Skip to main content

Role of the T-System and the Na-K Pump on Fatigue Development in Phasic Skeletal Muscle

  • Conference paper
Molecular and Cellular Aspects of Muscle Contraction

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 538))

  • 486 Accesses

Abstract

Prolonged, direct electrical stimulation of vertebrate skeletal muscles induces a state during which contractile force or the capacity to do external work declines after prolonged repetitive stimulation. The muscles then become fatigued or mechanically refractory to further stimulation. Fatigue does not involve permanent impairment of function since contractility can be restored. It is not due to neuromuscular transmission failure1 nor is it caused by a decline in the central nervous system motor drive of muscle. Fatigue is due solely to contractile failure2, 3.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. A. Merton, Voluntary strength and fatigue, J. Physiol (Lond) 128, 553–564 (1954).

    Google Scholar 

  2. B. Bigland-Ritchie, EMG and fatigue of human voluntary and stimulated contractions (1980), Human muscle fatigue: physiological mechanisms. Pitman Medical, London (Ciba Foundation Symposium) 82, 130–156 (1981).

    CAS  Google Scholar 

  3. B. Bigland-Ritchie and Woods, J. J., Changes in muscle contractile properties and neural control during human muscular fatigue, Muscle and Nerve 7, 691–699. (1984).

    Article  PubMed  CAS  Google Scholar 

  4. R. H. T. Edwards, D. K. Hille, and D. A. Jones, Metabolic changes associated with the slowing of relaxation in fatigued mouse muscle. J. Physiol. 251, 303–315 (1975).

    PubMed  CAS  Google Scholar 

  5. 5. M. J. Dawson, D. G. Gadian, and D. R. Wilkie, Muscular fatigue investigated by phosphorus nuclear magnetic resonance, Nature (London), 274, 861–866 (1978).

    Article  CAS  Google Scholar 

  6. M. M. Dawson, D. G. Gadian, and D. R. Wilkie, Mechanical relaxation rate and metabolism studied in fatiguing muscle by phosphorus nuclear magnetic resonance, J. Physiol. 299, 465–484 (1980).

    PubMed  CAS  Google Scholar 

  7. R. E. Godt and T. M. Nosek, Changes of intracellular milieu with fatigue or hypoxia depress contraction of skinned rabbit skeletal and cardiac muscle. J. Physiol. 412, 155–180 (1989).

    PubMed  CAS  Google Scholar 

  8. R. Fitts and J. Holloszy, Lactate and contractile force in frog muscle during development of fatigue and recovery. Am. J. Physiol. 231, 430–433 (1976).

    PubMed  CAS  Google Scholar 

  9. H. Westerblad and J. Lännergren, The relation between force and intracellular pH in fatigued, single Xenopus muscle fibres. Acta Physiol. Scand. 133, 83–89 (1988).

    Article  PubMed  CAS  Google Scholar 

  10. R. Porter and J. Whelan, Human muscle fatigue: Physiological mechanisms. Ciba Foundation Symposium 82. Eds. Porter, R. & Whelan, J. Pitman Medical (London) (1981).

    Google Scholar 

  11. N. K. Vollestad and O. M. Sejersted, Biochemical correlates of fatigue, Eur.J.Appl. Physiol. 57, 336–347 (1988).

    Article  CAS  Google Scholar 

  12. R. H. Fitts, Muscle fatigue: The cellular aspects; American Journal of Sports Medicine. 24(6),S9–S13 (1006).

    Google Scholar 

  13. K. A. P. Edman, and A. R. Mattiazi, Effects of fatigue and altered pH on isometric force and velocity of shortening at zero load in frog muscle fibres. J. Musc. Res. Cell Contr. 2, 321–334 (1981).

    Article  CAS  Google Scholar 

  14. G. W. Main wood, and J. M. Renaud, The effect of acid-base balance on fatigue of skeletal muscle. Can. J. Physiol. Pharmacol. 63, 403–416 (1985).

    Article  Google Scholar 

  15. K. A. P. Edman and F. Lou, Changes in force and stiffness induced by fatigue and intracellular acidification in frog muscle fibres. J. Physiol. 424, 133–149 (1990).

    PubMed  CAS  Google Scholar 

  16. K. A. P. Edman and F. Lou, Myofibrillar fatigue versus failure of activation during repetitive stimulation of frog muscle fibres. J. Physiol. 457, 655–673 (1992).

    PubMed  CAS  Google Scholar 

  17. N. A. Curtin and K. A. P. Edman, Force-velocity relation for frog muscle fibres: Effects of moderate fatigue and of intracellular acidification. J. Physiol. 475, 483–494 (1994).

    PubMed  CAS  Google Scholar 

  18. P. B. Chase and M. J. Kushmerick, Effects of pH on contraction of rabbit fast and slow skeletal muscle fibers. Biophys. J. 53, 935–946 (1998).

    Article  Google Scholar 

  19. R. Cooke, K. Franks, G. Luciani and E. Pate, The inhibition of rabbit skeletal muscle contraction by hydrogen ions and phosphate. J. Physiol, Lond. 395, 77–97 (1988).

    PubMed  CAS  Google Scholar 

  20. H. Westerblad, D. G. Allen, and J. Lannergren, Muscle fatigue: Lactic acid or inorganic phosphate the major cause? News Physiol Sci. 17, 17–21 (2002).

    PubMed  CAS  Google Scholar 

  21. P. A. Merton, C.D. Marsden, and J.C. Meadows. In Symposium on Human muscle fatigue: Physiological mechanisms, Ciba Foundation, Editors: R. Porter & J. Whelan, 287 (1980).

    Google Scholar 

  22. J. M. Metzger and R. H. Fitts, Role of intracellular pH in muscle fatigue, J. Physiol., 62, 1392–1397 (1987).

    CAS  Google Scholar 

  23. H. Westerblad and J. Lännergren, Force and membrane potential during and after fatiguing, intermittent tetanic stimulation of single Xenopus muscle fibres. Acta Physiol. Scand. 128, 369–378 (1986).

    Article  PubMed  CAS  Google Scholar 

  24. A. Fabiato and F. Fabiato, Effects of pH on the myofilament and the sarcoplasmic reticulum of skinned cells from cardiac and skeletal muscles. J. Physiol. 276, 233–255 (1978).

    PubMed  CAS  Google Scholar 

  25. A. Berstein and A. Sandow, in: The Effect of Use and Disuse on Neuromuscular Functions, edited by Gutman and Hnik. (Czech. Acad. Sci., Prague, 1963), pp. 515–526.

    Google Scholar 

  26. W. Grabowski, E. A. Lobsiger, and H. C. Lüttgau, The effect of repetitive stimulation at low frequencies upon the electrical and mechanical activity of single muscle fibres, Pflügers Arch. Gesamte Physiol. Menschen Tiere. 334, 222–239 (1972).

    Article  CAS  Google Scholar 

  27. M. del C. Garcia, H. Gonzalez-Serratos, J. P. Morgan, C. L. Perreault and M. Rozycka, Differential activation of myofibrils during fatigue in phasic skeletal muscle cells. J. Musc. Res. Cell Motil. 12, 412–424 (1991).

    Article  CAS  Google Scholar 

  28. H. Gonzalez-Serratos and C. Garcia, Differential activation of myofibrils during fatigue in twitch skeletal muscle fibres of the frog, in: Muscular Contraction, edited by R. M. Simmons (University Press, Cambridge, 1982).

    Google Scholar 

  29. H. Gonzalez-Serratos, A. V. Somlyo, G. McClellan, H. Shuman, L. M. Borrero, and A. P. Somlyo, Composition of vacuoles and sarcoplasmic reticulum in fatigued muscle: Electron probe analysis, Proc. Natl. Acad. Sci. 75, 1329–1333 (1978).

    Article  PubMed  CAS  Google Scholar 

  30. R. A. Bergman, Observations on the morphogenesis of rat skeletal muscle, Bull John Hopkins Hosp. 110, 187–201 (1962)

    PubMed  CAS  Google Scholar 

  31. T. Clausen, The Na+, K+ pump in skeletal muscle: Qualification, regulation, and functional significance. Acta Physiol. Scand. 156, 227–235 (1996).

    Article  PubMed  CAS  Google Scholar 

  32. C. L. Perreault, H. Gonzalez-Serratos, S. E. Litwin,, X. Sun, C. Franzini-Armstrong, and J. P. Morgan, Alterations in contractility and intracellular Ca2+ transients in isolated bundles of skeletal muscle fibers from rats with chronic heart failure. Circ. Res. 73, 405–412 (1993).

    Article  PubMed  CAS  Google Scholar 

  33. V. J. Caiozzo, M. J. Baker, S. A. McCue, and K. M. Baldwin, Single-fiber and whole muscle analyses of MHC isoform plasticity: Interaction between T3 and unloading, Am. J. Physiol. 273, C944–52 (1997).

    PubMed  CAS  Google Scholar 

  34. R. J. Talmadge and R. R. Roy, Electrophoretic separation of rat skeletal muscle myosin heavy-chain isoforms, J. Appl. Physiol. 75, 2337–2340 (1993).

    PubMed  CAS  Google Scholar 

  35. Y. Pereon, J. P. Louboutin, J. Noireaud, Contractile responses in rat extensor digitorum longus muscles a different times of postnatal development, J. Comp. Physiol. B163, 203–211 (1993).

    Google Scholar 

  36. H. H. Jung, R. L Lieber, and A. F. Ryan, Quantification of myosin heavy chain mRNA in somatic and branchial arch muscles using competitive PCR, Sm. J. Physiol. 275, C68–C74 (1998).

    CAS  Google Scholar 

  37. M. H. Brook and K.K. Keiser., Muscle fiber types: what kind?, Arch Neurol, 23, 369–379 (1970)

    Article  Google Scholar 

  38. L. D. Peachey, The sarcoplasmic reticulum and transverse tubules of the frogs Sartorius. J. Cell Biology, 25, 209–231 (1965).

    Article  Google Scholar 

  39. L. D. Peachey and A. F. Huxley, Structural identification of twitch and slow striated muscle fibers of the frog. J. Cell Biol. 13, 177–180 (1962).

    Article  PubMed  CAS  Google Scholar 

  40. R. E. Burke and P. Tsairs, The correlation of physiological properties with histochemical characteristics in single muscle units. Ann. N.Y. Acad. Sci. 228, 145–159 (1974).

    Article  PubMed  CAS  Google Scholar 

  41. R. I. Close, Dynamic properties of skeletal muscle. Physiol. Rev. 52, 129–197 (1972).

    PubMed  CAS  Google Scholar 

  42. J. Lannergren and R. Smith, Types of muscle fibres in toad skeletal muscle, Acta Physiol. Scand. 68, 263–274 (1966).

    Article  Google Scholar 

  43. J. Lännergren, Structure and function of twitch and show fibres in amphibian skeletal muscle in: Basic mechanism of ocular motility and their clinical implications, edited by G. Lennerstrand and P. Bach-y-rita (Perggaiman Press Oxford, 1975), pp. 63–84.

    Google Scholar 

  44. M. P. Blaustein and W. J. Lederer, Sodium/calcium exchange: its physiological implications, Physiol. Rev. 79, 763–854 (1999).

    PubMed  CAS  Google Scholar 

  45. H. Gonzalez-Serratos, D. W. Hilgemann, M. Rozycka, A. Gauthier, and H. Rasgado-Flores, Na+-Ca2+ exchange studies in sarcolemmal skeletal muscle, Annals New York Academy of Sciences 79, C556–560 (1996).

    Article  Google Scholar 

  46. R. J. Bloch, Acetylcholine receptor clustering in rat myotubes: Requirement for Ca2+ and effects of drugs which depolymerize microtubules, J. Neurosci. 3(12), 2670–2680 (1983).

    PubMed  CAS  Google Scholar 

  47. J-P Louboutin and J. Noireau, Sodium withdrawal contractures in Developing and regenerating rat extensor digitorum longus muscles, Muscle Nerve 21, 1530–1532 (1998).

    Article  PubMed  CAS  Google Scholar 

  48. A. Ortega and J. R. Lepock, Use of thermal analysis to distinguish magnesium and calcium stimulated ATPase activity in isolated transverse tubules from skeletal muscle, Biochem. Biophys. Acta 1233, 7–13 (1995).

    Article  PubMed  Google Scholar 

  49. C. Hidalgo, ME. Gonzalez, and A. M. Garcia, Calcium transport in transverse tubules isolated from rabbit skeletal muscle, Biochem. Biophys. Acta 854(2), 279–86 (1986).

    Article  PubMed  CAS  Google Scholar 

  50. J. R. Giolbert and G. Meisner, Sodium-calcium exchange in skeletal muscle sarcolemmal vesicles, J. Membr. Biol. 69, 77–84 (1982).

    Article  Google Scholar 

  51. P. Donoso, and C. Hidalgo, Sodium-calcium exchange intransverse tubules isolated from frog skeletal muscle, Biochim et Biophy Acta 978, 8–16 (1989).

    Article  CAS  Google Scholar 

  52. H.S. Hundal, A. Marette, Y. Mitsumoto, T. Ramalal, R. Blostein, and A. Klip, Insulin induces translocation of the alpha 2 and beta 1 subunits of the Na+/K(+)-ATPase from intracellular compartments to the plasma membrane in mammalian skeletal muscle. J. Biol Chem. 267, 5040–5043 (1992).

    PubMed  CAS  Google Scholar 

  53. L. R. Lavoie, P. Levinson, P. Martin-Vassallo, and A. Klip, The molar ratios of alpha and beta subunits of the Na+-K+-ATPase differ in distinct subcellular membranes from rat skeletal muscle, Biochem. 36, 7726–7732 (1997).

    Article  CAS  Google Scholar 

  54. F. Bezanilla, C. Caputo, H. Gonzalez-Serratos, and R. A. Venosa, Sodium dependence of the inward spread of activation in isolated twitch muscle fibres of the frog. J. Physiol. 223, 507–523 (1972).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this paper

Cite this paper

Gonzalez-Serratos, H., Chang, R., Rozycka, M., Blaustein, M., DeDeyne, P. (2003). Role of the T-System and the Na-K Pump on Fatigue Development in Phasic Skeletal Muscle. In: Sugi, H. (eds) Molecular and Cellular Aspects of Muscle Contraction. Advances in Experimental Medicine and Biology, vol 538. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9029-7_48

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9029-7_48

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4764-4

  • Online ISBN: 978-1-4419-9029-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics