/threonine kinase, as a putative target for small GTP binding protein Rho, EMBO J. 15:2208.Google Scholar
  23. Otto, B., Steusloff, A., Just, I., Aktories, K., and Pfitzer, G., 1996, Role of Rho proteins in carbachol-induced contractions in intact and permeabilized guinea-pig intestinal smooth muscle, J. Physiol. 496:317.PubMedGoogle Scholar
  24. Pfitzer G., 2001, Invited review: regulation of myosin phosphorylation in smooth muscle, J. Appl. Physiol. 91:497.PubMedGoogle Scholar
  25. Pfitzer, G., Sonntag-Bensch, D., and Brkic-Koric, D., 2001, Thiophosphorylation-induced Ca(2+) sensitization of guinea-pig ileum contractility is not mediated by Rho-associated kinase, J. Physiol. 533:651.PubMedCrossRefGoogle Scholar
  26. Sanders, L.C., Matsumura, F., Bokoch, G.M. and de Lanerolle, P. 1999, Inhibition of myosin light chain kinase by p21-activated kinase, Science, 283:2083.PubMedCrossRefGoogle Scholar
  27. Schmitz, U., Ishida, T., Ishida, M., Surapisitchat, J., Hasham, M.I., Pelech, S., and Berk, B.C. 1998, Angiotensin II stimulates p21-activated kinase in vascular smooth muscle cells: role in activation of JNK, Circ. Res. 82:1272.PubMedCrossRefGoogle Scholar
  28. Somlyo, A.P., and Somlyo, A.V. 2000. Signal transduction by G-proteins, rho-kinase and protein phosphatase to smooth muscle and non-muscle myosin II, J. Physiol. 522:177.PubMedCrossRefGoogle Scholar
  29. Steusloff; A., Paul; E., Semenchuk, L.A., Di Salvo, J., and Pfitzer, G., 1995, Modulation of Ca2+ sensitivity in smooth muscle by genistein and protein tyrosine phosphorylation, Arch Biochem. Biophys. 320: 236.PubMedCrossRefGoogle Scholar
  30. Swärd, K., Dreja, K., Susnjar, M., Hellstrand, P., Hartshorne, D.J., and Walsh, M.P., 2000, Inhibition of Rho-associated kinase blocks agonist-induced Ca2+ sensitization of myosin phosphorylation and force in guinea-pig ileum, J. Physiol. 522:33.PubMedCrossRefGoogle Scholar
  31. Takai, A., Troschka, M., Mieskes, G., and Somlyo, A.V., 1989, Protein phosphatase composition in the smooth muscle of guinea-pig ileum studied with okadaic acid and inhibitor 2, Biochem. J. 262:617.PubMedGoogle Scholar
  32. Takizawa, N., Koga, Y., and Ikebe, M., 2002, Phosphorylation of CPI17 and myosin binding subunit of type 1 protein phosphatase by p21-activated kinase, Biochem. Biophys. Res.Commun. 297:773Google Scholar
  33. Van Eyk, J.E., Arrell, D.K., Foster, D.B., Strauss, J.D., Heinonen, T.Y.K., Furmaniak-Kazmierczak, E., Côté, G.P., and Mak, A.S., 1998, Different molecular mechanisms for Rho family GTPase-dependent, Ca2+-independent contraction of smooth muscle, J. Biol. Chem. 273:23433.PubMedCrossRefGoogle Scholar
  34. Wirth, A., Schroeter, M., Manser, E., der Lanerolle, P. and Pfitzer, G., 2002 Inhibition of smooth muscle myosin light chain kinase (MLCK) activity and contraction by P21 activated protein kinase 1 (PAK1), Pflügers Arch. 443:193Google Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • G. Pfitzer
    • 1
  • A. Wirth
    • 1
  • C. Lucius
    • 2
  • D. Brkic-Koric
    • 1
  • E. Manser
    • 3
  • P. de Lanerolle
    • 4
  • A. Arner
    • 5
  1. 1.Department of Vegetative Physiologic University of CologneKoelnGermany
  2. 2.Insitute of PhysiologyHumboldt-University of BerlinBerlinGermany
  3. 3.Glaxo-IMCB Group, Institute of Molecular and Cell BiologyNational University of SingaporeKent RidgeSingapore
  4. 4.Dept. of Physiology and BiophysicsUniversity of IllinoisChicagoUSA
  5. 5.Dept. of Physiologcial SciencesLund UniversityLundSweden

Personalised recommendations