Advertisement

Diseases of mutations in the SLC4A1/AE1 (band 3) Cl/HCO3 exchanger

  • Seth L. Alper

Abstract

The AE1/SLC4A1/EPB3 gene is the founding member of the SLC4 bicarbonate transporter superfamily. The SLC4 gene family includes nine known mammalian genes, each of which encodes multiple transcripts encoding variant polypeptides. The SLC4A1 gene is one of three of these genes (SLC4A1-3) which have been shown to encode Na+-independent, electroneutral Cl/HCO 3 exchanger polypeptides. (Although less thoroughly investigated, SLC4A9 in at least some species has also been reported to express this activity.) The SLC4A1 gene is unique among the human SLC4 Na+-independent Cl/HCO3 exchanger genes in its association with inherited human disease. The SLC4A l/AE1 polypeptide has recently been reviewed (Alper 2002; Knauf and Pal 2003), as has its roles in human disease (Shayakul and Alper 2000; Alper 2002; Kaset 2002; Sterning and Casey 2002; Tannel 2002; Wrong et al. 2002; Jarolim 2003).

Keywords

MDCK Cell Xenopus Oocyte Blood Group Antigen Hereditary Spherocytosis Intercalate Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adair-Kirk, T.L., Dorsey, F.C., and Cox, J.V. (2002). Multiple Cytoplasmic Signals Direct the Intracellular Trafficking of Chicken Kidney AE1 Anion Exchangers in MDCK Cells. J. Cell sci., 116, 655–663.Google Scholar
  2. Allen, S.J., O’Donnell, A., and Alexander, N.D. (1999). Prevention of Cerebral Malaria in Children of Papua New Guinea by Southeast Asian Ovalocytosis Band 3. Am. J. Trap. Med. Hyg., 60, 1056–1060.Google Scholar
  3. Alloisio, N., Texier, P., Vallier, A., Ribeiro, M.L., Morle, L., Bozon, M., et al. (1993). Modulation of Clinical Expression and Band 3 Deficiency in Hereditary Spherocytosis. Blood, 90, 441–420.Google Scholar
  4. Alloisio, N., Maillet, P., Carre, G., Texier, P., Vallier, A., Baklouti, F., et al. (1996). Hereditary Spherocytosis with Band 3 Deficiency. Association with a Nonsense Mutation of the Band 3 Gene (Allele Lyon). and Aggravation by a Low-Expression Allele Occurring In Trans (Allele Genas). Blood, 88, 1062–1069.PubMedGoogle Scholar
  5. Alper, S.L. (2002). Genetic Diseases of Acid—Base Transport.Annu. Rev. Physiol., 64, 899–923.PubMedGoogle Scholar
  6. Alper, S.L., Vandorpe, D.H., Stuart-Tilley, A., Rotter, M., Lux, S.E., Peters, L.L., et al. (1998). Absence of DIDS-Sensitive Cl Conductance in Red cells of AE1 (Band 3)-/-Mice (Abstract). J. Am. Soc. Nephrol.,9, 151A.Google Scholar
  7. Bianchi, P., Zanella, A., Alloisio, N., Barosi, G., Bredi, E., Pelissero, G., et al. (1997). Variant of the EPB3 Gene of the Anti-Lepore Type in Hereditary Spherocytosis. Br. J. Haematol., 98, 283–288.PubMedGoogle Scholar
  8. Bjork, J., Reardon, D.M., and Backman, L. (1997). Phosphoinositide Metabolism in Hereditary Ovalocytic Red Blood Cell Membranes. Biochim. Biophys. Acta., 1326, 342–348.PubMedGoogle Scholar
  9. Boettger, T., Hubner, CA., Maier, H., Rust, M.B., Beck, F.X., and Jentsch, T.J. (2002). Deafness and Renal Tubular Acidosis in Mice Lacking the K-Cl Cotransporter Kcc4. Nature, 416, 874–878.PubMedGoogle Scholar
  10. Bracher, N.A., Lyons, C.A., Wessels, G., Mansvelt, E., and Coetzer, T.L. (2001). Band 3 Cape Town (E90K) Causes Severe Hereditary Spherocytosis in Combination with Band 3 Prague III. Br. J. Haematol., 113, 689–693.PubMedGoogle Scholar
  11. Bruce, L.J., Kay, M.M., Lawrence, C., and Tanner, M.J. (1993). Band 3 HT. a Human Red-Cell Variant Associated with Acanthocytos is and Increased Anion Transport, Carries the Mutation Pro-868-Leu in the Membrane Domain of Band 3. Biochem. J., 293, 317–320.PubMedGoogle Scholar
  12. Bruce, L.J., Anstce, D.J., Spring, F.A., and Tanner, M.J. (1994). Band 3 Memphis Variant II. Altered Stilbene Disulfonate Binding and the Diego (Dia) Blood Group Antigen Are Associated with the Human Erythrocyte Band 3 Mutation Pro854→Leu. J. Biol. Chem., 269, 16155–16158.PubMedGoogle Scholar
  13. Bruce, L.J., Ring, S.M., Anstee, D.J., Reid, M.E., Wilkinson, S., and Tanner, M.J. (1995). Changes in the Blood Group Wright Antigens Are Associated with a Mutation at Amino Acid 658 in Human Erythrocyte Band 3:A Site of Interaction Between Band 3 and Glycophorin A under certain conditions. Blood, 85, 541–547.PubMedGoogle Scholar
  14. Bruce, L.J., Cope, D.L., Jones, G.K., Schofield, A.E., Burley, M., Povey, S., et al. (1997). Familial Distal Renal Tubular Acidosis Is Associated with Mutations in the Red Cell Anion Exchanger (Band 3. AE1) Gene. J. Clin. Invest., 100, 1693–1707.PubMedGoogle Scholar
  15. Bruce, L.J., Ring, S.M., Ridgwell, K., Reardon, D.M., Seymour, C.A., Van Dort, H.M., et al. (1999). Southeast Asian Ovalocytic (SAO) Erythrocytes Have a Cold Sensitive Cation Leak: Implications for In Vitro Studies on Stored SAO Red Cells. Biochim. Biophys. Acta, 1416, 258–270.PubMedGoogle Scholar
  16. Bruce, L.J., Wrong, O., Toye, A.M., Young, M.T., Ogle, G., Ismail, Z., et al. (2000). Band 3 Mutations, Renal Tubular Acidosis and South-East Asian Ovalocytosis in Malaysia and Papua New Guinea: Loss of up to 95% Band 3 Transport in Red Cells. Biochem. J., 350, 41–51.PubMedGoogle Scholar
  17. Bruce, L.J., Beckmann, R., Ribeiro, M.L., Peters, L.L., Chasis, J.A., Delaunay, J., et al. (2003). A Band 3-Based Macrocomplex of Integral and Peripheral Proteins in the Red Cell Membrane. Blood, 101, 4180–4188.PubMedGoogle Scholar
  18. Cattani, J.A., Gibson, F.D., Alpers, M.P., and Crane, G.G. (1987). Hereditary Ovalocytosis and Reduced Susceptibility to Malaria in Papua New Guinea. Trans. R. Soc. Trop. Med. Hyg., 81, 705–709.PubMedGoogle Scholar
  19. Chang, S.H. and Low, P.S. (2003). Identification of a Critical Ankyrin Binding Loop on the Cytoplasmic Domain of Erythrocyte Membrane Band 3 by Crystal Structure Analysis and Site-Direc ted Mutagenesis. J. Biol. Chem., 278. 6879–6884.PubMedGoogle Scholar
  20. Cheidde, L, Vieira, T.C., Lima, P.R.M., Saad, S.T.O., and Heilberg, I.P. (2002). A Novel Mutation in the Anion Exchanger 1 Gene Associated with Distal Renal Tubular Acidosis. J. Am. Soc. Nephrol., 13, 575A.Google Scholar
  21. Chen, J., Vijayakumar, S., Li, X., Al-Awqati, Q. (1998). Kanadaptin Is a Protein that Interacts with the Kidney but not the Erythroid Form of Band 3. J. Biol. Chem., 273. 1038–1043.PubMedGoogle Scholar
  22. Chernova, M.N., Jarolim, P., Palek, J., and Alper, S.L. (1995). Overexpression of AE1 Prague. But Not of AE1 SAO, Inhibits Wild-Type AE1 Trafficking in Xenopus Oocytes. J. Membr. Biol., 148, 203–210.PubMedGoogle Scholar
  23. Chernova, M.N., Jiang, L., Crest, M., Hand, M., Vandorpe, D.H., Strange, K., et al. (1997). Electroge nic Sulfate/ Chloride Exchange in Xenopus Oocytes Mediated by Murine AE1 E699Q. J. Gen. Phvsiol., 109, 345–360.Google Scholar
  24. Cowan, C.A., Yokoyama, N., Bianchi, L.M., Henkemeyer, M., and Fritzsch, B. (2000). EphB2 Guides Axons at the Midline and Is Necessary for Normal Vestibular Function. Neuron, 26, 417–430.PubMedGoogle Scholar
  25. Dahl, N.K., Jiang, L., Chernova, M.N., Stuart-Tilley, A.K., Shmukler, B.E., and Alper, S.L. Rescue of AE1-Mediated Cl/HCO3 Transport by Carbonic Anhydrase II Presented on an Adjacent AE1 Protomer. Submitted for publicationGoogle Scholar
  26. De Franceschi, L., Turrini, F., Delgiudice, E.M., Perrotta, S., Olivieri, O., Corrocher, R., et al. (1998). Decreased Band 3 Anion Transport Activity and Band 3 Clusterization in Congenital Dyserythropoietic Anemia Type II. Exp. Hematol., 26, 869–873.PubMedGoogle Scholar
  27. Devonald, M.A., Smith, A.N., Poon, J.P., Ihrke, G., and Karet, F. E. (2003). Non-polarized Targeting of AE1 Causes Distal Autosomal Dominant Distal Renal Tubular Acidosis. Nat. Genet., 33, 125–127.PubMedGoogle Scholar
  28. Dhermy, D., Galand, C., Bournier, O., Boulanger, L., Cynober, T., Schisrnanoff, P.O., et al. (1997). Heterogenous Band 3 Deficiency in Hereditary Spherocytosis Related to Different Band 3 Gene Defects. Br. J. Haematol., 98, 32–40.PubMedGoogle Scholar
  29. Ding, Y., Casey, J.R., and Kopito, R.R. (1994). The Major Kidney AE1 Isoform Does Not Bind Ankyrin (Ank1) In Vitro. An Essential Role for the 79 NH2-Terminal Amino Acid Residues of Band 3. J. Bioi. Chem., 269, 32201–32208.Google Scholar
  30. Dluzewski, A.R., Nash, G.B., Wilson, R.J., Reardon, D.M., and Gratzer, W.B. (1997). Invasion of Hereditary Ovalocytes by Plasmodium falciparum In Vitro and Its Relation to Intracellular ATP Conc entration. Mol. Biochem. Parasitol., 55, 1–7.Google Scholar
  31. Eber, S.W., Gonzalez, J.M., Lux, M.L., Scarpa, A.L., Tse, W.T., Dornwell, M., et al. (1996). Ankyrin-1 Mutations Are a Major Cause of Dominant and Recessive Hereditary Spherocytosis. Nat. Genet., 13, 214–218.PubMedGoogle Scholar
  32. Finberg, K.E., Wang, T., Wagner, C.A., Geibel, J.P., Dou, H., and Lifton, R.P. (2001). Generation and Characterization of H+-ATPase B1 Subunit Deficient Mice. J. Am. Soc. Nephrol., 12, 3A.Google Scholar
  33. Fujinaga, J., Tang, X.B., and Casey, J.R. (1999). Topology of the Membrane Domain of Human Erythrocyte Anion Exchange Protein, AE 1. J. Biol. Chem., 274, 6626–6633.PubMedGoogle Scholar
  34. Han, B.G., Nunomura, W., Takakuwa, Y., Mohandas, N., and Jap, B.K. (2000). Protein 4.1R Core Domain Structure and Insights into Regulation of Cytoskeletal Organization. Nat. Struct. Biol., 7, 871–875.PubMedGoogle Scholar
  35. Han, J.S., Kim, G.H., Kim, J., Jeon, U.S., Joo, K.W., Na, K.Y., et al. (2002). Secretory-Defect Distal Renal Tubular Acidosis Is Associated with Transporter Defect in H+-ATPase and Anion Exchanger-1. J. Am. Soc. Nephrol, 31, 1425–1432.Google Scholar
  36. Hassoun, H., Hanada, T., Lutchman, M., Sahr, K.E., Palek, J., Hanspal, M., et al. (1998). Complete Deficiency of Glycophorin A in Red Blood Cells from Mice with Targeted Inactivation of the Band 3 (AE1) Gene. Blood, 91, 2146–2151.PubMedGoogle Scholar
  37. Hsu, L. and Morrison, M. (1985). A New Variant of the Anion Transport Protein in Human Erythrocytes. Biochemistry, 24, 3086–3090.PubMedGoogle Scholar
  38. Hubner, S., Jans, D.A., Xiao, C.Y., John, A.P., and Drenckhahn, D. (2002). Signal-and Importin-Dependent Nuclear Targeting of the Kidney Anion Exchanger l-Binding protein Kanadaptin. Biochem. J., 361, 287–296.PubMedGoogle Scholar
  39. Ideguchi, H., Okubo, K., Ishikawa, A., Futata, Y., and Hamasaki, N. (1992). Band 3 Memphis is Associated with a Lower Transport Rate of Phosphoenolpyruvate. Br. J. Haematol., 82, 122–125.PubMedGoogle Scholar
  40. Inaba, M., Yawata, A., Koshino, I., Sato, K., Takeuchi, M., Takakuwa, Y., et al. (1996). Defective Anion Transport and Marked Spherocytosis with Membrane Instability Caused by Hereditary Total Deficiency of Red Cell Band 3 in Cattle due to a Nonsense Mutation. J. Clin. Invest., 97, 1804–1817.PubMedGoogle Scholar
  41. Inoue, T., Kanzaki, A., Kaku, M., Yawata, A., Takezono, M., Okamoto, N., et al. (1998). Homozygous Missense Mutation (Band 3 Fukuoka: G130R): A Mild Form of Hereditary Spherocytosis with Near-Normal Band 3 Content and Minimal Changes of Membrane Ultrastructure Despite Moderate Protein 4.2 Deficiency. Br. J. Haematol., 102, 932–939.PubMedGoogle Scholar
  42. Iwase, S., Ideguchi, H., Takao, M., Horiguchi-Yamada, J., Iwasaki, M., Takahara, S., et al. (1998). Band 3 Tokyo: Thr837→Ala837 Substitution in Eryth rocyte Band 3 Protein Associated with Spherocytic Hemolysis. Acta Haematol., 100, 200–203.PubMedGoogle Scholar
  43. Jarolim, P. (2003). Disorders of Band 3. In Red Cell Membran e Transport in Health and Disease, New York: Springer, in press.Google Scholar
  44. Jarolim, P., Palek, J., Amato, D., Hassan, K., Sapak, P., Nurse, G.T., et al. (1991). Deletion in Erythrocyte Band 3 Gene in Malaria-Resistant Southeast Asian Ovalocytosis. Proc. Natl. Acad. Sci. USA, 88, 11022–11026.PubMedGoogle Scholar
  45. Jarolim, P., Palek, J., Rubin, H.L., Prchal, J.T., Korsgren, C., and Cohen, C.M. (1992a). Band 3 Tuscaloosa: Pro327» Arg327 Sub stitutionin the Cytoplasmic Domain of Erythrocyte Band 3 Protein Associated with Spherocytic Hemolytic Anemia and Partial Deficiency of Protein 4.2. Blood, 80, 523–529.PubMedGoogle Scholar
  46. Jarolim, P., Rubin, H.L., Zhai, S., Sahr, K.E., Liu, S.C., Mueller, T.J., et al. (1992b). Band 3 Memphis: A Widespread Polymorphism with Abnormal Electrophoretic Mobility of Erythrocyte Band 3 Protein Caused by Substitution AAG→GAG (Lys»Glu) in Codon 56. Blood, 80, 1592–1598.PubMedGoogle Scholar
  47. Jarolim, P., Brabec, V., Chrobak, L., Alper, S.L., Brugnara, C., Corbett, J.D., et al. (1994). Decreased Band 3 Content, Sulfate Flux, and Band 3 Fractional Mobility in Congential Dyserythropoietic Anemia. Blood, 84 (Suppl. 1), 6a.Google Scholar
  48. Jarolim, P., Rubin, H.L., Brabec, V., Chrobak, L., Zolotarev, A.S., Alper, S.L., et al. (1995). Mutations of Conserved Arginines in the Membrane Domain of Erythroid Band 3 Lead to a Decre ase in Membrane-Associated Band 3 and to the Phenotype of Hereditary Spherocytosis. Blood, 85, 634–640.PubMedGoogle Scholar
  49. Jarolim, P., Murray, J.L., Rubin, H.L., Taylor, W.M., Prchal, J.T., Ballas, S.K., et al. (1996). Characterization of 13 Novel Band 3 Gene Defects in Hereditary Spherocytosis with Band 3 Deficiency. Blood, 88, 4366–4374.PubMedGoogle Scholar
  50. Jarolim, P., Murray, J.L., Rubin, H.L., Coghlan, G., and Zelinski, T. (1997a). A Thr552-Kile Substitution in Erythroid Band 3 Gives Rise to the Warrior Blood Group Antigen. Transfusion, 37, 398–405.PubMedGoogle Scholar
  51. Jarolim, P., Murray, J.L., Rubin, H.L., Smart, E., and Moulds, J.M. (1997b). Blood Group Antigens Rba, Tra, and Wda are Located in the Third Ectoplasmic loop of Erythocyte Band 3 Protein. Transfusion, 37, 607–615.PubMedGoogle Scholar
  52. Jarolim, P., Rubin, H.L., Zakova, D., Storry, J., and Reid, M.E. (1998a). Characterization of Seven Low Incidence Blood Group Antigens Carried by Erythrocyte Band 3 Protein. Blood, 92, 4836–43.PubMedGoogle Scholar
  53. Jarolim, P., Shayakul, C., Prabakaran, D., Jiang, L., Stuart-Tilley, A., Rubin, H.L., et al. (1998b). Autosomal Dominant Distal Renal Tubular Acidosis Is Associated in Three Families with Heterozygosity for the R589H Mutation in the AE1 (band 3) Cl/HCO3 Exchanger. J. Biol. Chem., 273, 6380–6388.PubMedGoogle Scholar
  54. Jenkins, P.B., Abou-Alfa, G.K., Dhermy, D., Bursaux, E., Feo, C., Scarpa, A.L., et al. (1996). A Nonsense Mutation in the Erythrocyte Band 3 Gene Associated with Decreased mRNA Accumulation in a Kindred with Dominant Hereditary Spherocytosis. J. Clin. Invest., 97, 373–380.PubMedGoogle Scholar
  55. Jennings, M.L. (1995). Rapid Electrogenic Sulfate—Chloride Exchange Mediated by Chemically Modified Band 3 in Human Erythrocytes. J. Gen. Physiol., 105, 21–47.PubMedGoogle Scholar
  56. Jennings, M.L. and Gosselink, P.G. (1995). Anion Exchange Protein in Southeast Asian Ovalocytes: Heterodimer Formation between Normal and Variant Subunits. Biochemistry, 34, 3588–3595.PubMedGoogle Scholar
  57. Jennings, M.L. and Smith, J.S. (1992). Anion—Proton Cotransport through the Human Red Blood Cell Band 3 Protein. Role of Glutamate 681. J. Biol. Chem., 267, 13964–13971.PubMedGoogle Scholar
  58. Jones, G.L., Edmundson, H.M., Wesche, D., and Saul, A. (1990). Human Erythrocyte Band-3 Has an Altered N Terminus in Malaria-Resistant Melanesian Ovalocytosis. Biochim. Biophys. Acta, 1096, 33–40.PubMedGoogle Scholar
  59. Kanki, T., Young, M.T., Hamasaki, N., and Tanner, M.J. (2003). The N-Terminal Region of the Transmembrane Domain of Human Erythrocyte Band 3: Residues Critical for Membrane Insertion and Transport Activity. J. Biol. Chem., 278, 5564–5573.PubMedGoogle Scholar
  60. Kanzaki, A., Takezono, M., Kaku, M., Yawata, A., Ozcan, R., Kugler, W., et al. (1997a). Molecular and Genetic Characteristics in Japanese Patients with Hereditary Spherocytosis: Frequent Band 3 Mutations and Rarer Ankyrin Mutations. Blood, 90 (Suppl. 1), 6b.Google Scholar
  61. Kanzaki, A., Hayette, S., Morle, L., Inoue, F., Matsuyama, R., Inoue, T., et al. (1997). Total Absence of Protein 4.2 and Partial Deficiency of Band 3 in Hereditary Spherocytosis. Br. J. Haematol., 99, 522–530.PubMedGoogle Scholar
  62. Karet, F.E. (2002). Inherited Distal Renal Tubular Acidosis. J. Am. Soc. Nephrol., 13, 2178–2184.PubMedGoogle Scholar
  63. Karet, F.E., Gainza, F.J., Gyory, A.Z., Unwin, R.J., Wrong, O., Tanner, M.J., et al. (1998). Mutations in the Chloride-Bicarbonate Exchanger Gene AE1 Cause Autosomal Dominant But Not Autosomal Recessive Distal Renal Tubular Acidosis. Proc. Natl. Acad. Sci. USA, 95, 6337–6342.PubMedGoogle Scholar
  64. Knauf, P.K. and Pal, P. (2003). Band 3-Mediated Transport. In Red Cell Membrane Transport in Health and Disease, New York: SpringerGoogle Scholar
  65. Kudrycki, K.E., Newman, P.R., and Shull, G.E. (1990). CDNA Cloning and Tissue Distribution of mRNAs for Two Proteins That Are Related to the Band 3 Cl/HCO3 Exchanger. J. Biol. Chem., 265, 462–471.PubMedGoogle Scholar
  66. Lemieux, M.J., Reithmeier, R.A., and Wang DN. (2002). Importance of Detergent and Phospholipids in the Crystall ization of the Human Erythrocyte Anion-Exchanger Membrane Domain. J. Struct. Biol., 137, 322–332.PubMedGoogle Scholar
  67. Lima, P.R., Gontijo, J.A., Lopes de Faria, J.B., Costa, F.F., and Saad, S.T. (1997). Band 3 Campinas: A Novel Splicing Mutation in the Band 3 Gene (AE1) Associated with Hereditary Spherocytosis, Hyperactivity of Na+/Li+ Countertransport and an Abnormal Renal Bicarbonate Handling. Blood, 90, 2810–2818.PubMedGoogle Scholar
  68. Liu, S.C., Zhai, S., Palek, J., Golan, D.E., Amato, D., Hassan, K., et al. (1990). Molecular Defect of the Band 3 Protein in Southeast Asian Ovalocytosis. N. Engl. 1. Med., 323, 1530–1538.Google Scholar
  69. Maillet, P., Vallier, A., Reinhart, W.H., Wyss, E.J., Ott, P., Texier, P., et al. (1995). Band 3 Chur: A Variant Associated with Band 3-Deficient Hereditary Spherocytosis and Substitution in a Highly Conserved Position of Transmembrane Segment 11. Br. J. Haematol., 91, 804–810.PubMedGoogle Scholar
  70. McManus, K., Lupe, K., Coghlan, G., and Zelinski, T. (2000). An Amino Acid Substitution in the Putative Second Extracellular Loop of RBC Band 3 Accounts for the Froese Blood Group Polymorphism. Transfusion, 40, 1246–1249.PubMedGoogle Scholar
  71. Miraglia del Guidice, E., Vallier, A., Maillet, P., Perrotta, S., Cutillo, S., lolascon, A., et al. (1997). Novel Band 3 Variants (Foggia, Napoli I and Napoli II) associated with Hereditary Spherocytosis and Band 3 Deficiency: Status of the D38A Polymorphism Within the EPB3 Locus. Br. J. Haematol., 96, 70–76.Google Scholar
  72. Mohandas, N., Winardi, R., Knowles, D., Leung, A., Parra, M., George, E., et al. (1992). Molecular Basis for Membrane Rigidity of Hereditary Ovalocytosis. A Novel Mechanism Involving the Cytoplasmic Domain of Band 3. J. Clin. lnvest., 89, 686–692.Google Scholar
  73. Muller-Berger, S., Karbach, D., Kang, D., Aranibar, N., Wood, P.G., Ruterjans, H., et al. (1995). Roles of Histidine 752 and Glutamate 699 in the pH Dependence of Mouse Band 3 Protein-Mediated Anion Transport. Biochemistry, 34, 9325–9332.PubMedGoogle Scholar
  74. Paw, B.H., Davidson, A.J., Zhou, Y., Li, R., Pratt, S.J., Lee, C., et al. (2003). Cell-Specific Mitotic Defect and Dyserythropoiesis Associated with Erythroid Band 3 Deficiency. Nat. Genet., 34, 59–64.PubMedGoogle Scholar
  75. Perrotta, S., Polito, F., Cone, M.L., Nobili, B., Cutillo, S., Nigro, V., et al. (1999). Hereditary Spherocytosis due to a Novel Frameshift Mutation in AE1 Cytoplasmic COOH Terminal Tail: Band 3 Vesuvio. Blood, 93, 2131–2132.PubMedGoogle Scholar
  76. Peters, L.L., Shivdasani, R.A., Liu, S.C., Hanspal, M., John, K.M., Gonzalez, J.M., et al. (1996). Anion Exchanger 1 (Band 3) Is Required to Prevent Erythrocyte Membrane Surface Loss But Not to Form the Membrane Skeleton. Cell, 86, 917–927.PubMedGoogle Scholar
  77. Peters, L.L., Jindel, H.K., Bwynn, B., Korsgren, C., John, K.M., Lux, S.E., et al. (1999). Mild Spherocytosis and Altered Red Cell Ion Transport in Protein 4.2-Null Mice. J. Clin. lnvest., 103, 1527–1537.Google Scholar
  78. Peters, L.L., Andersen, S.G., Gwynn, B., Li, R., Lux, S.E., and Churchill, G.A. (2001). A QTL on Mouse Chromosome 12 Modifies the Band 3 Null Phenotype: β Spectrin Is a Candidate Gene. Blood, 98, abstract 1831.Google Scholar
  79. Poole, J., Hallewell, H., Bruce, L., Tanner, M.J.A., Zupanska, B., and Kusnierz-Alejska, G. (1997). Identification of Two New Jn(a+) Individuals and Assignment of Jna to Erythrocyte Band 3. Transfusion, 37 (Suppl.), 90S.Google Scholar
  80. Popov, M., Li, J., and Reithmeier, R.A. (1999). Transmembrane Folding of the Human Erythrocyte Anion Exchanger (AE1, Band 3) Determined by Scanning and Insertional N-glycosylation Mutagenesis. Biochem. J., 339, 269–279.PubMedGoogle Scholar
  81. Quilty, J.A. and Reithmeier, R.A. (2000). Trafficking and Folding Defects in Hereditary Spherocytosis Mutants of the Human Red Cell Anion Exchanger. Traffic., 1, 987–998.PubMedGoogle Scholar
  82. Quilty, J.A., Cordat, E., and Reithmeier, R.A. (2002a). Impaired Trafficking of Human Kidney Anion Exchanger (kAE1) Caused by Hetero-oligomer Formation with a Truncated Mutant Associated with Distal Renal Tubular Acidosis. Biochem. J., 368, 895–903.PubMedGoogle Scholar
  83. Quilty, J.A., Li, J., and Reithmeier, R.A. (2002b). Impaired Trafficking of Distal Renal Tubular Acidosis Mutants of the Human Kidney Anion Exchanger kAE1. Am. J. Physiol. Renal. Physiol., 282, F810–F820.PubMedGoogle Scholar
  84. Rajendran, V.M., Black, J., Ardito, T.M., Sangan, P., Alper, S.L., Schweinfest, C., et al. (2002). Regulation of Anion Exchanger RNAs in Rat Distal Colon by Dietary Na-Depletion. Am. J. Physiol. Gastrointestinal. Physiol., 279, G931–G942.Google Scholar
  85. Reliene, R., Mariani, M. Zanella, A., Reinhart, W.H., Ribeiro, M.L., del Giudice, E.M., et al. (2002). Splenectomy Prolongs In Vivo Survival of Erythrocytes Differently in Spectrin/Ankyrin-and Band 3-Deficient Hereditary Spherocytosis. Blood, 100, 2208–2215.PubMedGoogle Scholar
  86. Ribeiro, M.L., Alloisio, N., Almeida, H., Gomes, C., Texier, P., Lemos, C., et al. (2000). Severe Hereditary Spherocytosis and Distal Renal Tubular Acidosis Associated with the Total Absence of Band 3. Blood, 96, 1602–1604.PubMedGoogle Scholar
  87. Rybicki, A.C., Qiu, J.J., Musto, S., Rosen, N.L., Nagel, R.L., and Schwartz, R.S. (1993). Human Erythrocyte Protein 4.2 Deficiency Associated with Hemolytic Anemia and a Homozygous 40 Glutamic acid»Lysinc Substitution in the Cytoplasmic Domain of Band 3 (Band 3 Montefiore). Blood, 81, 2155–2165.PubMedGoogle Scholar
  88. Rysava, R., Tesar, Y., Jirsa, M. Jr, Brabec, V., and Jarolim, P. (1997). Incomplete Distal Renal Tubular Acidosis Coinherited with a Mutation in the Band 3 (AE1) Gene. Nephrol. Dial. Transplant., 12, 1869–1873.PubMedGoogle Scholar
  89. Salhany, J.M., Schopfer, L.M., Kay, M.M.B., Gamble, D.N., and Lawrence, C. (1995). Differential Sensitivity of Stilbenedisulfonates in their Reactions with Band 3 HT (Pro868-Leu) Proc. Natl. Acad. Sci. USA, 92, 11844–11848.PubMedGoogle Scholar
  90. Schofield, A.E., Reardon, D.M., and Tanner, M.J. (1992). Defective Anion Transport Activity of the Abnormal Band-3 in Hereditary Ovalocytic Red Blood Cells. Nature, 355, 836–838.PubMedGoogle Scholar
  91. Sekler, I., Lo, R.S., and Kopito, R.R. (1995). A Conserved Glutamate Is Responsible for Ion Selectivity and pH Dependence of the Mammalian Anion Exchangers AE1 and AE2. J. Biol. Chem., 270, 28751–28758.PubMedGoogle Scholar
  92. Shayakul, C. and Alper, S.L. (2000). Inherited Renal Tubular Acidosis. Curr. Opin. Nephrol. Hypertens., 9, 541–546.PubMedGoogle Scholar
  93. Shayakul, C., Jariyawat, S., Kaewkaukul, N., and Sophasan, S. (2001). Functional Rescue of Anion Exchanger 1 (AE1) G701D by Glycophorin A Is Attenuated by Co-expression of AE1 Δ400-408: A Basis for Transport Defect in Autosomal Recessive Distal Renal Tubular Acidosis (dRTA). J. Am. Soc. Nephrol., 12, 10A.Google Scholar
  94. Shayakul, C., Jarolim, P., Ideguchi, H., Prabakaran, D., Cortez, D., Zakova, D., et al. A Highly Polymorphic Dinucleotide Repeat Adjacent to the SLC4A1 (AE1/EPB3) Cl/HCO3 Exchanger Gene: Diagnostic Validation in a Family with Distal Renal Tubular Acidosis Submitted for Publication.Google Scholar
  95. Southgate, C.D., Chishti, A.H., Mitchell, B., Yi, S.J., and Palek, J. (1996). Targeted Disruption of the Murine Erythroid Band 3 Gene Results in Spherocytosis and Severe Haemolytic Anaemia Despite a Normal Membrane Skeleton. Nat. Genet., 14, 227–230.PubMedGoogle Scholar
  96. Spring, F.A., Bruce, L.J., Anstee, D.J., and Tanner, M.J. (1992). A Red Cell Band 3 Variant with Altered Stilbene Disulphonate Binding is Associated with the Diego (Dia) Blood Group Antigen. Biochem. J., 288, 713–716.PubMedGoogle Scholar
  97. Sterling, D. and Casey, J.R. (2002). Bicarbonate Transport Proteins. Biochem. Cell. Biol., 80, 483–497.PubMedGoogle Scholar
  98. Sterling, D., Reithmeier, R.A., and Casey, J.R. (2001). A Transport Metabolon. Functional Interaction of Carbonic Anhydrase II and Chloride/Bicarbonate Exchangers. J. Biol. Chem., 276, 47886–47894.PubMedGoogle Scholar
  99. Takano, J., Noguchi, K., Yasumori, M., Kobayashi, M., Gajdos, Z., Miwa, K., et al. (2002). Arabidopsis Boron Transporter for Xylem Loading. Nature, 420, 337–340.PubMedGoogle Scholar
  100. Tang, X.B., Fujinaga, J., Kopito, R., and Casey, J.R. (1998). Topology of the Region Surrounding Glu681 of Human AE1 Protein, the Erythrocyte Anion Exchanger. J. Biol. Chem., 273, 22545–22553.PubMedGoogle Scholar
  101. Tang, X.B., Kovacs, M., Sterling, D., and Casey, J.R. (1999). Identification of Residues Lining the Translocation Pore of Human AE1, Plasma Membrane Anion Exchange Protein. J. Biol. Chem., 274, 3557–3564.PubMedGoogle Scholar
  102. Tanner, M.J. (2002). Band 3 Anion Exchanger and its Involvement in Erythrocyte and Kidney Disorders. Curr: Opin. Hematol., 9, 133–139.Google Scholar
  103. Tanphaichitr, V.S., Sumboonnanonda, A., Ideguchi, H., Shayakul, C., Brugnara, C., Takao, M., et al. (1998). Novel AE1 Mutations in Recessive Distal Renal Tubular Acidosis. Loss-of-Function Is Rescued by Glycophorin, A. J. Clin. Invest., 102, 2173–2179.PubMedGoogle Scholar
  104. Thisse, C. and Zon, L.I. (2002). Organogenesis-Heart and Blood Formation from the Zebrafish Point of View. Science, 295, 457–462.PubMedGoogle Scholar
  105. Toye, A.M., Bruce, L.J., Unwin, R.J., Wrong, O., and Tanner, M.J. (2002). Band 3 Walton, a C-Terminal Deletion Associated with Distal Renal Tubular Acidosis, Is Expressed in the Red Cell Membrane But Retained Internally in Kidney Cells. Blood, 99, 342–347.PubMedGoogle Scholar
  106. Turrini, F., Mannu, F., Arese, P., Yuan, J., and Low, P.S. (1993). Characterization of the Autologous Antibodies that Opsonize Erythrocytes with Clustered Integral Membrane Proteins. Blood, 81, 3146–3152.PubMedGoogle Scholar
  107. Vasuvattakul, S., Yenchitsomanus, P., Thuwajit, P., Kaitwatcharachai, C., Vachuanichsanong, P., Laosombat, V., et al. (1999). Compound Heterozygosity of AE1 Genes Causes Recessive Distal Renal Tubular Acidosis in Southeast Asian Ovalocytosis. J. Am. Soc. Nephrol., 10, 444A.Google Scholar
  108. Vince, J.W. and Reithmeier, R.A. (2000). Identification of the Carbonic Anhydrase II Binding Site in the Cl(-)/ HCO(3)(-) Anion Exchanger AE1. Biochemistry, 39, 5527–5533.PubMedGoogle Scholar
  109. Wang, D.N., Sarabia, V.E., Reithmeier, R.A., and Kuhlbrandt, W. (1994). Three-Dimensional Map of the Dimeric Membrane Domain of the Human Erythrocyte Anion Exchanger, Band 3. EMBO J., 13, 3230–3235.PubMedGoogle Scholar
  110. Wood, P.G. (1992). The Anion Exchange Proteins: Homology and Second ary Structure. Prog. Cell. Res., 2, 325–352.Google Scholar
  111. Wrong, O., Bruce, L.J., Unwin, R.J., Toye, A.M., and Tanner, M.J. (2002). Band 3 Mutations, Distal Renal Tubular Acidosis, and Southeast Asian Ovalocytosis. Kidney Int., 62, 10–19.PubMedGoogle Scholar
  112. Yannoukakos, D., Vasseur, C., Driancourt, C., Blouquit, Y., Delaunay, J., Wajcman, H., et al. (1991). Human Erythrocyte Band 3 Polymorphism (Band 3 Memphis): Characterization of the Structural Modification (Lys 56»Glu) by Protein Chemistry Methods. Blood, 78, 1117–1120.PubMedGoogle Scholar
  113. Yawata, Y., Kanzaki, A., Doerfler, W., Ozcan, R., and Eber, S.W. (2000). Characteristic Features of the Genotype and Phenotype of Hereditary Spherocytosis in the Japanese Population. Int. J. Hematol., 71, 118–135.PubMedGoogle Scholar
  114. Yenchitsomanus, P.T., Vasuvallakul, S., Kirdpon, S., Wasanawatana, S., Susaengrat,W., Sreethiphayawan, S., el al. (2002). Autosomal Recessive Distal Renal Tubular Acidosis Caused by G701D Mutation of Anion Exchanger 1 Gene. Am. J. Kidney Dis., 40, 21–29.PubMedGoogle Scholar
  115. Zelinski, T., Pongoski, J., and Coghlan, G. (1997). The Low Incidence Erythrocyte Antigen NFLD is Associated with Membrane Protein Band 3. Transfusion, 37 (Suppl.), 90S.Google Scholar
  116. Zelinski, T., McManus, K., Punter, F., Moulds, M., and Coghlan, G. (1998). A Gly 565-Ala substitution in Human Erythroid Band 3 Accounts for the Wu Blood Group Polymorphism. Transfusion, 38, 745–748.PubMedGoogle Scholar
  117. Zelinski, T., Rusnak, A., McManus, K., and Coghlan, G. (2000). Distinctive Swann Blood Group Genotypes: Molecular investigations. Vox Sang, 79, 215–218.PubMedGoogle Scholar
  118. Zhang, D., Kiyatkin, A., Bolin, J.T, and Low, P.S. (2000). Crystallographic Structure and Functional Interpretation of the Cytoplasmic Domain of Erythrocyte Membrane Band 3. Blood, 96, 2925–2933.PubMedGoogle Scholar
  119. Zhao, R. and Reithmeier, R.A. (2001). Expression and Characterization of the Anion Transporter Homologue YNL275w in Saccharomyces cerevisiae. Am. J. Phvsiol. Cell. Physiol., 281, C33–C45.Google Scholar
  120. Zhu, Q., Lee, D.W., and Casey, J.R. (2003). Novel Topology in C-terminal Region of the Human Plasma Membrane Anion Exchanger, AE1. J. Biol. Chem., 278, 3112–3120.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Seth L. Alper
    • 1
  1. 1.Harvard Medical School, Molecular Medicine and Renal UnitsRW 763 Beth Israel Deaconess Medical CenterBostonUSA

Personalised recommendations