Advertisement

Role of the T-System and the Na-K Pump on Fatigue Development in Phasic Skeletal Muscle

  • Hugo Gonzalez-Serratos
  • Ruzhang Chang
  • Monika Rozycka
  • Mordecai Blaustein
  • Patrick DeDeyne
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 538)

Abstract

Prolonged, direct electrical stimulation of vertebrate skeletal muscles induces a state during which contractile force or the capacity to do external work declines after prolonged repetitive stimulation. The muscles then become fatigued or mechanically refractory to further stimulation. Fatigue does not involve permanent impairment of function since contractility can be restored. It is not due to neuromuscular transmission failure1 nor is it caused by a decline in the central nervous system motor drive of muscle. Fatigue is due solely to contractile failure2, 3.

Keywords

Myosin Heavy Chain Extensor Digitorum Longus Fatigue Index Tetanic Tension Fatigue Development 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. A. Merton, Voluntary strength and fatigue, J. Physiol (Lond) 128, 553–564 (1954).Google Scholar
  2. 2.
    B. Bigland-Ritchie, EMG and fatigue of human voluntary and stimulated contractions (1980), Human muscle fatigue: physiological mechanisms. Pitman Medical, London (Ciba Foundation Symposium) 82, 130–156 (1981).Google Scholar
  3. 3.
    B. Bigland-Ritchie and Woods, J. J., Changes in muscle contractile properties and neural control during human muscular fatigue, Muscle and Nerve 7, 691–699. (1984).PubMedCrossRefGoogle Scholar
  4. 4.
    R. H. T. Edwards, D. K. Hille, and D. A. Jones, Metabolic changes associated with the slowing of relaxation in fatigued mouse muscle. J. Physiol. 251, 303–315 (1975).PubMedGoogle Scholar
  5. 5. M. J. Dawson, D. G. Gadian, and D. R. Wilkie, Muscular fatigue investigated by phosphorus nuclear magnetic resonance, Nature (London), 274, 861–866 (1978).CrossRefGoogle Scholar
  6. 6.
    M. M. Dawson, D. G. Gadian, and D. R. Wilkie, Mechanical relaxation rate and metabolism studied in fatiguing muscle by phosphorus nuclear magnetic resonance, J. Physiol. 299, 465–484 (1980).PubMedGoogle Scholar
  7. 7.
    R. E. Godt and T. M. Nosek, Changes of intracellular milieu with fatigue or hypoxia depress contraction of skinned rabbit skeletal and cardiac muscle. J. Physiol. 412, 155–180 (1989).PubMedGoogle Scholar
  8. 8.
    R. Fitts and J. Holloszy, Lactate and contractile force in frog muscle during development of fatigue and recovery. Am. J. Physiol. 231, 430–433 (1976).PubMedGoogle Scholar
  9. 9.
    H. Westerblad and J. Lännergren, The relation between force and intracellular pH in fatigued, single Xenopus muscle fibres. Acta Physiol. Scand. 133, 83–89 (1988).PubMedCrossRefGoogle Scholar
  10. 10.
    R. Porter and J. Whelan, Human muscle fatigue: Physiological mechanisms. Ciba Foundation Symposium 82. Eds. Porter, R. & Whelan, J. Pitman Medical (London) (1981).Google Scholar
  11. 11.
    N. K. Vollestad and O. M. Sejersted, Biochemical correlates of fatigue, Eur.J.Appl. Physiol. 57, 336–347 (1988).CrossRefGoogle Scholar
  12. 12.
    R. H. Fitts, Muscle fatigue: The cellular aspects; American Journal of Sports Medicine. 24(6),S9–S13 (1006).Google Scholar
  13. 13.
    K. A. P. Edman, and A. R. Mattiazi, Effects of fatigue and altered pH on isometric force and velocity of shortening at zero load in frog muscle fibres. J. Musc. Res. Cell Contr. 2, 321–334 (1981).CrossRefGoogle Scholar
  14. 14.
    G. W. Main wood, and J. M. Renaud, The effect of acid-base balance on fatigue of skeletal muscle. Can. J. Physiol. Pharmacol. 63, 403–416 (1985).CrossRefGoogle Scholar
  15. 15.
    K. A. P. Edman and F. Lou, Changes in force and stiffness induced by fatigue and intracellular acidification in frog muscle fibres. J. Physiol. 424, 133–149 (1990).PubMedGoogle Scholar
  16. 16.
    K. A. P. Edman and F. Lou, Myofibrillar fatigue versus failure of activation during repetitive stimulation of frog muscle fibres. J. Physiol. 457, 655–673 (1992).PubMedGoogle Scholar
  17. 17.
    N. A. Curtin and K. A. P. Edman, Force-velocity relation for frog muscle fibres: Effects of moderate fatigue and of intracellular acidification. J. Physiol. 475, 483–494 (1994).PubMedGoogle Scholar
  18. 18.
    P. B. Chase and M. J. Kushmerick, Effects of pH on contraction of rabbit fast and slow skeletal muscle fibers. Biophys. J. 53, 935–946 (1998).CrossRefGoogle Scholar
  19. 19.
    R. Cooke, K. Franks, G. Luciani and E. Pate, The inhibition of rabbit skeletal muscle contraction by hydrogen ions and phosphate. J. Physiol, Lond. 395, 77–97 (1988).PubMedGoogle Scholar
  20. 20.
    H. Westerblad, D. G. Allen, and J. Lannergren, Muscle fatigue: Lactic acid or inorganic phosphate the major cause? News Physiol Sci. 17, 17–21 (2002).PubMedGoogle Scholar
  21. 21.
    P. A. Merton, C.D. Marsden, and J.C. Meadows. In Symposium on Human muscle fatigue: Physiological mechanisms, Ciba Foundation, Editors: R. Porter & J. Whelan, 287 (1980).Google Scholar
  22. 22.
    J. M. Metzger and R. H. Fitts, Role of intracellular pH in muscle fatigue, J. Physiol., 62, 1392–1397 (1987).Google Scholar
  23. 23.
    H. Westerblad and J. Lännergren, Force and membrane potential during and after fatiguing, intermittent tetanic stimulation of single Xenopus muscle fibres. Acta Physiol. Scand. 128, 369–378 (1986).PubMedCrossRefGoogle Scholar
  24. 24.
    A. Fabiato and F. Fabiato, Effects of pH on the myofilament and the sarcoplasmic reticulum of skinned cells from cardiac and skeletal muscles. J. Physiol. 276, 233–255 (1978).PubMedGoogle Scholar
  25. 25.
    A. Berstein and A. Sandow, in: The Effect of Use and Disuse on Neuromuscular Functions, edited by Gutman and Hnik. (Czech. Acad. Sci., Prague, 1963), pp. 515–526.Google Scholar
  26. 26.
    W. Grabowski, E. A. Lobsiger, and H. C. Lüttgau, The effect of repetitive stimulation at low frequencies upon the electrical and mechanical activity of single muscle fibres, Pflügers Arch. Gesamte Physiol. Menschen Tiere. 334, 222–239 (1972).CrossRefGoogle Scholar
  27. 27.
    M. del C. Garcia, H. Gonzalez-Serratos, J. P. Morgan, C. L. Perreault and M. Rozycka, Differential activation of myofibrils during fatigue in phasic skeletal muscle cells. J. Musc. Res. Cell Motil. 12, 412–424 (1991).CrossRefGoogle Scholar
  28. 28.
    H. Gonzalez-Serratos and C. Garcia, Differential activation of myofibrils during fatigue in twitch skeletal muscle fibres of the frog, in: Muscular Contraction, edited by R. M. Simmons (University Press, Cambridge, 1982).Google Scholar
  29. 29.
    H. Gonzalez-Serratos, A. V. Somlyo, G. McClellan, H. Shuman, L. M. Borrero, and A. P. Somlyo, Composition of vacuoles and sarcoplasmic reticulum in fatigued muscle: Electron probe analysis, Proc. Natl. Acad. Sci. 75, 1329–1333 (1978).PubMedCrossRefGoogle Scholar
  30. 30.
    R. A. Bergman, Observations on the morphogenesis of rat skeletal muscle, Bull John Hopkins Hosp. 110, 187–201 (1962)PubMedGoogle Scholar
  31. 31.
    T. Clausen, The Na+, K+ pump in skeletal muscle: Qualification, regulation, and functional significance. Acta Physiol. Scand. 156, 227–235 (1996).PubMedCrossRefGoogle Scholar
  32. 32.
    C. L. Perreault, H. Gonzalez-Serratos, S. E. Litwin,, X. Sun, C. Franzini-Armstrong, and J. P. Morgan, Alterations in contractility and intracellular Ca2+ transients in isolated bundles of skeletal muscle fibers from rats with chronic heart failure. Circ. Res. 73, 405–412 (1993).PubMedCrossRefGoogle Scholar
  33. 33.
    V. J. Caiozzo, M. J. Baker, S. A. McCue, and K. M. Baldwin, Single-fiber and whole muscle analyses of MHC isoform plasticity: Interaction between T3 and unloading, Am. J. Physiol. 273, C944–52 (1997).PubMedGoogle Scholar
  34. 34.
    R. J. Talmadge and R. R. Roy, Electrophoretic separation of rat skeletal muscle myosin heavy-chain isoforms, J. Appl. Physiol. 75, 2337–2340 (1993).PubMedGoogle Scholar
  35. 35.
    Y. Pereon, J. P. Louboutin, J. Noireaud, Contractile responses in rat extensor digitorum longus muscles a different times of postnatal development, J. Comp. Physiol. B163, 203–211 (1993).Google Scholar
  36. 36.
    H. H. Jung, R. L Lieber, and A. F. Ryan, Quantification of myosin heavy chain mRNA in somatic and branchial arch muscles using competitive PCR, Sm. J. Physiol. 275, C68–C74 (1998).Google Scholar
  37. 37.
    M. H. Brook and K.K. Keiser., Muscle fiber types: what kind?, Arch Neurol, 23, 369–379 (1970)CrossRefGoogle Scholar
  38. 38.
    L. D. Peachey, The sarcoplasmic reticulum and transverse tubules of the frogs Sartorius. J. Cell Biology, 25, 209–231 (1965).CrossRefGoogle Scholar
  39. 39.
    L. D. Peachey and A. F. Huxley, Structural identification of twitch and slow striated muscle fibers of the frog. J. Cell Biol. 13, 177–180 (1962).PubMedCrossRefGoogle Scholar
  40. 40.
    R. E. Burke and P. Tsairs, The correlation of physiological properties with histochemical characteristics in single muscle units. Ann. N.Y. Acad. Sci. 228, 145–159 (1974).PubMedCrossRefGoogle Scholar
  41. 41.
    R. I. Close, Dynamic properties of skeletal muscle. Physiol. Rev. 52, 129–197 (1972).PubMedGoogle Scholar
  42. 42.
    J. Lannergren and R. Smith, Types of muscle fibres in toad skeletal muscle, Acta Physiol. Scand. 68, 263–274 (1966).CrossRefGoogle Scholar
  43. 43.
    J. Lännergren, Structure and function of twitch and show fibres in amphibian skeletal muscle in: Basic mechanism of ocular motility and their clinical implications, edited by G. Lennerstrand and P. Bach-y-rita (Perggaiman Press Oxford, 1975), pp. 63–84.Google Scholar
  44. 44.
    M. P. Blaustein and W. J. Lederer, Sodium/calcium exchange: its physiological implications, Physiol. Rev. 79, 763–854 (1999).PubMedGoogle Scholar
  45. 45.
    H. Gonzalez-Serratos, D. W. Hilgemann, M. Rozycka, A. Gauthier, and H. Rasgado-Flores, Na+-Ca2+ exchange studies in sarcolemmal skeletal muscle, Annals New York Academy of Sciences 79, C556–560 (1996).CrossRefGoogle Scholar
  46. 46.
    R. J. Bloch, Acetylcholine receptor clustering in rat myotubes: Requirement for Ca2+ and effects of drugs which depolymerize microtubules, J. Neurosci. 3(12), 2670–2680 (1983).PubMedGoogle Scholar
  47. 47.
    J-P Louboutin and J. Noireau, Sodium withdrawal contractures in Developing and regenerating rat extensor digitorum longus muscles, Muscle Nerve 21, 1530–1532 (1998).PubMedCrossRefGoogle Scholar
  48. 48.
    A. Ortega and J. R. Lepock, Use of thermal analysis to distinguish magnesium and calcium stimulated ATPase activity in isolated transverse tubules from skeletal muscle, Biochem. Biophys. Acta 1233, 7–13 (1995).PubMedCrossRefGoogle Scholar
  49. 49.
    C. Hidalgo, ME. Gonzalez, and A. M. Garcia, Calcium transport in transverse tubules isolated from rabbit skeletal muscle, Biochem. Biophys. Acta 854(2), 279–86 (1986).PubMedCrossRefGoogle Scholar
  50. 50.
    J. R. Giolbert and G. Meisner, Sodium-calcium exchange in skeletal muscle sarcolemmal vesicles, J. Membr. Biol. 69, 77–84 (1982).CrossRefGoogle Scholar
  51. 51.
    P. Donoso, and C. Hidalgo, Sodium-calcium exchange intransverse tubules isolated from frog skeletal muscle, Biochim et Biophy Acta 978, 8–16 (1989).CrossRefGoogle Scholar
  52. 52.
    H.S. Hundal, A. Marette, Y. Mitsumoto, T. Ramalal, R. Blostein, and A. Klip, Insulin induces translocation of the alpha 2 and beta 1 subunits of the Na+/K(+)-ATPase from intracellular compartments to the plasma membrane in mammalian skeletal muscle. J. Biol Chem. 267, 5040–5043 (1992).PubMedGoogle Scholar
  53. 53.
    L. R. Lavoie, P. Levinson, P. Martin-Vassallo, and A. Klip, The molar ratios of alpha and beta subunits of the Na+-K+-ATPase differ in distinct subcellular membranes from rat skeletal muscle, Biochem. 36, 7726–7732 (1997).CrossRefGoogle Scholar
  54. 54.
    F. Bezanilla, C. Caputo, H. Gonzalez-Serratos, and R. A. Venosa, Sodium dependence of the inward spread of activation in isolated twitch muscle fibres of the frog. J. Physiol. 223, 507–523 (1972).PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Hugo Gonzalez-Serratos
    • 1
  • Ruzhang Chang
    • 1
  • Monika Rozycka
    • 1
  • Mordecai Blaustein
    • 1
  • Patrick DeDeyne
    • 1
  1. 1.Department of PhysiologyUniversity of Maryland, School of MedicineBaltimoreBaltimore

Personalised recommendations