Advertisement

Complement System in Allorecognition and Rejection of Organ Transplants

  • William M. BaldwinIII
  • Hirofumi Ota
  • Barbara A. Wasowska
  • E. Rene Rodriguez
Chapter

Abstract

Complement is a system of mediators, receptors, and regulators that integrates the interactions of leukocytes, platelets, and tissues in inflammatory responses. Historically, the function of the effector proteins of this system was demonstrated first by Jules Bordet, who was awarded the Nobel Prize in 1919. He demonstrated that serum from immunized animals contained two constituents that were required to cause lysis of bacteria or cells: A heat stable constituent that later was identified to be antibodies and a heat labile constituent that complemented the function of antibodies. As methods for protein chemistry were refined, the complementary proteins responsible for causing lysis were separated and characterized in increasing detail. Most of the complement components leading to cell lysis were characterized by 1966, when a devastatingly rapid type of rejection was described for renal transplants. This type of rejection was named hyperacute to denote that these transplants were rejected within minutes to hours after the surgeon allowed blood to flow into the grafted kidneys. Immunohistological studies demonstrated antibodies and complement components were deposited in the transplant. Consequently, hyperacute rejection was quickly attributed to the action of antibodies and complement2-4.

As more knowledge has been accumulated about the receptor and regulatory proteins of the complement system, complement has been appreciated as an important link between allorecognition and the adaptive immune responses causing acute and chronic rejections’ 6 Direct evidence of this link has been provided by experiments in animals with deficiencies in specific components of the complement system7. These studies have revealed that both cellular as well as antibody responses to transplants are significantly altered by complement deficiencies.

Keywords

Complement Activation Complement System Complement Component Mannose Binding Lectin Membrane Attack Complex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kissmeyer-Nielsen, F., S. Olsen, V.P. Petersen, and O. Fjeldborg (1966). Hyperacute rejection of kidney allografts associated with pre-existing humoral antibodies against donor cells. Lancet 2, 662.PubMedCrossRefGoogle Scholar
  2. 2.
    Williams, G.M., D.M. Hume, R.P. Hudson, Jr., P. Morris, K. Kano, and F. Milgrom (1968). “Hyperacute” renal-homograft rejection in man. N. Engl. J. Med. 279, 611.PubMedCrossRefGoogle Scholar
  3. 3.
    Williams, G.M., B. DePlanque, W.H. Graham, and R.R. Lower (1969). Participation of antibodies in acute cardiac-allograft rejection in man. N. Engl. J. Med. 281, 1145.PubMedCrossRefGoogle Scholar
  4. 4.
    Patel, R. and P.I. Terasaki (1969). Significance of the positive crossmatch test in kidney transplantation. N. Engl. J. Med. 280, 735.PubMedCrossRefGoogle Scholar
  5. 5.
    Baldwin, W.M., III, C.P. Larsen, and R.L. Fairchild (2001). Innate immune responses to transplants: A significant variable with cadaver donors. Immunity 14, 369.PubMedCrossRefGoogle Scholar
  6. 6.
    Baldwin, W.M., III, N.A. Flavahan, and R.L. Fairchild (2002). Integration of complement and leukocytes in response to allotransplantation. Curr. Opin. Transplant. 7, 92.CrossRefGoogle Scholar
  7. 7.
    Baldwin, W.M., III, H. Ota, and E.R. Rodriguez (2003). Complement in transplant rejection: Diagnostic and mechanistic considerations. Springer Semin. Immunopathol. 25, 181.Google Scholar
  8. 8.
    Walport, M.J. (2001). Complement. Second of two parts. N. Engl. J. Med. 344, 1140.PubMedCrossRefGoogle Scholar
  9. 9.
    Walport, M.J. (2001). Complement. First of two parts. N. Engl. J. Med. 344, 1058.PubMedCrossRefGoogle Scholar
  10. 10.
    Fujita, T. (2002). Evolution of the lectin-complement pathway and its role in innate immunity. Nat. Immunol. Rev. 2, 346.Google Scholar
  11. 11.
    Navratil, J.S., S.C. Watkins, J.J. Wisnieski, and J.M. Ahearn (2001). The globular heads of Clq specifically recognize surface blebs of apoptotic vascular endothelial cells. J. lmmunol. 166, 3231.Google Scholar
  12. 12.
    Nauta, A.J., L.A. Trouw, M.R. Daha, O. Tijsma, R. Nieuwland, W.J. Schwaeble et al. (2002). Direct binding of Clq to apoptotic cells and cell blebs induces complement activation. Eur. J. Immunol. 32, 1726.PubMedCrossRefGoogle Scholar
  13. 13.
    Du Clos, T.W. (2000). Function of C-reactive protein. Ann. Med. 32, 274.PubMedCrossRefGoogle Scholar
  14. 14.
    ert.,M.W., J.V. Kadlec, K. David, E.C. Petrella, R. Bredehorst, and C.W. Vogel (1994). Antibody-mediated complement activation on nucleated cells. A quantitative analysis of the individual reaction steps. J. Immunol. 153, 2213.PubMedGoogle Scholar
  15. 15.
    Collard, C.D., A. Vakeva, M.A. Morrissey, A. Agah, S.A. Rollins, W.R. Reenstra et al. (2000). Complement activation after oxidative stress: Role of the lectin complement pathway. Am. J. Pathol. 156, 1549.PubMedCrossRefGoogle Scholar
  16. 16.
    DiScipio, R.G., P.J. Daffern, M.A. Jagels, D.H. Broide, and P. Sriramarao (1999). A comparison of C3a and C5amediated stable adhesion of rolling eosinophils in postcapillary venules and transendothelial migration in vitro and in vivo. J. Immunol. 162, 1127.PubMedGoogle Scholar
  17. 17.
    Benzaquen, L.R., A. Nicholson-Weller, and J.A. Halperin (1994). Terminal complement proteins C5b-9 release basic fibroblast growth factor and platelet-derived growth factor from endothelial cells. J. Exp. Med. 179, 985.PubMedCrossRefGoogle Scholar
  18. 18.
    Tedesco, E, M. Pausa, E. Nardon, M. Introna, A. Mantovani, and A. Dobrina (1997). The cytolytically inactive terminal complement complex activates endothelial cells to express adhesion molecules and tissue factor procoagulant activity. J. Exp. Med. 185, 1619.Google Scholar
  19. 19.
    Kilgore, K.S., E. Schmid, T.P. Shanley, C.M. Flory, V. Maheswari, N.L. Tramontini et al. (1997). Sublytic concentrations of the membrane attack complex of complement induce endothelial interleukin-8 and monocyte chemoattractant protein-1 through nuclear factor-kappa B activation. Am. J. Pathol. 150, 2019.PubMedGoogle Scholar
  20. 20.
    Niculescu, F., T. Badea, and H. Rus (1999). Sublytic C5b-9 induces proliferation of human aortic smooth muscle cells: Role of mitogen activated protein kinase and phosphatidylinositol 3-kinase. Atherosclerosis 142, 47.PubMedCrossRefGoogle Scholar
  21. 21.
    Rosengard, A.M., L.C. Alonso, L.C. Korb, W.M. Baldwin, III, E Sanfilippo, L.A. Turka et al. (1999). Functional characterization of soluble and membrane-bound forms of vaccinia virus complement control protein. Mol. Immunol. 36, 685.Google Scholar
  22. 22.
    Murthy, K.H., S.A. Smith, V.K. Ganesh, K.W. Judge, N. Mullin, P.N. Barlow et al. (2001). Crystal structure of a complement control protein that regulates both pathways of complement activation and binds heparan sulfate proteoglycans. Cell 104, 301.PubMedCrossRefGoogle Scholar
  23. 23.
    Zhang, H.F., J. Yu, E. Bajwa, S.L. Morrison, and S. Tomlinson (1999). Targeting of functional antibody-CD59 fusion proteins to a cell surface. J. Clin. Invest. 103, 55.PubMedCrossRefGoogle Scholar
  24. 24.
    Smith, G.P. and R.A. Smith (2001). Membrane-targeted complement inhibitors. Mol. Immunol. 38, 249.Google Scholar
  25. 25.
    Rollins, S.A., L.A. Matis, J.P. Springhom, E. Setter, and D.W. Wolff (1995). Monoclonal antibodies directed against human C5 and C8 block complement-mediated damage of xenogeneic cells and organs. Transplantation 60, 1284.PubMedGoogle Scholar
  26. 26.
    Brauer, R.B., W.M. Baldwin, III, D. Wang, S.K. Pruitt, A.S. Klein, and F. Sanfilippo (1996). Functional activity of anti-C6 antibodies elicited in C6 deficient rats reconstituted by liver allografts: Ability to inhibit hyperacute rejection of discordant cardiac xenografts. Transplantation 61, 588.PubMedCrossRefGoogle Scholar
  27. 27.
    Fryer, J.P., J.R. Leventhal, W. Pao, C. Stadler, M. Jones, T. Walsh et al. (2000). Synthetic peptides which inhibit the interaction between Clq and immunoglobulin and prolong xenograft survival. Transplantation 70, 828.PubMedCrossRefGoogle Scholar
  28. 28.
    Koka, P. and J.M. Cecka (1989). Sensitization and crossmatching in renal transplantation. Clin. Transpl. 1989, 379.Google Scholar
  29. 29.
    Pruitt, S.K., W.M. Baldwin, III, H.C. Marsh, Jr., S.S. Lin, C.G. Yeh, and R.R. Bollinger (1991). The effect of soluble complement receptor type 1 on hyperacute xenograft rejection. Transplantation 52, 868.PubMedCrossRefGoogle Scholar
  30. 30.
    Pruitt, S.K., R.R. Bollinger, B.H. Collins, H.C. Marsh, Jr., J.L. Levin, A.R. Rudolph et al. (1997). Effect of continuous complement inhibition using soluble complement receptor type 1 on survival of pig-to-primate cardiac xenografts. Transplantation 63, 900.PubMedCrossRefGoogle Scholar
  31. 31.
    Brauer, R.B., W.M. Baldwin, III, M.R. Daha, S.K. Pruitt, and F. Sanfilippo (1993). The use of C6-deficient rats to evaluate the mechanism of hyperacute rejection of discordant cardiac xenografts. J. Immunol. 151, 7240.PubMedGoogle Scholar
  32. 32.
    Brauer, R.B., W.M. Baldwin, III, S. Ibrahim, and E Sanfilippo (1995). The contribution of terminal complement components to acute and hyperacute allograft rejection in the rat. Transplantation 59, 288.PubMedGoogle Scholar
  33. 33.
    Schuurman, H.J., G. Pino-Chavez, M.J. Phillips, L. Thomas, D.J. White, and E. Cozzi (2002). Incidence of hyperacute rejection in pig-to-primate transplantation using organs from hDAF-transgenic donors. Transplantation 73, 1146.PubMedCrossRefGoogle Scholar
  34. 34.
    Diamond, L.E., C.M. Quinn, M.J. Martin, J. Lawson, J.L. Platt, and J.S. Logan (2001). A human CD46 trans-genic pig model system for the study of discordant xenotransplantation. Transplantation 71, 132.PubMedCrossRefGoogle Scholar
  35. 35.
    Byrne, G.W., K.R. McCurry, M.J. Martin, S.M. McClellan, J.L. Platt, and J.S. Logan (1997). Transgenic pigs expressing human CD59 and decay-accelerating factor produce an intrinsic barrier to complement-mediated damage. Transplantation 63, 149.PubMedCrossRefGoogle Scholar
  36. 36.
    Maroko, P.R., C.D. Carpenter, M. Chiariello, M.C. Fishbein, P. Radvany, J.D. Knostman et al. (1978). Reduction by cobra venom factor of myocardial necrosis after coronary artery occlusion. J. Clin. Invest. 61, 661.PubMedCrossRefGoogle Scholar
  37. 37.
    Weisman, H.F., T. Bartow, M.K. Leppo, H.C. Marsh, Jr., G.R. Carson, M.F. Concino et al. (1990). Soluble human complement receptor type 1: In vivo inhibitor of complement suppressing post-ischemic myocardial inflammation and necrosis. Science 249, 146.PubMedCrossRefGoogle Scholar
  38. 38.
    Kilgore, K.S., G.S. Friedrichs, J.W. Homeister, and B.R. Lucchesi (1994). The complement system in myocardial ischaemia/reperfusion injury. Cardiovasc. Res. 28, 437.Google Scholar
  39. 39.
    Weiser, M.R., J.P. Williams, F.D. Moore, Jr., L. Kobzik, M. Ma, H.B. Hechtman et al. (1996). Reperfusion injury of ischemic skeletal muscle is mediated by natural antibody and complement. J. Exp. Med. 183, 2343.PubMedCrossRefGoogle Scholar
  40. 40.
    Stammberger, U., J. Hamacher, S. Hillinger, and R.A. Schmid (2000). sCR1sLe ameliorates ischemia/ reperfusion injury in experimental lung transplantation../. Thorac. Cardiovasc. Surg. 120, 1078.Google Scholar
  41. 41.
    Griselli, M., J. Herbert, W.L. Hutchinson, K.M. Taylor, M. Sohail, T. Krausz et al. (1999). C-reactive protein and complement are important mediators of tissue damage in acute myocardial infarction. J. Exp. Med. 190, 1733.PubMedCrossRefGoogle Scholar
  42. 42.
    Wolbink, G.J., M.C. Brouwer, S. Buysmann, I.J.ten Berge, and C.E. Hack (1996). CRP-mediated activation of complement in vivo: Assessment by measuring circulating complement-C-reactive protein complexes. J. Immunol. 157, 473.PubMedGoogle Scholar
  43. 43.
    van den Berg, R.H., M.C. Faber-Krol, R.B. Sim, and M.R. Daha (1998). The first subcomponent of complement, Clq, triggers the production of IL-8, IL-6, and monocyte chemoattractant peptide-1 by human umbilical vein endothelial cells. J. Immunol. 161, 6924.PubMedGoogle Scholar
  44. 44.
    Haviland, D.L., R.L. McCoy, W.T. Whitehead, H. Akama, E.P. Molmenti, A. Brown (1995). Cellular expression of the C5a anaphylatoxin receptor (C5aR): Demonstration of C5aR on nonmyeloid cells of the liver and lung. J. Immunol. 154, 1861.PubMedGoogle Scholar
  45. 45.
    Gerard, C. and N.P. Gerard (1994). C5a anaphylatoxin and its seven transmembrane-segment receptor. Annu. Rev. Immunol. 12, 775.CrossRefGoogle Scholar
  46. 46.
    Dempsey, P.W., M.E.D. Allison, S. Akkaraju, C.C. Goodnow, and D.T. Fearon (1996). Cad of complement as a molecular adjuvant: Bridging innate and acquired immunity. Science 271, 348.PubMedCrossRefGoogle Scholar
  47. 47.
    Fearon, D.T. and R.M. Locksley (1996). The instructive role of innate immunity in the acquired immune response. Science 272, 50.PubMedCrossRefGoogle Scholar
  48. 48.
    Fearon, D.T. and M.C. Carroll (2000). Regulation of B lymphocyte responses to foreign and self-antigens by the CD19/CD2I complex. Annu. Rev. Immunol. 18, 393.CrossRefGoogle Scholar
  49. 49.
    Pratt, J.R., S.A. Basheer, and S.H. Sacks (2002). Local synthesis of complement component C3 regulates acute renal transplant rejection. Nat. Med. 8, 582.Google Scholar
  50. 50.
    Brooimans, R.A., A.P. Stegmann, W.T. van Dorp, A.A. van der Ark, F.J. van der Woude, L. van Es et al. (1991). Interleukin 2 mediates stimulation of complement C3 biosynthesis in human proximal tubular epithelial cells. J. Clin. Invest. 88, 379.PubMedCrossRefGoogle Scholar
  51. 51.
    Andrews, P.A., J.E. Finn, C.M. Lloyd, W. Zhou, P.W. Mathieson, and S.H. Sacks (1995). Expression and tissue localization of donor-specific complement C3 synthesized in human renal allografts. Eur. J. Immunol. 25, 1087.PubMedCrossRefGoogle Scholar
  52. 52.
    Marsh, J.E., C.K. Farmer, S. Jurcevic, Y. Wang, M.C. Carroll, and S.H. Sacks (2001). The allogeneic T and B cell response is strongly dependent on complement components C3 and C4. Transplantation 72, 1310.PubMedCrossRefGoogle Scholar
  53. 53.
    Mauiyyedi, S. and R.B. Colvin (2002). Humoral rejection in kidney transplantation: New concepts in diagnosis and treatment. Curr. Opin. Nephrol. Hypertens. 11, 609.PubMedCrossRefGoogle Scholar
  54. 54.
    Bohmig, G.A., H. Regele, M.D. Saemann, M. Exner, W. Druml, J. Kovarik et al. (2000). Role of humoral immune reactions as target for antirejection therapy in recipients of a spousal-donor kidney graft. Am. J. Kidney Dis. 35, 667.PubMedCrossRefGoogle Scholar
  55. 55.
    Qian, Z., F.M. Jakobs, T. Pfaff-Amesse, F. Sanfilippo, and W.M. Baldwin, III. (1998). Complement contributes to the rejection of complete and Class I MHC incompatible cardiac allografts. J. Heart Lung Transplant. 17, 470.PubMedGoogle Scholar
  56. 56.
    Qian, Z., B.A. Wasowska, E. Behrens, J.R. Brody, S.S. Kadkol, D.L. Cangello et al. (1999). C6 produced by macrophages contributes to cardiac allograft rejection. Am. J. Pathol. 155, 1293.PubMedCrossRefGoogle Scholar
  57. 57.
    Nakashima, S., Z. Qian, S. Rahimi, B.A. Wasowska, and W.M. Baldwin, III (2002). Membrane attack complex contributes to destruction of vascular integrity in acute lung allograft rejection. J. Immunol. 169, 4620.PubMedGoogle Scholar
  58. 58.
    Ruggeri, Z.M. (1997). von Willebrand factor. J. Clin. Invest. 99, 559.PubMedCrossRefGoogle Scholar
  59. 59.
    Pober, J.S. and R.Z. Cotran (1990). The role of endothelial cells in inflammation. Transplantation 50, 537.PubMedCrossRefGoogle Scholar
  60. 60.
    Platt, J.L., A.P. Dalmasso, B.J. Lindman, N.S. Ihrcke, and F.H. Bach (1991). The role of C5a and antibody in the release of heparan sulfate from endothelial cells. Eur. J. Immunol. 21, 2887.PubMedCrossRefGoogle Scholar
  61. 61.
    Dalmasso, A.P., G.M. Vercellotti, J.L. Platt, and F.H. Bach (1991). Inhibition of complement-mediated endothelial cell cytotoxicity by decay-accelerating factor. Potential for prevention of xenograft hyperacute rejection. Transplantation 52, 530.PubMedCrossRefGoogle Scholar
  62. 62.
    Foreman, K.E., A.A. Vaporciyan, B.K. Bonish, M.L. Jones, K.J. Johnson, M.M. Glovsky et al. (1994). C5a-induced expression of P-selectin in endothelial cells. J. Clin. Invest. 94, 1147.PubMedCrossRefGoogle Scholar
  63. 63.
    Mulligan, M.S., E. Schmid, G.O. Till, T.E. Hugh, H.P. Friedl, R.A. Roth et al. (1997). C5a-dependent up-regulation in vivo of lung vascular P-selectin. J. Immunol. 158, 1857.PubMedGoogle Scholar
  64. 64.
    Bless, N.M., S.J. Tojo, H. Kawarai, Y. Natsume, A.B. Lentsch, V.A. Padgaonkar et al. (1998). Differing patterns of P-selectin expression in lung injury. Am..1. Pathol. 153, 1113.Google Scholar
  65. 65.
    Selvan, R.S., H.B. Kapadia, and J.L. Platt. (1998). Complement-induced expression of chemokine genes in endothelium: Regulation by IL-1-dependent and -independent mechanisms. J. Immunol. 161, 4388.PubMedGoogle Scholar
  66. 66.
    Saadi, S., R.A. Holzknecht, C.P. Patte, and J.L. Platt. (2000). Endothelial cell activation by pore-forming structures: Pivotal role for interleukin-1 alpha. Circulation 101, 1867.PubMedCrossRefGoogle Scholar
  67. 67.
    Hattori, R., K.K. Hamilton, R.P. McEver, and P.J. Sims (1989). Complement proteins C5b-C9 induce secretion of high molecular weight multimers of endothelial von Willebrand factor and translocation of granule membrane protein GMP-140 to the cell surface. J. Biol. Chem. 264, 9053.PubMedGoogle Scholar
  68. 68.
    Saadi, S., R.A. Holzknecht, C.P. Patte, D.M. Stern, and J.L. Platt (1995). Complement-mediated regulation of tissue factor activity in endothelium. J. Exp. Med. 182, 1807.PubMedCrossRefGoogle Scholar
  69. 69.
    Kilgore, K.S., J.P. Shen, B.F. Miller, P.A. Ward, and J.S. Warren (1995). Enhancement by the complement membrane attack complex of tumor necrosis factor-alpha-induced endothelial cell expression of E-selectin and ICAM-1. J. Immunol. 155, 1434.PubMedGoogle Scholar
  70. 70.
    Kilgore, K.S., C.M. Flory, B.F. Miller, V.M. Evans, and J.S. Warren (1996). The membrane attack complex of complement induces interleukin-8 and monocyte chemoattractant protein-1 secretion from human umbilical vein endothelial cells. Am. J. Pathol. 149, 953.PubMedGoogle Scholar
  71. 71.
    Rus, H.G., F.I. Niculescu, and M. Shin (2001). Role of the C5b-9 complement complex in cell cycle and apoptosis. Immunol. Rev. 180, 49.Google Scholar
  72. 72.
    Celi, A., G. Pellegrini, R. Lorenzet, A. De Blasi, N. Ready, B.C. Furie et al. (1994). P-selectin induces the expression of tissue factor on monocytes. Proc. Natl. Acad. Sci. USA 91, 8767.PubMedCrossRefGoogle Scholar
  73. 73.
    Weyrich, A.S., T.M. McIntyre, R.P. McEver, S.M. Prescott, and G.A. Zimmerman (1995). Monocyte tethering by P-selectin regulates monocyte chemotactic protein-1 and tumor necrosis factor-alpha secretion. Signal integration and NF-kappa B translocation. J. Clin. Invest. 95, 2297.PubMedCrossRefGoogle Scholar
  74. 74.
    Weyrich, A.S., M.R. Elstad, R.P. McEver, T.M. McIntyre, K.L. Moore, J.H. Morrissey et al. (1996). Activated platelets signal chemokine synthesis by human monocytes. J. Clin. Invest. 97, 1525.PubMedCrossRefGoogle Scholar
  75. 75.
    Yasojima, K., C. Schwab, E.G. McGeer, and P.L. McGeer (1998). Human heart generates complement proteins that are upregulated and activated after myocardial infarction. Circ. Res. 83, 860.PubMedCrossRefGoogle Scholar
  76. 76.
    Yasojima, K., C. Schwab, E.G. McGeer, and P.L. McGeer (2001). Generation of C-reactive protein and complement components in atherosclerotic plaques. Am. J. Pathol. 158, 1039.PubMedCrossRefGoogle Scholar
  77. 77.
    Young-Ramsaran, J.O., R.H. Hruban, G.M. Hutchins, T.H. Phelps, W.A. Baumgartner, B.A. Reitz, and J.L. Olson (1993). Ultrastructural evidence of cell-mediated endothelial cell injury in cardiac transplant-related accelerated arteriosclerosis. Ultrastruct. Pathol. 17, 125.Google Scholar
  78. 78.
    McManus, B.M., K.J. Horley, J.E. Wilson, G.T. Malcom, T.J. Kendall, R.R. Miles et al. (1995). Prominence of coronary arterial wall lipids in human heart allografts. Implications for pathogenesis of allograft arteriopathy. Am. J. Pathol. 147, 293.PubMedGoogle Scholar
  79. 79.
    Radio, S., S. Wood, J. Wilson, H. Lin, G. Winters, and B. McManus. (1996). Allograft vascular disease: Comparison of heart and other grafted organs. Transplant. Proc. 28, 496.Google Scholar
  80. 80.
    Lafond-Walker, A., C.L. Chen, S. Augustine, T.C. Wu, R.H. Hruban, and C.J. Lowenstein. (1997). Inducible nitric oxide synthase expression in coronary arteries of transplanted human hearts with accelerated graft arteriosclerosis. Am. J. Pathol. 151, 919.PubMedGoogle Scholar
  81. 81.
    Niculescu, F. and H. Rus (2001). Mechanisms of signal transduction activated by sublytic assembly of terminal complement complexes on nucleated cells. Immunol. Res. 24, 191.Google Scholar
  82. 82.
    Qian, Z., W. Hu, J. Liu, F. Sanfilippo, R.H. Hruban, and W.M. Baldwin, III (2001). Accelerated graft arteriosclerosis in cardiac transplants: Complement activation promotes progression of lesions from medium to large arteries. Transplantation 72, 900.PubMedCrossRefGoogle Scholar
  83. 83.
    Halloran, P.F., A. Wadgymar, S. Ritchie, J. Falk, K. Solez, and N.S. Srinivasa (1990). The significance of the anti-class I antibody response: I. Clinical and pathological features of anti-class I-mediated rejection. Transplantation 49, 85.PubMedCrossRefGoogle Scholar
  84. 84.
    Halloran, P.F., J. Schlaut, K. Solez, and N.S. Srinivasa (1992). The significance of the anti-class I response: II. Clinical and pathological features of renal transplants with anti-class I-like antibody. Transplantation 53, 550.PubMedCrossRefGoogle Scholar
  85. 85.
    Trpkov, K., P. Campbell, F. Pazaderka, S. Cockfield, K. Solez, and P.F. Halloran (1996). The pathology of acute renal allograft rejection associated with donor-specific antibody: Analysis using the Banff grading scema. 61, 1586.Google Scholar
  86. 86.
    Feucht, H.E., E. Felber, M.J. Gokel, G. Hillebrand, U. Nattermann, C. Brockmeyer et al. (1991). Vascular deposition of complement-split products in kidney allografts with cell-mediated rejection. Clin. Exp. Immunol. 86, 464.Google Scholar
  87. 87.
    Feucht, H.E., H. Schneeberger, G. Hillebrand, K. Burkhardt, M. Weiss, G. Riethmuller et al. (1993). Capillary deposition of C4d complement fragment and early renal graft loss. Kidney Int. 43, 1333.PubMedCrossRefGoogle Scholar
  88. 88.
    Feucht, H.E. and G. Opelz (1996). The humoral immune response towards HLA class II determinants in renal transplantation. Kidney Int. 50, 1464.PubMedCrossRefGoogle Scholar
  89. 89.
    Behr, T.M., H.E. Feucht, K. Richter, C. Reiter, C.H. Spes, D. Pongratz et al. (1999). Detection of humoral rejection in human cardiac allografts by assessing the capillary deposition of complement fragment C4d in endomyocardial biopsies. J. Heart Lung Transplant. 18, 904.PubMedCrossRefGoogle Scholar
  90. 90.
    Collins, A.B., E.E. Schneeberger, M.A. Pascual, S.L. Saidman, W.W. Williams, N. Tolkoff-Rubin et al. (1999). Complement activation in acute humoral renal allograft rejection: Diagnostic significance of C4d deposits in peritubular capillaries. J. Am. Soc. Nephrol. 10, 2208.PubMedGoogle Scholar
  91. 91.
    Crespo, M., M. Pascual, N. Tolkoff-Rubin, S. Mauiyyedi, A.B. Collins, D. Fitzpatrick et al. (2001). Acute humoral rejection in renal allograft recipients: I. Incidence, serology and clinical characteristics. Transplantation 71, 652.PubMedCrossRefGoogle Scholar
  92. 92.
    Bohmig, G.A., M. Exner, A. Habicht, M. Schillinger, U. Lang, J. Kletzmayr et al. (2002). Capillary C4d deposition in kidney allografts: A specific marker of alloantibody-dependent graft injury. J. Am. Soc. Nephrol. 13, 1091.PubMedGoogle Scholar
  93. 93.
    Baldwin, W.M., III, Z. Qian, H. Ota, M. Samaniego, B. Wasowska, E Sanfilippo et al. (2000). Complement as a mediator of vascular inflammation and activation in allografts. J. Heart Lung Transplant. 19, 723.PubMedCrossRefGoogle Scholar
  94. 94.
    Montgomery, R.A., A.A. Zachary, L.C. Racusen, M.S. Leffell, K.E. King, J.F. Burdick et al. (2000). Plasmapheresis and intravenous immune globulin provides effective rescue therapy for refractory humoral rejection and allows kidneys to be successfully transplanted into cross-match-positive recipients. Transplantation 70, 887.PubMedCrossRefGoogle Scholar
  95. 95.
    Lones, M.A., L.S. Czer, A. Trento, D. Harasty, J.M. Miller, and M.C. Fishbein (1995). Clinical-pathologic features of humoral rejection in cardiac allografts: A study in 81 consecutive patients. J. Heart Lung Transplant. 14, 151.PubMedGoogle Scholar
  96. 96.
    Baldwin, W.M., III, M. Samaniego-Picota, E.K. Kasper, A. Clark, M. Czader, C. Rohde et al. (1999). Complement deposition in early cardiac transplant biopsies is associated with ischemic injury and subsequent rejection episodes. Transplantation 68, 894.PubMedCrossRefGoogle Scholar
  97. 97.
    van den Eisen, J.M.H., A. Martin, V. Wong, L. Clemenza, D.R. Rose, and D.E. Isenman (2002). X-ray crystal structure of the C4d fragment of human complement component C4. J. Mol. Biol. 322, 1103.CrossRefGoogle Scholar
  98. 98.
    Morgan, B.P. and M.J. Walport (1991). Complement deficiency and disease. Immunol. Today 12, 301.Google Scholar
  99. 99.
    Botto, M., C. Dell’Agnola, A.E. Bygrave, E.M. Thompson, T. Cook, F. Petry et al. (1998). Homozygous Clq deficiency causes glomerulonephritis associated with multiple apoptotic bodies. Nat. Genet. 19, 56.Google Scholar
  100. 100.
    Mevorach, D., J.L. Zhou, X. Song, and K.B. Elkon (1998). Systemic exposure to irradiated apoptotic cells induces autoantibody production. J. Exp. Med. 188, 387.PubMedCrossRefGoogle Scholar
  101. 101.
    Mevorach, D., J.O. Mascarenhas, D. Gershov, and K.B. Elkon (1998). Complement-dependent clearance of apoptotic cells by human macrophages. J. Exp. Med. 188, 2313.PubMedCrossRefGoogle Scholar
  102. 102.
    Gershov, G., S. Kim, N. Brot, and K.B. Elkon (2000). C-Reactive Protein binds to apoptotic cells, protects the cells from assembly of the terminal complement components, and sustains an antiinflammatory innate immune response: Implications for systemic autoimmunity. J. Exp. Med. 192, 1353.PubMedCrossRefGoogle Scholar
  103. 103.
    Barilla-LaBarca, M.L., M.K. Liszewski, J.D. Lambris, D. Hourcade, and J.P. Atkinson (2002). Role of membrane cofactor protein (CD46) in regulation of C4b and C3b deposited on cells. J. Immunol. 168, 6298.PubMedGoogle Scholar
  104. 104.
    Marth, T. and B.L. Kelsall (1997). Regulation of interleukin-12 by complement receptor 3 signaling. J. Exp. Med. 185, 1987.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • William M. BaldwinIII
    • 1
  • Hirofumi Ota
    • 1
  • Barbara A. Wasowska
    • 1
  • E. Rene Rodriguez
    • 1
  1. 1.Department of PathologyThe Johns Hopkins University School of MedicineBaltimoreUSA

Personalised recommendations