NMR Structural Study of Troponin C C-Terminal Domain Complexed with Troponin I Fragment from Akazara Scallop

  • Fumiaki Yumoto
  • Koji Nagata
  • Kyoko Adachi
  • Nobuaki Nemoto
  • Takao Ojima
  • Kiyoyoshi Nishita
  • Iwao Ohtsuki
  • Masaru Tanokura
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 538)


Scallop muscle has been demonstrated to possess both myosin-linked and actin-linked systems1-3 (Fig. 1), even though molluscan muscles were known to be regulated only by the myosin-linked regulatory system mediated through Ca2+-binding to myosin light chains4-6. Recently, the physiological significance of the coexistence of the two systems in scallop adductor muscle was investigated using CDTA-treated scallop myofibrils1. Actin-linked (Troponin-linked) system has been well known as the regulatory system in the muscle contraction of vertebrate striated muscles7. It is regulated by troponin in a Ca2+ dependent manner. Troponin contains three distinct components, i.e., a Ca2+ binding component (TnC), an inhibitory component troponin I (Tnl), and a tropomyosin-binding component troponin T (TnT). TnC contains two independent Ca2+ binding domains, each of which consists of two EF-hand motifs8. Vertebrate striated muscle TnCs bind three or four Ca2+ ions in a molecule and act as the Ca2+ sensor of muscle contraction associated with the binding and release of one or two Ca2+ ion(s) in the N-terminal domain9, 10, 11. The N-terminal domain has, thus, been called the regulatory domain and contains one or two low affinity Ca2+-binding sites (Sites I and II)12. On the other hand, the C-terminal domain has been called the structural domain and contains two high-affinity sites (Sites III and IV). They also bind Mg2+ and are called as Ca2+/Mg2+ sites.


Cardiac Troponin Regulatory Light Chain Fast Skeletal Muscle Vertebrate Striate Muscle Skeletal Muscle Troponin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Shiraishi, F., Morimoto, S., Nishita, K., Ojima, T., and Ohtsuki, I. Effects of removal and reconstitution of myosin regulatory light chain and troponin C on the Ca2+-sensitive ATPase activity of myofibrils from scallop striated muscle. J.Biochem. 126, 1020–1024 (1999).PubMedCrossRefGoogle Scholar
  2. 2.
    Ojima, T., and Nishita, K. Troponin from akazara scallop striated adductor muscles. J. Biol. Chem. 261, 16749–16754 (1986).PubMedGoogle Scholar
  3. 3.
    Ojima, T., and Nishita, K Isolation of troponins from striated and smooth adductor muscles of akazara scallop. J. Biochem. 100, 821–824 (1986).PubMedGoogle Scholar
  4. 4.
    Szent-Györgyi, A. G., and Szentkiralyi, E. M The light chains of scallop myosin as regulatory subunits. J. Mol Biol. 74, 179–203 (1973).PubMedCrossRefGoogle Scholar
  5. 5.
    Kendrick-Jones, J., Lehman, W., and Szent-Györgyi, A. G. Regulation in molluscan muscles. J. Mol Biol. 54, 313–326 (1970).PubMedCrossRefGoogle Scholar
  6. 6.
    Kendrick-Jones, J., Szentkiralyi, E. M, and Szent-Györgyi, A. G. Regulatory light chains in myosins. J. Mol Biol. 104, 747–775 (1976).PubMedCrossRefGoogle Scholar
  7. 7.
    Ebashi, S., Endo, M., and Ohtsuki, I. In: CALCIUM as a CELLULAR REGULATOR Carafoli, E., and Klee, C. B., ed., Oxford Univ. Press, New York, pp.579–595 (1999).Google Scholar
  8. 8.
    Zot, A. S., and Potter, J. D. Structural aspects of troponin-tropomyosin regulation of skeletal muscle contraction. Ann. Rev. Biophys. Chem. 16, 535–539 (1987).CrossRefGoogle Scholar
  9. 9.
    Collins, J. H., Potter, J. D., Horn, M. J., Wilshire, G., and Jackman, N. The amino acid sequence of rabbit skeletal muscle troponin C: gene replication and homology with calcium-binding proteins from carp and hake muscle. FEBS Lett. 36, 268–272 (1973).PubMedCrossRefGoogle Scholar
  10. 10.
    van Eerd, J. P., and Takahashi, K. Determination of the complete amino acid sequence of bovine cardiac troponin C. Biochemistry 15, 1171–1180 (1976).PubMedCrossRefGoogle Scholar
  11. 11.
    Wilkinson, J. M. Troponin C from rabbit slow skeletal and cardiac muscle is the product of a single gene. Eur. J. Biochem. 103, 179–188 (1980).PubMedCrossRefGoogle Scholar
  12. 12.
    Nishita, K., Tanaka, H., and Ojima, T. Amino acid sequence of troponin C from scallop striated adductor muscle. J. Biol Chem. 269, 3464–3468 (1994).PubMedGoogle Scholar
  13. 13.
    Ojima, T., Tanaka, H., and Nishita, K. Cloning and sequence of a cDNA encoding Akazara scallop troponin C. Arch. Biochem. Biophys. 311, 272–276 (1994).PubMedCrossRefGoogle Scholar
  14. 14.
    Ojima, T., Koizumi, N., Ueyama, K., Inoue, A., and Nishita, K. Functional Role of Ca2+-Binding Site IV of Scallop Troponin C. J. Biochem. 128, 803–809 (2000).PubMedCrossRefGoogle Scholar
  15. 15.
    Herzberg, O., and James, M. N. G. Structure of the calcium regulatory muscle protein troponin-C at 2.8 Å resolution. Nature 313, 653–659 (1985).PubMedCrossRefGoogle Scholar
  16. 16.
    Satyshur, K. A., Rao, S. T., Pyzalska, D, Drendel, W, Greaser, M., and Sundarlingam, M. Refined structure of chicken skeletal muscle troponin C in the two-calcium state at 2 resolution. J. Biol Chem. 263, 16620–16628 (1988).Google Scholar
  17. 17.
    Herzberg, O., and James, M. N. G. Refined crystal structure of troponin C from turkey skeletal muscle at 2.0 Aresolution. J. Mol Biol. 203, 761–779 (1988).PubMedCrossRefGoogle Scholar
  18. 18.
    Slupsky, C. M., and Sykes, B. D. NMR solution structure of calcium-saturated skeletal muscle troponin C. Biochemistry 34, 15953–15964 (1995).PubMedCrossRefGoogle Scholar
  19. 19.
    Gagné, S. M., Tsuda, S., Li, M. X., Smillie, L. B., and Sykes, B. D. Nat. Struct. Biol. 2, 784–789 (1995).PubMedCrossRefGoogle Scholar
  20. 20.
    Tripet, B., Eyk, V. E., and Hodges, R. S. Mapping of a second actin-tropomyosin and a second troponin C binding site within the C terminus of troponin I, and their importance in the Ca2+-dependent regulation of muscle contraction. J. Mol Biol. 271, 728–750 (1997).PubMedCrossRefGoogle Scholar
  21. 21.
    Vassylyev, D. G. Takeda, S., Wakatsuki, S., Maeda, K., and Maeda, Y. Crystal structure of troponin C in complex with troponin I fragment at 2.3-A resolution. Proc NatlAcad Sci U SA 95, 4847–4852 (1998).CrossRefGoogle Scholar
  22. 22.
    Mercier, P., M. X., and Sykes, B. D. Role of the structural domain of troponin C in muscle regulation: NMR studies of Ca2+ binding and subsequent interactions with regions 1-40 and 96-115 of troponin I. Biochemistry 39, 2902-2911(2000).Google Scholar
  23. 23.
    Mercier P. Spyracopoulos L and Sykes B. D. Structure dynamics and thermodynamics of the structural domain of troponin C in complex with the regulatory peptide 1-40 of troponin I. Biochemistry 40 10063–10077(2001)PubMedCrossRefGoogle Scholar
  24. 24.
    Gasmi-Seabrook, G., Howarth, J. W., Finley, N., Abusamhadneh, E., Gaponenko, V., Brito, R. M., Solaro, R. J., and Rosevear, P. R. Biochemistry 38, 8313–8322 (1999).PubMedCrossRefGoogle Scholar
  25. 25.
    Spyracopoulos, L, Li, M. X., Sia, S. K., Gagne, S. M., Chandra, M., Solaro, R. J., and Sykes, B. D. Calcium-induced structural transition in the regulatory domain of human cardiac troponin C. Biochemistry 36, 12138–12146 (1997).PubMedCrossRefGoogle Scholar
  26. 26.
    Houdusse, A., Love, M. L, Dominguez, R., Grabarek, Z., and Cohen, C. Structure 5, 1695–1711 (1997).PubMedCrossRefGoogle Scholar
  27. 27.
    McKay, R. T., Pearlstone, J. R., Corson, D. C, Gagné, S. M., Smillie, L. B., and Sykes, B. D. Structure and interaction site of the regulatory domain of troponin-C when complexed with the 96-148 region of troponin-I. Biochemistry 37, 12419–12430 (1998).PubMedCrossRefGoogle Scholar
  28. 28.
    McKay, R. T., Tripet, B. P., Pearlstone, J. R., Smillie, L. B., and Sykes, B. D. Defining the region of troponin-I that binds to troponin-C. Biochemistry 38, 5478–5489 (1999).PubMedCrossRefGoogle Scholar
  29. 29.
    Li, M. X., Spyracopoulos, L., and Sykes, B. D. Binding of cardiac troponin-I 147-163 induces a structural opening in human cardiac troponin-C. Biochemistry 38, 8289–8298 (1999).PubMedCrossRefGoogle Scholar
  30. 30.
    Blumenschein, T. M., Tripet, B. P., Hodges, R. S., and Sykes B. D. Mapping the interacting regions between troponins T and C. Binding of TnT and Tnl peptides to TnC and NMR mapping of the TnT-binding site on TnC. J Biol Chem. 276, 36606–36612 (2001).PubMedCrossRefGoogle Scholar
  31. 31.
    Abbott M. B., Dong, W. J., Dvoretsky, A., DaGue, B., Caprioli, R. M., Cheung, H. C, and Rosevear, P. R. Modulation of cardiac troponin C-cardiac troponin I regulatory interactions by the amino-terminus of cardiac troponin I. Biochemistry 40, 5992–6001 (2001).PubMedCrossRefGoogle Scholar
  32. 32.
    Dvoretsky, A., Abusamhadneh, E. M., Howarth, J. W., and Rosevear, P. R. Solution Structure of Calcium-saturated Cardiac Troponin C Bound to Cardiac Troponin I. J Biol Chem. 277, 38565–38570 (2002).PubMedCrossRefGoogle Scholar
  33. 33.
    Yumoto, F., Nara, M., Kagi, H., Iwasaki, W., Ojima, T., Nishita, K, Nagata, K., and Tanokura, M. Coordination structures of Ca2+ and Mg2+ in Akazara scallop troponin C in solution. FTIR spectroscopy of side-chain COO-groups. Eur. J. Biochem. 268, 6284–6290 (2001).PubMedCrossRefGoogle Scholar
  34. 34.
    Tanaka, H., Ojima, T., and Nishita, K. Amino acid sequence of troponin-I from Akazara scallop striated adductor muscle. J. Biochem. 124, 304–310 (1998).PubMedCrossRefGoogle Scholar
  35. 35.
    Delaglio, F., Grzesiek, S., Vuister, G. W., Zhu, G., Pfeifer, J., and Bax, A. NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J. Biomol. NMR. 6, 277–293 (1995).PubMedCrossRefGoogle Scholar
  36. 36.
    Goddard, T. D. and Kneller, D. G., SPARKY 3, University of California, San Francisco;

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Fumiaki Yumoto
    • 1
    • 2
  • Koji Nagata
    • 3
  • Kyoko Adachi
    • 4
  • Nobuaki Nemoto
    • 5
  • Takao Ojima
    • 6
  • Kiyoyoshi Nishita
    • 6
  • Iwao Ohtsuki
    • 2
  • Masaru Tanokura
    • 1
  1. 1.Department of Applied Biological Chemistry, Graduate School of Agricultural and Life SciencesUniversity of TokyoTokyoJapan
  2. 2.School of MedicineThe Jikei UniversityTokyoJapan
  3. 3.Biotechnology Research CenterUniversity of TokyoTokyoJapan
  4. 4.Marine Biotechnology InstituteShizuokaJapan
  5. 5.Varian Technologies JapanTokyoJapan
  6. 6.Laboratory of Biochemistry and Biotechnology, Graduate School of Fisheries ScienceHokkaido UniversityHakodate, HokkaidoJapan

Personalised recommendations