Skip to main content

Molecular Organizations of Myofibrils of Skeletal Muscle Studied by Atomic Force Microscopy

  • Conference paper

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 538))

Abstract

Skeletal muscle fiber is composed of a bundle of myofibrils which shows a characteristic striation pattern coming from a periodic array of sarcomeres.1 In each sarcomere, the hexagonal lattices of myofilaments composed of actin and myosin filaments are inter-digitated. The contractile force is produced by the interaction of myosin heads extruded from the myosin filaments with the actin filaments, which causes the two filaments slide with each other. The produced force is transferred to the both ends of the sarcomere via these filaments to Z-bands which mechanically link the adjacent sarcomeres.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. R. Bagshaw. Muscle Contraction (Chapman & Hall, Tokyo, 1993).

    Book  Google Scholar 

  2. W. Heckl, and O. Marti. Atomic force microscopy. In: Proceedings in scanning probe microscopies, ed. by R. J. Colton et al. (John Wiley & Sons, New York, 1998), pp. 85–148.

    Google Scholar 

  3. K. Yuri, J. Wakayama, and T. Yamada. Isometric contractile properties of single myofibrils of rabbit skeletal muscle. J. Biochem. 124: 565–571 (1998).

    Article  PubMed  CAS  Google Scholar 

  4. M. K. Reddy, J. D. Etlinger, M. Rabinowitz, D. A. Fischman, and R. Zak. Removal of Z-lines and _-actinin from isolated myofibrils by a calcium-activated neutral protease. J. Biol Chem. 250:4278–4284 (1975).

    PubMed  CAS  Google Scholar 

  5. J. Wakayama, Y. Yoshikawa, T. Yasuike, and T. Yamada. Atomic force microscopic evidence for Z-band as a rigid disc fixing the sarcomere structure of skeletal muscle. Cell Struct. Funct. 25: 361–365 (2000).

    Article  PubMed  CAS  Google Scholar 

  6. Y. Yoshikawa, T. Yasuike, A. Yagi, and T. Yamada. Transverse elasticity of myofibrils of rabbit skeletal muscle studied by atomic force microscopy. Biochem. Biophys. Res. Comm. 256:13–19 (1999).

    Article  PubMed  CAS  Google Scholar 

  7. S. Suzuki, and H. Sugi. Extensibility of the myofilaments in vertebrate skeletal muscle as revealed by stretching rigor muscle fibers. J. Gen. Physiol. 81: 531–546 (1983).

    Article  PubMed  CAS  Google Scholar 

  8. R. J. Roark. Formulas for Stress and Strain (McGraw-Hill, New York, 1965).

    Google Scholar 

  9. L. R. Nyland, and D. W. Maughan. Morphology and transverse stiffness of Drosophila myofibrils measured by atomic force microscopy. Biophys. J. 78: 1490–1497 (2000).

    Article  PubMed  CAS  Google Scholar 

  10. Y. Umazume, and N. Kasuga. Radial stiffness of frog skinned muscle fibers in relaxed and rigor conditions. Biophys. J. 45: 783–788 (1984).

    Article  PubMed  CAS  Google Scholar 

  11. D. W. Maughan, and R. E. Godt Radial forces within muscle fibers in rigor. J. Gen. Physiol. 77: 49–64 (1981).

    Article  PubMed  CAS  Google Scholar 

  12. T. Yamada, Y. Yoshikawa, and J. Wakayama. Longitudinal and transverse stiffness of single myofibrils of rabbit skeletal muscle in various physiological states. Biophys. J. 76: A160 (1999).

    Google Scholar 

  13. K. Tawada, and M. Kimura. Stiffness of glycerinated rabbit psoas fibers in the rigor state. Biophys. J. 45: 593–602 (1984).

    Article  PubMed  CAS  Google Scholar 

  14. L. E. Ford, A F. Huxley, and R. M. Simmons. The relation between stiffness and filament overlap in stimulated frog muscle fibres. J. Physiol. (Lond.) 311: 219–249 (1981).

    CAS  Google Scholar 

  15. T. Nishizaka, R. Seo, H. Tadakuma, K. Kinosita, and S. Ishawata. Characteirzation of single actomyosin rigor bonds: load depencence of lifetime and mechanical properties. Biophys. J. 79: 962–974 (2000).

    Article  PubMed  CAS  Google Scholar 

  16. H. Miyata, R. Yasuda, and K. Kinosita. Strength and lifetime of the bond between actin and skeletal muscle α-actinin studied with an optical trapping technique. Biochim. Biophys. Acta 1290: 83–88 (1996).

    Article  PubMed  Google Scholar 

  17. A. Kishino, and T. Yanagida. Force measurements by micromanipulation of a single actin filament by glass needles. Nature 334:74–76 (1988).

    Article  PubMed  CAS  Google Scholar 

  18. M. Rief, M., Gautel, F. Oesterhett, J. M. Fernandez, and H. E. Gaub. Reversible unfolding of individual titin immunoglobulin domains by AFM. Science 276:1109–1112 (1997).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this paper

Cite this paper

Yamada, T. et al. (2003). Molecular Organizations of Myofibrils of Skeletal Muscle Studied by Atomic Force Microscopy. In: Sugi, H. (eds) Molecular and Cellular Aspects of Muscle Contraction. Advances in Experimental Medicine and Biology, vol 538. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9029-7_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9029-7_27

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4764-4

  • Online ISBN: 978-1-4419-9029-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics