Skip to main content

Interaction of Innate and Acquired Immune Response: Toll Receptors— Potential Link of Infection to Rejection

  • Chapter
Immunobiology of Organ Transplantation
  • 300 Accesses

Abstract

Infection by microbial organisms results in an activation of the immune system. The toll-like receptor (TLR) performs a decisive role in the initiation of innate immune responses by recognizing the pathogen-associated molecular pattern (PAMP) and delivering the signals that are critical for the generation of adaptive immune responses. The success of organ transplantation relies on a complete blockage of immune responses. Since T cells are considered major effector cells during organ transplantation, many studies on transplantation immunology have been focused on adaptive immune responses. However, activation of T cells requires signals generated by innate immune responses. Therefore, a thorough understanding of innate immune responses is critical. Moreover, it has been reported recently that CD4+ T helper cells can be activated by the result of innate immune responses in the absence of an MHC class II antigen’.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Teshima, T.et al.(2002). Acute graft-versus-host disease does not require alloantigen expression on host epithelium.Nat. Med.8(6), 575–581.

    Article  PubMed  CAS  Google Scholar 

  2. Medzhitov, R. and C. Janeway, Jr. (2000). Innate immunity.N. Engl. J. Med.343(5), 338–344.

    CAS  Google Scholar 

  3. Cooke, K.R.et al.(2001). LPS antagonism reduces graft-versus-host disease and preserves graft-versus-leukemia activity after experimental bone marrow transplantation.J. Clin. Invest.107(12), 1581–1589.

    Article  PubMed  CAS  Google Scholar 

  4. Goldstein, D.R.et al.(2003). Critical role of the Toll-like receptor signal adaptor protein MyD88 in acute allograft rejection.J. Clin. Invest.111(10), 1571–1578.

    PubMed  CAS  Google Scholar 

  5. Hashimoto, C., K.L. Hudson, and K.V. Anderson (1988). The Toll gene of Drosophila, required for dorsal-ventral embryonic polarity, appears to encode a transmembrane protein.Cell52(2), 269–279.

    Article  PubMed  CAS  Google Scholar 

  6. Lemaitre, B.et al.(1996). The dorsoventral regulatory gene cassette spatzle/Tolllcactus controls the potent antifungal response in Drosophila adults.Cell86(6), 973–983.

    Article  PubMed  CAS  Google Scholar 

  7. Medzhitov, R., P. Preston-Hurlburt, and C.A. Janeway, Jr. (1997). A human homologue of the Drosophila Toll protein signals activation of adaptive immunity.Nature388, 394–397.

    Article  PubMed  CAS  Google Scholar 

  8. Rock, F.L.et al.(1998). A family of human receptors structurally related to Drosophila Toll.Proc. Natl. Acad. Sci. USA95(2), 588–593.

    Article  PubMed  CAS  Google Scholar 

  9. Takeuchi, O.et al.(1999). TLR6: A novel member of an expanding toll-like receptor family.Gene231(1–2), 1–2.

    Article  PubMed  CAS  Google Scholar 

  10. Chuang, T.H. and R.J. Ulevitch (2000). Cloning and characterization of a sub-family of human toll-like receptors: hTLR7, hTLR8 and hTLR9.Eur. Cytokine Netw.11(3), 372–378.

    PubMed  CAS  Google Scholar 

  11. Chuang, T. and R.J. Ulevitch (2001). Identification of hTLR10: A novel human Toll-like receptor preferentially expressed in immune cells.Biochim. Biophys. Acta1518(1–2), 1–2.

    Article  PubMed  CAS  Google Scholar 

  12. Du, X.et al.(2000). Three novel mammalian toll-like receptors: Gene structure, expression, and evolution.Eur. Cytokine Netw. 11(3)362–371.

    PubMed  CAS  Google Scholar 

  13. Janeway, C.A., Jr. (1989). Approaching the asymptote? Evolution and revolution in immunology.Cold Spring Harb. Symp. Quant. Biol.54(Pt 1), 1–13.

    Article  PubMed  CAS  Google Scholar 

  14. Medzhitov, R.et al.(1998). MyD88 is an adaptor protein in the hToll/IL-1 receptor family signaling pathways.Mol. Cell.2(2), 253–258.

    Article  PubMed  CAS  Google Scholar 

  15. Horng, T., G.M. Barton, and R. Medzhitov (2001). TIRAP: An adapter molecule in the Toll signaling pathway.Nat. Immunol.2(9), 835–841.

    Article  PubMed  CAS  Google Scholar 

  16. Fitzgerald, K.A.et al.(2001). Mal (MyD88-adapter-like) is required for Toll-like receptor-4 signal transduction.Nature413(6851), 78–83.

    Article  PubMed  CAS  Google Scholar 

  17. Yamamoto, M.et al.(2002). Cutting edge: A novel toll/i1–1 receptor domain-containing adapter that preferentially activates the IFN-beta promoter in the toll-like receptor signaling.J. Immunol.169(12), 1–1.

    PubMed  CAS  Google Scholar 

  18. Oshiumi, H.et al.(2003). TICAM-1, an adaptor molecule that participates in Toll-like receptor 3-mediated interferon-beta induction.Nat. Immunol.4(2), 161–167.

    Article  PubMed  CAS  Google Scholar 

  19. Belvin, M.P. and K.V. Anderson (1996). A conserved signaling pathway: The Drosophila toll-dorsal pathway.Annu. Rev. Cell. Dey. Biol. 12393–416.

    Article  CAS  Google Scholar 

  20. Alexopoulou, L.et al.(2002). Hyporesponsiveness to vaccination withBorrelia burgdorferiOspA in humans and in TLR1- and TLR2-deficient mice.Nat. Med. 11.

    Article  CAS  Google Scholar 

  21. Hajjar, A.M.et al.(2001). Cutting edge: Functional interactions between toll-like receptor (TLR) 2 and TLR1 or TLR6 in response to phenol-soluble modulin.J. Immunol. 166(1)15–19.

    PubMed  CAS  Google Scholar 

  22. Ozinsky, A.et al.(2000). The repertoire for pattern recognition of pathogens by the innate immune system is defined by cooperation between toll-like receptors.Proc. Natl. Acad. Sci. USA 97(25)13766–13771.

    Article  PubMed  CAS  Google Scholar 

  23. Poltorak, A.et al.(1998). Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: Mutations in Tlr4 gene.Science282(5396), 2085–2088.

    Article  PubMed  CAS  Google Scholar 

  24. Beutler, B. (2003). Innate immune responses to microbial poisons: Discovery and function of the toll-like receptors.Annu. Rev. Pharmacol. Toxicol. 43609–628.

    Article  PubMed  CAS  Google Scholar 

  25. Qureshi, S.T.et al.(1999). Endotoxin-tolerant mice have mutations in Toll-like receptor 4 (TIr4).J. Exp. Med. 189(4)615–625.

    Article  PubMed  CAS  Google Scholar 

  26. Hoshino, K.et al.(1999). Cutting edge: Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: Evidence for TLR4 as the Lps gene product.J. Immunol. 162(7)3749–3752.

    PubMed  CAS  Google Scholar 

  27. Ulevitch, R.J. and P.S. Tobias (1995). Receptor-dependent mechanisms of cell stimulation by bacterial endotoxin.Annu. Rev. Immunol. 13437–457.

    Article  PubMed  CAS  Google Scholar 

  28. Jiang, Q.et al.(2000). Lipopolysaccharide induces physical proximity between CD14 and toll-like receptor 4 (TLR4) prior to nuclear translocation of NF-kappa B.J. Immunol. 165(7)3541–3544.

    PubMed  CAS  Google Scholar 

  29. Nagai, Y.et al.(2002). Essential role of MD-2 in LPS responsiveness and TLR4 distribution.Nat. Immunol.3(7), 667–672.

    PubMed  CAS  Google Scholar 

  30. Shimazu, R.et al.(1999). MD-2, a molecule that confers lipopolysaccharide responsiveness on Toll-like receptor 4.J. Exp. Med. 189(11), 1777–1782.

    Google Scholar 

  31. Akashi, S.et al.(2000). Regulatory roles for CD14 and phosphatidylinositol in the signaling via toll-like receptor 4-MD-2.Biochem. Biophys. Res. Commun. 268(1)172–177.

    Article  PubMed  CAS  Google Scholar 

  32. Akashi, S.et al.(2000). Cutting edge: Cell surface expression and lipopolysaccharide signaling via the toll-like receptor 4-MD-2 complex on mouse peritoneal macrophages.J. Immunol. 164(7), 3471–3475.

    PubMed  CAS  Google Scholar 

  33. Kawasaki, K. et al.(2000). Mouse toll-like receptor 4. MD-2 complex mediates lipopolysaccharide-mimetic signal transduction by Taxol.J. Biol. Chem. 275(4)2251–2254.

    Google Scholar 

  34. Byrd-Leifer, C.A.et al.(2001). The role of MyD88 and TLR4 in the LPS-mimetic activity of Taxol.Eur. J. Immunol. 31(8)2448–2457.

    Article  PubMed  CAS  Google Scholar 

  35. Kawasaki, K., K. Gomi, and M. Nishijima (2001). Cutting edge: G1n22 of mouse MD-2 is essential for species-specific lipopolysaccharide mimetic action of taxol.J. Immunol. 166(1), 11–14.

    Google Scholar 

  36. Kawasaki, K.et al.(2001). Involvement of TLR4/MD-2 complex in species-specific lipopolysaccharidemimetic signal transduction by Taxol.J. Endotoxin. Res.7(3), 232–236.

    PubMed  CAS  Google Scholar 

  37. Kurt-Jones, E.A.et al.(2000). Pattern recognition receptors TLR4 and CD14 mediate response to respiratory syncytial virus.Nat. Immunol.1(5), 398–401.

    Article  PubMed  CAS  Google Scholar 

  38. Haynes L.M.et al.(2001). Involvement of toll-like receptor 4 in innate immunity to respiratory syncytial virus.J. Virol.75(22), 10730–10737.

    Article  PubMed  CAS  Google Scholar 

  39. Rassa, J.C.et al.(2002). Murine retroviruses activate B cells via interaction with toll-like receptor 4.Proc. Natl. Acad. Sci. USA99(4), 2281–2286.

    Article  PubMed  CAS  Google Scholar 

  40. Sasu, S.et al.(2001). Chlamydia pneumoniae and chlamydial heat shock protein 60 stimulate proliferation of human vascular smooth muscle cells via toll-like receptor 4 and p44/p42 mitogen-activated protein kinase activation.Circ. Res.89(3), 244–250.

    Article  PubMed  CAS  Google Scholar 

  41. Vabulas, R.M.et al.(2001). Endocytosed HSP60s use toll-like receptor 2 (TLR2) and TLR4 to activate the toll/interleukin-1 receptor signaling pathway in innate immune cells.J. Biol. Chem.276(33), 31332–31339.

    Article  PubMed  CAS  Google Scholar 

  42. Kleeberger, S.R.et al.(2001). Toll-like receptor 4 mediates ozone-induced murine lung hyperpermeability via inducible nitric oxide synthase.Am. J. Physiol. Lung Cell. Mol. Physiol.280(2), L326–L333.

    PubMed  CAS  Google Scholar 

  43. Ohashi, K.et al.(2000). Cutting edge: Heat shock protein 60 is a putative endogenous ligand of the toll-like receptor-4 complex.J. Immunol.164(2), 558–561.

    PubMed  CAS  Google Scholar 

  44. Cohen, D.J.et al.(2001). Impact of smoking on clinical and angiographic restenosis after percutaneous coronary intervention: Another smoker’s paradox?Circulation104(7), 773–778.

    Article  PubMed  CAS  Google Scholar 

  45. Bulut, Y.et al.(2002). Chlamydial heat shock protein 60 activates macrophages and endothelial cells through Toll-like receptor 4 and MD2 in a MyD88-dependent pathway.J. Immunol.168(3), 1435–1440.

    PubMed  CAS  Google Scholar 

  46. Dybdahl, B.et al.(2002). Inflammatory response after open heart surgery: Release of heat-shock protein 70 and signaling through toll-like receptor-4.Circulation105(6), 685–690.

    Article  PubMed  CAS  Google Scholar 

  47. Habich, C.et al.(2002). The receptor for heat shock protein 60 on macrophages is saturable, specific, and distinct from receptors for other heat shock proteins. J.Immunol.168(2), 569–576.

    PubMed  CAS  Google Scholar 

  48. Asea, A.et al.(2002). Novel signal transduction pathway utilized by extracellular HSP70: Role of toll-like receptor (TLR) 2 and TLR4.J. Biol. Chem.277(17), 15028–15034.

    Article  PubMed  CAS  Google Scholar 

  49. Vabulas, R.M.et al.(2002). HSP70 as endogenous stimulus of the Toll/interleukin-1 receptor signal pathway.J. Biol. Chem.277(17), 15107–15112.

    Article  PubMed  CAS  Google Scholar 

  50. Vabulas, R.M., H. Wagner, and H. Schild (2002). Heat shock proteins as ligands of toll-like receptors.Cure. Top. Microbiol. Immunol.270, 169–184.

    Article  CAS  Google Scholar 

  51. Kirschning, C.J. and R.R. Schumann (2002). TLR2: Cellular sensor for microbial and endogenous molecular patterns.Cult Top. Microbiol. Immunol.270, 121–144.

    Article  CAS  Google Scholar 

  52. Chen, M.et al.(2002). Involvement of MyD88 in host defense and the down-regulation of anti-heat shock protein 70 autoantibody formation by MyD88 inToxoplasmagondii-infected mice.J. Parasitol.88(5), 1017–1019.

    PubMed  CAS  Google Scholar 

  53. Costa, C.P.et al.(2002). Role of chlamydial heat shock protein 60 in the stimulation of innate immune cells byChlamydia pneumoniae. Eue. J. Immunol.32(9), 2460–2470.

    Article  Google Scholar 

  54. Vabulas, R.M.et al.(2002). HSP70 as endogenous stimulus of toll/interleukin-1 receptor signal pathway.J. Biol. Chem.12, 12.

    Google Scholar 

  55. Okamura, Y.et al.(2001). The extra domain A of fibronectin activates Toll-like receptor 4.J. Biol. Chem.276(13), 10229–10233.

    Article  PubMed  CAS  Google Scholar 

  56. Johnson, G.B.et al.(2002). Receptor-mediated monitoring of tissue well-being via detection of soluble heparan sulfate by Toll-like receptor 4.J. Immunol.168(10), 5233–5239.

    PubMed  CAS  Google Scholar 

  57. Smiley, S.T., J.A. King, and W.W. Hancock (2001). Fibrinogen stimulates macrophage chemokine secretion through toll-like receptor 4.J. Immunol.167(5), 2887–2894.

    PubMed  CAS  Google Scholar 

  58. Aliprantis, A.O.et al.(1999). Cell activation and apoptosis by bacterial lipoproteins through toll-like receptor-2.Science285(5428), 736–739.

    Article  PubMed  CAS  Google Scholar 

  59. Aliprantis, A.O.et al.(2000). The apoptotic signaling pathway activated by Toll-like receptor-2.EMBO J.19(13), 3325–3336.

    Article  PubMed  CAS  Google Scholar 

  60. Brightbill, H.D.et al.(1999). Host defense mechanisms triggered by microbial lipoproteins through toll-like receptors.Science285(5428), 732–736.

    Article  PubMed  CAS  Google Scholar 

  61. Lien, E.et al.(1999). Toll-like receptor 2 functions as a pattern recognition receptor for diverse bacterial products.J. Biol. Chem.274(47), 33419–33425.

    Article  PubMed  CAS  Google Scholar 

  62. Hirschfeld, M.et al.(1999). Cutting edge: Inflammatory signaling byBorrelia burgdorferilipoproteins is mediated by toll-like receptor 2.J. Immunol.163(5), 2382–2386.

    PubMed  CAS  Google Scholar 

  63. Schwandner, R.et al.(1999). Peptidoglycan-and lipoteichoic acid-induced cell activation is mediated by toll-like receptor 2.J. Biol. Chem.274(25), 17406–17409.

    Article  PubMed  CAS  Google Scholar 

  64. Underhill, D.M.et al.(1999). The Toll-like receptor 2 is recruited to macrophage phagosomes and discriminates between pathogens.Nature401(6755), 811–815.

    Article  PubMed  CAS  Google Scholar 

  65. Means, T.K.et al.(1999). Human toll-like receptors mediate cellular activation byMycobacterium tuberculosis. J. Immunol. 163(7)3920–3927.

    CAS  Google Scholar 

  66. Lehner, M.D.et al.(2001). Induction of cross-tolerance by lipopolysaccharide and highly purified lipoteichoic acid via different Toll-like receptors independent of paracrine mediators.J. Immunol. 166(8)5161–5167.

    PubMed  CAS  Google Scholar 

  67. Campos, M.A.et al.(2001). Activation of Toll-like receptor-2 by glycosylphosphatidylinositol anchors from a protozoan parasite.J. Immunol. 167(1)416–423.

    PubMed  CAS  Google Scholar 

  68. Means, T.K.et al.(1999). The CD14 ligands lipoarabinomannan and lipopolysaccharide differ in their requirement for Toll-like receptors.J. Immunol. 163(12)6748–6755.

    PubMed  CAS  Google Scholar 

  69. Wyllie, D.H.et al.(2000). Evidence for an accessory protein function for Toll-like receptor 1 in anti-bacterial responses.J. Immunol. 165(12)7125–7132.

    PubMed  CAS  Google Scholar 

  70. Alexopoulou, L.et al.(2001). Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3.Nature413(6857), 732–738.

    Article  PubMed  CAS  Google Scholar 

  71. Kadowaki, N.et al.(2000). Natural interferon alpha/beta-producing cells link innate and adaptive immunity.J. Exp. Med. 192(2)219–226.

    Article  PubMed  CAS  Google Scholar 

  72. Siegal, F.P.et al.(1999). The nature of the principal type 1 interferon-producing cells in human blood.Science284(5421), 1835–1837.

    Article  PubMed  CAS  Google Scholar 

  73. Kadowaki, N.et al.(2001). Subsets of human dendritic cell precursors express different toll-like receptors and respond to different microbial antigens.J. Exp. Med. 194(6)863–869.

    Article  PubMed  CAS  Google Scholar 

  74. Hayashi, F.et al.(2001). The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5.Nature 410(6832)1099–1103.

    Article  PubMed  CAS  Google Scholar 

  75. Eaves-Pyles, T.D.et al.(2001). Salmonella flagellin-dependent proinflammatory responses are localized to the conserved amino and carboxyl regions of the protein. JImmunol. 167(12)7009–7016.

    PubMed  CAS  Google Scholar 

  76. Krieg, A.M.et al.(1995). CpG motifs in bacterial DNA trigger direct B-cell activation.Nature374(6522), 546–549.

    Article  PubMed  CAS  Google Scholar 

  77. Krieg, A.M. (2002). CpG motifs in bacterial DNA and their immune effects.Annu. Rev. Immunol. 20709–760.

    Article  PubMed  CAS  Google Scholar 

  78. Hemmi, H.et al.(2000). A Toll-like receptor recognizes bacterial DNA.Nature408(6813), 740–745.

    Article  PubMed  CAS  Google Scholar 

  79. Schnare, M.et al.(2000). Recognition of CpG DNA is mediated by signaling pathways dependent on the adaptor protein MyD88.Cure. Biol. 10(18)1139–1142.

    Article  CAS  Google Scholar 

  80. Hacker, H.et al.(2000). Immune cell activation by bacterial CpG-DNA through myeloid differentiation marker 88 and tumor necrosis factor receptor-associated factor (TRAF)6.J. Exp. Med. 192(4)595–600.

    Article  PubMed  CAS  Google Scholar 

  81. Ahmad-Nejad, P.et al.(2002). Bacterial CpG-DNA and lipopolysaccharides activate Toll-like receptors at distinct cellular compartments.Eur. J. Immunol. 32(7)1958–1968.

    Article  PubMed  CAS  Google Scholar 

  82. Horng, T.et al.(2002). The adaptor molecule TIRAP provides signalling specificity for Toll-like receptors.Nature420(6913), 329–333.

    Article  PubMed  CAS  Google Scholar 

  83. Yamamoto, M.et al.(2002). Essential role for TIRAP in activation of the signalling cascade shared by TLR2 and TLR4.Nature 420(6913)324–329.

    Article  PubMed  CAS  Google Scholar 

  84. Hemmi, H.et al.(2002). Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway.Nat. Immunol.3(2), 196–200.

    Google Scholar 

  85. Sato, S.et al.(2002). A variety of microbial components induce tolerance to lipopolysaccharide by differentially affecting MyD88-dependent and -independent pathways.Int. Immunol.14(7), 783–791.

    Article  PubMed  CAS  Google Scholar 

  86. .Takeda, K., T. Kaisho, and S. Akira (2003). Toll-like receptors.Annu. Rev. Immunol.

    Google Scholar 

  87. Akira, S. (2003). Mammalian Toll-like receptors.Curr. Opin. Immunol.15(1), 5–11.

    Article  PubMed  CAS  Google Scholar 

  88. Muzio, M.et al.(1997). IRAK (Pelle) family member IRAK-2 and MyD88 as proximal mediators of IL-1 signaling.Science278(5343), 1612–1615.

    Article  PubMed  CAS  Google Scholar 

  89. Muzio, M.et al.(1998). The human toll signaling pathway: Divergence of nuclear factor kappaB and JNK/SAPK activation upstream of tumor necrosis factor receptor-associated factor 6 (TRAF6).J. Exp. Med. 187(12)2097–2101.

    Article  PubMed  CAS  Google Scholar 

  90. Wesche, H.et al.(1997). MyD88: An adapter that recruits IRAK to the IL-1 receptor complex.Immunity7(6), 837–847.

    Article  PubMed  CAS  Google Scholar 

  91. Burns, K.et al.(1998). MyD88, an adapter protein involved in interleukin-1 signaling.J. Biol. Chem. 273(20)12203–12209.

    Article  PubMed  CAS  Google Scholar 

  92. Ninomiya-Tsuji, J.et al.(1999). The kinase TAK1 can activate the NIK-I kappaB as well as the MAP kinase cascade in the IL-1 signalling pathway.Nature 398(6724)252–256.

    Article  PubMed  CAS  Google Scholar 

  93. Lee, J., L. Mira-Arbibe, and R.J. Ulevitch (2000). TAK1 regulates multiple protein kinase cascades activated by bacterial lipopolysaccharide.J. Leukoc. Biol.68(6), 909–915.

    PubMed  CAS  Google Scholar 

  94. Trie, T., T. Muta, and K. Takeshige (2000). TAK1 mediates an activation signal from toll-like receptor(s) to nuclear factor-kappaB in lipopolysaccharide-stimulated macrophages.FEBS Lett.467(2–3), 2–3.

    Article  Google Scholar 

  95. Sanjo, H.et al.(2003). TAB2 is essential for prevention of apoptosis in fetal liver but not for interleukin-1 signaling.Mol. Cell. Biol.23(4), 1231–1238.

    Article  PubMed  CAS  Google Scholar 

  96. Adachi, O.et al.(1998). Targeted disruption of the MyD88 gene results in loss of IL-1- and IL-18-mediated function.Immunity9(1), 143–150.

    Article  PubMed  CAS  Google Scholar 

  97. Kawai, T.et al.(1999). Unresponsiveness of MyD88-deficient mice to endotoxin.Immunity11(1), 115–122.

    Article  PubMed  CAS  Google Scholar 

  98. Takeuchi, O., K. Hoshino, and S. Akira (2000). Cutting edge: TLR2-deficient and MyD88-deficient mice are highly susceptible toStaphylococcus aureusinfection.J. Immunol.165(10), 5392–5396.

    PubMed  CAS  Google Scholar 

  99. Takeuchi, O.et al.(2000). Cellular responses to bacterial cell wall components are mediated through MyD88dependent signaling cascades.Int. Immunol.12(1), 113–117.

    Article  PubMed  CAS  Google Scholar 

  100. Kanakaraj, P.et al.(1998). Interleukin (IL)-1 receptor-associated kinase (IRAK) requirement for optimal induction of multiple IL-1 signaling pathways and IL-6 production.J. Exp. Med.187(12), 2073–2079.

    Article  PubMed  CAS  Google Scholar 

  101. Thomas, J.A.et al.(1999). Impaired cytokine signaling in mice lacking the IL-1 receptor-associated kinase.J. Immunol.163(2), 978–984.

    PubMed  CAS  Google Scholar 

  102. Swantek, J.L.et al.(2000). L-1 receptor-associated kinase modulates host responsiveness to endotoxin.J. Immunol. 164(8)4301–4306.

    PubMed  CAS  Google Scholar 

  103. Suzuki, N., S. Suzuki, and W.C. Yeh (2002). IRAK-4 as the central TIR signaling mediator in innate immunity.Trends Immunol.23(10), 503–506.

    Article  PubMed  CAS  Google Scholar 

  104. Suzuki, N.et al.(2002). Severe impairment of interleukin-1 and Toll-like receptor signalling in mice lacking IRAK-4.Nature416(6882), 750–756.

    Article  PubMed  CAS  Google Scholar 

  105. Kobayashi, K.et al.(2002). IRAK-M is a negative regulator of Toll-like receptor signaling.Cell 110(2)191–202.

    Article  PubMed  CAS  Google Scholar 

  106. Burns, K.et al.(2000). Tollip, a new component of the IL-1RI pathway, links IRAK to the IL-1 receptor.Nat. Cell. Biol.2(6), 346–351.

    Article  PubMed  CAS  Google Scholar 

  107. Zhang, G. and S. Ghosh (2002). Negative regulation of toll-like receptor-mediated signaling by Tollip.J. Biol. Chem.277(9), 7059–7065.

    Article  PubMed  CAS  Google Scholar 

  108. Lomaga, M.A.et al.(1999). TRAF6 deficiency results in osteopetrosis and defective interleukin-1, CD40, and LPS signaling.Genes Deg.13(8), 1015–1024.

    Article  CAS  Google Scholar 

  109. Ghosh, S. and M. Karin (2002). Missing pieces in the NF-kappaB puzzle.Cell109(Suppl), S81–596.

    Article  PubMed  CAS  Google Scholar 

  110. Franzoso, G.et al.(1998). Mice deficient in nuclear factor (NF)-kappa B/p52 present with defects in humoral responses, germinal center reactions, and splenic microarchitecture.J. Exp. Med.187(2), 147–159.

    Article  PubMed  CAS  Google Scholar 

  111. Sha, W.C.et al.(1995). Targeted disruption of the p50 subunit of NF-kappa B leads to multifocal defects in immune responses.Cell80(2), 321–330.

    Article  PubMed  CAS  Google Scholar 

  112. Caamano, J.et al.(1999). The NF-kappa B family member Re1B is required for innate and adaptive immunity toToxoplasma gondii. J. Immunol.163(8), 4453–4461.

    CAS  Google Scholar 

  113. Burkly, L.et al.(1995). Expression of relB is required for the development of thymic medulla and dendritic cells.Nature373(6514), 531–536.

    Article  PubMed  CAS  Google Scholar 

  114. Weih, F.et al.(1995). Multiorgan inflammation and hematopoietic abnormalities in mice with a targeted disruption of Re1B, a member of the NF-kappa B/Rel family.Cell80(2), 331–340.

    Article  PubMed  CAS  Google Scholar 

  115. Wu, L.et al.(1998). Re1B is essential for the development of myeloid-related CD8alpha-dendritic cells but not of lymphoid-related CD8alpha+ dendritic cells.Immunity9(6), 839–847.

    Article  PubMed  CAS  Google Scholar 

  116. Ouaaz, F.et al.(2002). Dendritic cell development and survival require distinct NF-kappaB subunits.Immunity16(2), 257–270.

    Article  PubMed  CAS  Google Scholar 

  117. Toshchakov, V.et al.(2002). TLR4, but not TLR2, mediates IFN-beta-induced STAT 1 alpha/beta-dependent gene expression in macrophages.Nat. Immunol.3(4), 392–398.

    Article  PubMed  CAS  Google Scholar 

  118. Doyle, S.et al.(2002). IRF3 mediates a TLR3/TLR4-specific antiviral gene program.Immunity17(3), 251–263.

    Article  PubMed  CAS  Google Scholar 

  119. Chin, A.I.et al.(2002). Involvement of receptor-interacting protein 2 in innate and adaptive immune responses.Nature416(6877), 190–194.

    Article  PubMed  CAS  Google Scholar 

  120. Pasare, C. and R. Medzhitov (2003). Toll pathway-dependent blockade of CD4+CD25+ T cell-mediated suppression by dendritic cells.Science 2991033–1036.

    Article  PubMed  CAS  Google Scholar 

  121. Banchereau, J.et al.(2000). Immunobiology of dendritic cells.Annu. Rev. Immunol. 18767–811.

    Article  PubMed  CAS  Google Scholar 

  122. Shortman, K. andY.J. Liu (2002). Mouse and human dendritic cell subtypes.Nat. Rev. Immunol.2(3), 151–161.

    Article  PubMed  CAS  Google Scholar 

  123. Visintin, A.et al.(2001). Regulation of Toll-like receptors in human monocytes and dendritic cells.J. Immunol.166(1), 249–255.

    PubMed  CAS  Google Scholar 

  124. Kaisho, T. and S. Akira (2001). Dendritic-cell function in Toll-like receptor-and MyD88-knockout mice.Trends Immunol.22(2), 78–83.

    Google Scholar 

  125. Balmer, P. and E. Devaney (2002). NK T cells are a source of early interleukin-4 following infection with third-stage larvae of the filarial nematodeBrugia pahangi. Infect. Immun. 70(4)2215–2219.

    Article  CAS  Google Scholar 

  126. Schnare, M.et al.(2001). Toll-like receptors control activation of adaptive immune responses.Nat. Immunol. 44.

    Google Scholar 

  127. Kaisho, T.et al.(2001). Endotoxin-induced maturation of MyD88-deficient dendritic cells.J. Immunol. 166(9)5688–5694.

    PubMed  CAS  Google Scholar 

  128. Sperling, A.I. and J.A. Bluestone (1996). The complexities of T-cell co-stimulation: CD28 and beyond.Immunol. Rev. 153155–182.

    Article  PubMed  CAS  Google Scholar 

  129. Grewal, I.S. and R.A. Flavell (1998). CD40 and CD154 in cell-mediated immunity.Annu. Rev. Immunol. 16111–135.

    Article  PubMed  CAS  Google Scholar 

  130. Liu, Y.J. (2001). Dendritic cell subsets and lineages, and their functions in innate and adaptive immunity.Cell 106(3)259–262.

    Article  PubMed  CAS  Google Scholar 

  131. Liu, Y.J.et al.(2001). Dendritic cell lineage, plasticity and cross-regulation.Nat. Immunol.2(7), 585–589.

    Article  PubMed  CAS  Google Scholar 

  132. Zarember, K.A. andP.J.Godowski (2002). Tissue expression of human Toll-like receptors and differential regulation of Toll-like receptor mRNAs in leukocytes in response to microbes, their products, and cytokines.J. Immunol. 168(2)554–561.

    PubMed  CAS  Google Scholar 

  133. Supajatura, V.et al.(2001). Protective roles of mast cells against enterobacterial infection are mediated by toll-like receptor 4.J. Immunol. 167(4)2250–2256.

    PubMed  CAS  Google Scholar 

  134. Gewirtz, A.T.et al.(2001). Cutting edge: Bacterial flagellin activates basolaterally expressed tlr5 to induce epithelial proinflammatory gene expression.J. Immunol. 167(4)1882–1885.

    PubMed  CAS  Google Scholar 

  135. Abreu, M.T.et al.(2001). Decreased expression of Toll-like receptor-4 and MD-2 correlates with intestinal epithelial cell protection against dysregulated proinflammatory gene expression in response to bacterial lipopolysaccharide.J. Immunol. 167(3)1609–1616.

    PubMed  CAS  Google Scholar 

  136. Thieblemont, N. and S.D. Wright (1999). Transport of bacterial lipopolysaccharide to the golgi apparatus.J. Exp. Med. 190(4)523–534.

    Article  PubMed  CAS  Google Scholar 

  137. Wang, T., W.P. Lafuse, and B.S. Zwilling (2000). Regulation of toll-like receptor 2 expression by macrophages followingMycobacterium aviuminfection.J. Immunol. 165(11)6308–6313.

    PubMed  CAS  Google Scholar 

  138. Wang, T., W.P. Lafuse, and B.S. Zwilling (2001). NFkappaB and Spl elements are necessary for maximal transcription of toll-like receptor 2 induced byMycobacterium avium. J. Immunol. 167(12)6924–6932.

    CAS  Google Scholar 

  139. Wang, T.et al.(2002). Rapid chromatin remodeling of Toll-like receptor 2 promoter during infection of macrophages withMycobacterium avium. J. Immunol. 169(2)795–801.

    CAS  Google Scholar 

  140. Miettinen, M.et al.(2001). IFNs activate toll-like receptor gene expression in viral infections.Genes Immun.2(6), 349–355.

    Article  PubMed  CAS  Google Scholar 

  141. Matsuguchi, T.et al.(2000). Gene expressions of Toll-like receptor 2, but not Toll-like receptor 4, is induced by LPS and inflammatory cytokines in mouse macrophages.J. Immunol. 165(10)5767–5772.

    PubMed  CAS  Google Scholar 

  142. LinY. et al.(2000). The lipopolysaccharide-activated toll-like receptor (TLR)-4 induces synthesis of the closely related receptor TLR-2 in adipocytes.J. Biol. Chem.275(32), 24255–24263.

    Article  PubMed  CAS  Google Scholar 

  143. Nomura, F.et al.(2000). Cutting edge: Endotoxin tolerance in mouse peritoneal macrophages correlates with down-regulation of surface toll-like receptor 4 expression.J. Immunol. 164(7)3476–3479.

    PubMed  CAS  Google Scholar 

  144. MokunoY. et al.(2000). Expression of toll-like receptor 2 on gamma delta T cells bearing invariant V gamma 6/V delta 1 induced byEscherichia coliinfection in mice.J. Immunol. 165(2)931–940.

    Google Scholar 

  145. Musikacharoen, T.et al.(2001). NF-kappa B and STAT5 play important roles in the regulation of mouse Toll-like receptor 2 gene expression.J. Immunol. 166(7)4516–4524.

    PubMed  CAS  Google Scholar 

  146. Bosisio, D.et al.(2002). Stimulation of toll-like receptor 4 expression in human mononuclear phagocytes by interferon-gamma: A molecular basis for priming and synergism with bacterial lipopolysaccharide.Blood 99(9), 3427–3431.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hong, SC. (2004). Interaction of Innate and Acquired Immune Response: Toll Receptors— Potential Link of Infection to Rejection. In: Wilkes, D.S., Burlingham, W.J. (eds) Immunobiology of Organ Transplantation. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8999-4_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8999-4_25

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4754-5

  • Online ISBN: 978-1-4419-8999-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics