The Minimal Model of Glucose Regulation: A Biography

  • Richard N. Bergman
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 537)

Abstract

The life history of the so-called “minimal model” of glucose regulation can be traced back over two decades. During the decades after World War II, the science of cybernet-ics was introduced by Norbert Weiner at MIT (Weiner,1965). Weiner recognized the importance of the rapidly developing fields of control theory and systems analysis to problems in biology and medicine. During the ensuing decade, much was written about the potential benefits of applying mathematical analysis to biology (Yates et al., 1972).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ader, M., Pacini, G., Yang, Y.J., and Bergman, R.N., 1985, Importance of glucose per se to intravenous glucose tolerance: comparison of the minimal model prediction with direct measurements, Diabetes 34:1092–1103.CrossRefGoogle Scholar
  2. Ader, M., and Bergman, R.N., 1987, Insulin sensitivity in the intact organism, in: Bailliere’s Clinics in Endocrinology and Metabolism, K.G.M.M. Alberti, P.D. Home, and R. Taylor eds., Bailliere Tindall, London.Google Scholar
  3. Ader, M., Ni, T.-C, and Bergman, R.N., 1997, Glucose effectiveness assessed under dynamic and steady state conditions: comparability of uptake versus production components, J. Clin. Invest. 99:1187–1199.CrossRefGoogle Scholar
  4. Andres, R., Swerdloff, R., Pozefsky, T., and Coleman, D., 1966, Manual feedback technique for the control of blood glucose concentration, in: Automation in Analytical Chemistry, J. Skeggs, ed., Mediad, Inc., New York.Google Scholar
  5. Basu, A., Caumo, A., Bettini, F., Gelisio, A., Alzaid, A., Cobelli, C, and Rizza, R.A., 1997, Impaired basal glucose effectiveness in NIDDM: contribution of defects in glucose disappearance and production, measured using an optimized minimal model independent protocol, Diabetes 46:421–432.CrossRefGoogle Scholar
  6. Beard, J. C, Ward, W.K., Halter, J.B., Wallum, B.J., and Porte, D., Jr., 1987, Relationship of islet function to insulin action in human obesity, J. Clin. Endocrinol. Metab. 65:59–64.CrossRefGoogle Scholar
  7. Bergman, R.N., 1989, Toward physiological understanding of glucose tolerance: minimal-model approach (Lilly Lecture), Diabetes 38:1512–1527.CrossRefGoogle Scholar
  8. Bergman, R.N., 1995, Insulin sensitivity from the minimal model, in: Research Methodologies in Human Diabetes -- Part 2, Walter de Gruyter, Berlin.Google Scholar
  9. Bergman, R.N., and Ader, M., 1993, Concepts emerging from the minimal model approach, in: Current Topics in Diabetes Research, F. Belfiore, R.N. Bergman, and G.M. Molinatti, eds., Karger, Basel.Google Scholar
  10. Bergman, R.N., and Cobelli, C, 1980, Minimal modeling, partition analysis and the estimation of insulin sensitivity, Fed. Proc. 39:110–115.Google Scholar
  11. Bergman, R.N., Finegood, D.T., and Ader, M., 1985, Assessment of insulin sensitivity in vivo, Endocr. Rev. 6:45–86.CrossRefGoogle Scholar
  12. Bergman, R.N., Phillips, L.S., and Cobelli, C, 1981, Physiologic evaluation of factors controlling glucose tolerance in man: measurement of insulin sensitivity and B-cell glucose sensitivity from the response to intravenous glucose, J. Clin. Invest. 68:1456–1467.CrossRefGoogle Scholar
  13. Bergman, R.N., Prager, R., Volund, A., and Olefsky, J.M., 1987, Equivalence of the insulin sensitivity index in man derived by the minimal model method and the euglycemic glucose clamp, J. Clin. Invest. 79:790–800.CrossRefGoogle Scholar
  14. Best, J.D., Kahn, S.E., Ader, M., Watanabe, R.M., Ni, T.-C., and Bergman, R.N., 1996, Role of glucose effectiveness in the determination of glucose tolerance, Diab. Care 19:1018–1030.Google Scholar
  15. Bradley, D.C., Poulin, R.A., and Bergman, R.N., 1992, Dynamics of hepatic and peripheral insulin effects suggest common rate-limiting step in vivo, Diabetes 42:296–306.CrossRefGoogle Scholar
  16. Brownlee, M., 1994, Glycation and diabetic complications, Diabetes 43:836–841.Google Scholar
  17. Buchanan, T.A., Metzger, B.E., Freinkel, N., and Bergman, R.N., 1990, Insulin sensitivity and B-cell responsiveness to glucose during late pregnancy in lean and moderately obese women with normal glucose tolerance or mild gestational diabetes, Am. J. Obstet. Gynecol. 162:1008–1014.Google Scholar
  18. Buchanan, T.A., Xiang, A.H., Peters, R.K., Kjos, S.L., Berkowitz, K., Marroquin, A., Goico, J., Ochoa, C, and Azen, S.P., 2000, Response of pancreatic b-cells to improved insulin sensitivity in women at high risk for type 2 diabetes, Diabetes 49:782–788.CrossRefGoogle Scholar
  19. Cahill, G.F., Jr., Herrera, M.G., Morgan, A.P., Soeldner, J.S., Steinke, J., Levy, P.L., Reichard, G.A., and Kipnis, D.M., 1966, Hormone-fuel interrelationships during fasting, J. Clin. Invest. 45:1751–1769.CrossRefGoogle Scholar
  20. Caumo, A., Vicini, P., and Cobelli, C., 1996, Is the minimal model too minimal? Diabetologia 39:997–1000.CrossRefGoogle Scholar
  21. Cobelli, C., Vicini, P., and Caumo, A., 1997, If the minimal model is too minimal, who suffers more: SG or SI? Diabetologia 40:362–364.Google Scholar
  22. Cobelli, C, Bettini, F., Caumo, A., and Quon, M.J., 1998, Overestimation of minimal model glucose effectiveness in presence of insulin response is due to undermodeling, Am. J. Physiol. 275:E1031–E1036.Google Scholar
  23. Dea, M., Hamilton-Wessler, M., Ader, M., Poulin, R.A., Moore, D., and Markussen, J., 1997, Long-acting insulin analogue NN304 has similar transendothelial transport to porcine insulin, Diabetes 46:164A.Google Scholar
  24. DeFronzo, R.A., Tobin, J.D., and Andres, R., 1979, Glucose clamp technique: a method for quantifying insulin secretion and resistance, Am. J. Physiol. 237:E214–E223.Google Scholar
  25. Donner, C.C., Fraze, E., Chen, Y.D.I., Hollenbeck, C.B., Foley, J.E., and Reaven, G.M., 1985, Presentation of a new method for specific measurement of in vivo insulin-stimulated glucose disposal in humans: comparison of this approach with the insulin clamp and minimal model techniques, J. Clin. Endocrinol Metab. 60:723–726.CrossRefGoogle Scholar
  26. Dunaif, A., and Finegood, D.T., 1996, b-Cell dysfunction independent of obesity and glucose intolerance in the polycystic ovary syndrome, J. Clin. Endocrinol. Metab. 81:942–947.CrossRefGoogle Scholar
  27. Finegood, D.T., Pacini, G., and Bergman, R.N., 1984, The insulin sensitivity index: correlation in dogs between values determined from the intravenous glucose tolerance test and the euglycemic glucose clamp, Diabetes 33:362–368.CrossRefGoogle Scholar
  28. Foster, D.M., Boston, R.C., Jacquez, J.A., and Zech, L., 1989, A resource facility for kinetic analysis: modeling using the SAAM computer programs, Health Phys. 57 (Suppl 1):457–466.CrossRefGoogle Scholar
  29. Garcia, G.V., Freeman, R.V., Supiano, M.A., Smith, M.J., Galecki, A.T., and Halter, J.B., 1997, Glucose metabolism in older adults: a study including subjects more than 80 years of age, J. Am. Geriatr. Soc. 45:813–817.Google Scholar
  30. Getty, L., Hamilton-Wessler, M., Ader, M., Dea, M.K., and Bergman, R.N., 1998, Biphasic insulin secretion during intravenous glucose tolerance test promotes optimal interstitial insulin profile, Diabetes 47:1941–1947. CrossRefGoogle Scholar
  31. Greif, P., Wastney, M., Linares, O., and Boston, R., 1998, Balancing needs, efficiency, and functionality in the provision of modeling software: a perspective of the NIH WinSAAM project, in: Mathematical Modeling in Experimental Nutrition, A.J. Clifford and H.-G. Müller, eds., Plenum Press, New York.Google Scholar
  32. Grodsky, G.M., 1972, A threshold distribution hypothesis for packet storage of insulin and its mathematical modeling, J. Clin. Invest. 51:2047–2059.CrossRefGoogle Scholar
  33. Hamilton-Wessler, M., Ader, M., Dea, M., Moore, D., Jorgensen, P.N., Markussen, J., and Bergman, R.N., 1999, Mechanism of protracted metabolic effects of fatty acid acylated insulin, NN304, in dogs: retention of NN304 by albumin, Diabetologia 42:1254–1263.CrossRefGoogle Scholar
  34. Hamilton-Wessler, M., Ellmerer, M., Dea, M.K., Mittelman, S.D., van Citters, G.W., and Kim, S.P., 2000, Insulin resistance in dogs with transendothelial transport defect, Diabetes 49 (Suppl 1), A59.Google Scholar
  35. Hodgkin, A.L., 1951, The ionic basis of electrical activity in nerve and muscle, Biol. Rev. 26: 339–401.CrossRefGoogle Scholar
  36. Howard, G., O’Leary, D.H., Zaccaro, D., Haffner, S., Rewers, M., Hamman, R., Selby, J.V., Saad, M.F., Savage, P., and Bergman, R. for the IRAS Investigators, 1996, Insulin sensitivity and atherosclerosis: the Insulin Resistance Atherosclerosis Study (IRAS), Circulation 93:1809–1817.CrossRefGoogle Scholar
  37. Jansson, P.A., Fowelin, J.P., von Schenck, H.P., Smith, U.P., and Lonnroth, P.N., 1993, Measurement by microdialysis of the insulin concentration in subcutaneous interstitial fluid: Importance of the endothelial barrier for insulin, Diabetes 42:1469–1473.CrossRefGoogle Scholar
  38. Kahn, S. E., Beard, J.C., Schwartz, M.W., Ward, W.K., Ding, H.L., Bergman, R.N., Taborsky, G.J., Jr., and Porte, D., Jr., 1989, Increased B-cell secretory capacity as mechanism for islet adaptation to nicotinic-acid-induced insulin resistance, Diabetes 38:562–568.CrossRefGoogle Scholar
  39. Kahn, S.E., Prigeon, R.L., McCulloch, D.K., Boyko, E.J., Bergman, R.N., Schwartz, M.W., Neifing, J.L., Ward, W.K., Beard, J.C., Palmer, J.P., and Porte, D., Jr., 1993, Quantification of the relationship between insulin sensitivity and B-cell function in human subjects: evidence for a hyperbolic function, Diabetes 42:1663–1672.CrossRefGoogle Scholar
  40. King, G.L., and Johnson, S.M., 1985, Receptor-mediated transport of insulin across endothelial cells, Science 227:1583–1586.CrossRefGoogle Scholar
  41. Knott, G.D., 1979, MLAB -- a mathematical modeling tool, Comput. Progr. Biomed. 10:271–280.CrossRefGoogle Scholar
  42. Korytkowski, M.T., Berga, S.L., and Horwitz, M.J., 1995, Comparison of the minimal model and the hyperglycemic clamp for measuring insulin sensitivity and acute insulin response to glucose, Metabolism 44:1121–1125.CrossRefGoogle Scholar
  43. Lewis, G.F., Vranic, M., Harley, P., and Giacca, A., 1997, Fatty acids mediate the acute extrahepatic effects of insulin on hepatic glucose production in humans, Diabetes 46:1111–1119.CrossRefGoogle Scholar
  44. Manning, R.D., Jr., and Guyton, A.C., 1982, Control of blood volume, Rev. Physiol Biochem. Pharmacol. 93:70–114.Google Scholar
  45. Martin, B.C., Warram, J.H., Krolewski, A.S., Bergman, R.N., Soeldner, J.S., and Kahn, C.R., 1992, Role of glucose and insulin resistance in development of type 2 diabetes mellitus: results of a 25-year follow-up study, Lancet 340:925–929.CrossRefGoogle Scholar
  46. McDonald, C, Dunaif, A., and Finegood, D.T., 2000, Minimal-model estimates of insulin sensitivity are insensitive to errors in glucose effectiveness, J. Clin. Endocrinol. Metab. 85: 2504–2508.CrossRefGoogle Scholar
  47. Miles, P.D.G., Levisetti, M., Reichart, D., Khoursheed, M., Moossa, A.R., and Olefsky, J.M., 1995, Kinetics of insulin action in vivo: identification of rate-limiting steps, Diabetes 44:947–953.CrossRefGoogle Scholar
  48. Mittelman, S.D., and Bergman, R.N., 2000, Inhibition of lipolysis causes suppression of endogenous glucose production independent of changes in insulin, Am. J. Physiol. 279: E630–E637.Google Scholar
  49. Ni, T.-C., Ader, M., and Bergman, R.N., 1997, Reassessment of glucose effectiveness and insulin sensitivity from minimal model analysis: a theoretical evaluation of the single-compartment glucose distribution assumption, Diabetes 43:1813–1821.CrossRefGoogle Scholar
  50. Poulin, R.A., Steil, G.M., Moore, D.M., Ader, M., and Bergman, R.N., 1994, Dynamics of glucose production and uptake are more closely related to insulin in hindlimb lymph than in thoracic duct lymph, Diabetes 43:180–190.CrossRefGoogle Scholar
  51. Quon, M.J., Cochran, C, Taylor, S.I., and Eastman, R.C., 1994, Non-insulin-mediated glucose disappearance in subjects with IDDM: discordance between experimental results and minimal model analysis, Diabetes 43:890–896.CrossRefGoogle Scholar
  52. Rashevsky, N., 1940, Advances and Applications of Mathematical Biology, University of Chicago Press, Chicago.Google Scholar
  53. Rebrin, K., Steil, G.M., Getty, L., and Bergman, R.N., 1995, Free fatty acid as a link in the regulation of hepatic glucose output by peripheral insulin, Diabetes 44:1038–1045.CrossRefGoogle Scholar
  54. Rebrin, K., Steil, G.M., Mittelman, S., and Bergman, R.N., 1996, Causal linkage between insulin regulation of lipolysis and liver glucose output, J. Clin. Invest. 98:741–749.CrossRefGoogle Scholar
  55. Turing, A.M., 1936, On computable numbers, with an application to the Entscheidungsproblem, Proc. London Math. Soc. 2:230–265.MathSciNetGoogle Scholar
  56. Steil, G. M., Ader, M., Moore, D.M., Rebrin, K., and Bergman, R.N., 1996, Transendothelial insulin transport is not saturable in vivo: no evidence for a receptor-mediated process, J. Clin. Invest. 97:1497–1503.CrossRefGoogle Scholar
  57. Taniguchi, A., Nakai, Y., Fukushima, M., Imura, H., Kawamura, H., Nagata, I., Florant, G.L., and Tokuyama, K., 1994, Insulin sensitivity, insulin secretion, and glucose effectiveness in subjects with impaired glucose tolerance: a minimal model analysis, Metabolism 43:714–718.CrossRefGoogle Scholar
  58. Valle, T., Tuomilehto, J., Bergman, R.N., Ghosh, S., Hauser, E.R., Eriksson, J., Nylund, S.J., Kohtamaki, K, Toivanen, L., Vidgren, G., Tuomilehto-Wolf, E., Ehnholm, C, Blaschak, J., Langefeld, C.D., Watanabe, R.M., Magnuson, V., Ally, D.S., Hagopian, W.A., Ross, E., Buchanan, T.A., Collins, F., and Boenke, M., 1998, Mapping genes for NIDDM: design of the Finland-United States investigation of NIDDM genetics (FUSION) study, Diab. Care 21: 949–958.CrossRefGoogle Scholar
  59. Vicini, P., Caumo, A., and Cobelli, C, 1997. The hot IVGTT two-compartment minimal model: indexes of glucose effectiveness and insulin sensitivity, Am. J. Physiol. 273:E1024–E1032.Google Scholar
  60. Weiner, N., 1965, Cybernetics or Control and Communication in the Animal, MIT Press, Boston.Google Scholar
  61. Weyer, C., Bogardus, C., Mott, D.M., and Pratley, R.E., 1999, The natural history of insulin secretory dysfunction and insulin resistance in the pathogenesis of type 2 diabetes mellitus, J. Clin. Invest. 104:787–794.CrossRefGoogle Scholar
  62. Wing, R.R., Blair, E.H., Bononi, P., Marcus, M.D., Watanabe, R., and Bergman, R.N., 1994, Caloric restriction per se is a significant factor in improvements in glycemic control and insulin sensitivity during weight loss in obese NIDDM patients, Diab. Care 17:30–36.CrossRefGoogle Scholar
  63. Yang, Y.J., Hope, I.D., Ader, M., and Bergman, R.N., 1989, Insulin transport across capillaries is rate limiting for insulin action in dogs, J. Clin. Invest. 84:1620–1628.CrossRefGoogle Scholar
  64. Yates, F.E., Marsh, D.J., and Iberall, A.S., 1972, Integration of the whole organism: a foundation for a theoretical biology, in: Challenging Biological Problems: Directions Towards Their Solution, J.A. Behnke, ed., Oxford University Press, New York.Google Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Richard N. Bergman
    • 1
    • 2
  1. 1.Department of Physiology and Biophysics and USC Diabetes Research CenterUniversity of Southern CaliforniaLos Angeles
  2. 2.Department of Physiology and BiophysicsKeck-USC School of MedicineLos Angeles

Personalised recommendations