Immunologic Tolerance as Taught by Allografts

  • William J. Burlingham
  • Jose Torrealba


Tolerance, or the remarkable ability of the immune system to recognize and destroy invading pathogens, while refraining from the destruction of self tissues, has fascinated immunologists for over half a century. It is quite clear that self-reactive T- and B-cells do exist in the peripheral immune system. What prevents the unleashing of their destructive power in normal individuals? The natural allograft of the mammalian fetus to its mother, and the clinical practice of organ and tissue transplantation between genetically distinct individuals can teach us the answer. Both feature the confrontation of two separate immune systems: the mother’s with the baby’s, or the immune system of the recipient with the “mini” immune system contained within the organ or tissue being transplanted. The work of transplant tolerance consists in reaching accommodation between these two systems (allotolerance), while avoiding autoimmunity to tissue antigens of the graft. This chapter will explore important concepts that have emerged from studies of natural and surgical transplants beginning with the discovery of acquired tolerance in the period 1945-53 up to the present. These concepts include:


Chronic Rejection Indirect Pathway Immunologic Tolerance Kidney Transplant Patient Kidney Allograft 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Owen, R.D. (1945). Immunogenetic consequences of vascular anastomoses between bovine twins. Science 102, 400.PubMedCrossRefGoogle Scholar
  2. 2.
    Anderson, D., R.E. Billingham, G.H., Lampkin, and R. Medawar (1951). The use of skin grafting to distinguish between monozygotic and dizygotic twins in cattle. Heredity 5, 379.CrossRefGoogle Scholar
  3. 3.
    Crow, J.F. (1996). A golden anniversary: Cattle twins and immune tolerance. Genetics 144, 855.PubMedGoogle Scholar
  4. 4.
    Uehling, D.T., J.L. Hussey, A.B. Weinstein, R. Wank, and F.H. Bach. (1976). Cessation of immunosuppression after renal transplantation. Surgery 79. 278.PubMedGoogle Scholar
  5. 5.
    VanBuskirk, A.M., W.J. Burlingham, E. Jankowska-Gan, L.T. Chin, S. Kusaka, F. Geissler et al. (2000). Human allograft acceptance is associated with immune regulation. J. Clin. Invest. 106, 145.PubMedCrossRefGoogle Scholar
  6. 6.
    Starzl, T.E., A.J. Demetris, M. Trucco, A. Zeevi, H. Ramos, P. Terasaki et al. (1993). Chimerism and donor-specific nonreactivity 27 to 29 years after kidney allotransplantation. Transplantation 55, 1272.PubMedCrossRefGoogle Scholar
  7. 7.
    Lafferty, K.J., S.K. Babcock, and R.G. Gill. (1986). Prevention of rejection by treatment of the graft: An overview. Prog. Clin. Biol. Res. 224. 87PubMedGoogle Scholar
  8. 8.
    Knechtle, S.J., D. Vargo, J.H. Fechner, Jr., Y. Zhai, J. Wang, M.J. Hanaway et al. (1997). Tolerance induced in Rhesus monkeys by anti-CD3 immunotoxin. Transplantation 63, 1.PubMedCrossRefGoogle Scholar
  9. 9.
    Kusaka, S., A.P. Grailer, J.H. Fechner, Jr., E. Jankowska-Gan, T. Oberley, H.W. Sollinger et al. (2000). Clonotype analysis of human alloreactive T cells: A novel approach to studying peripheral tolerance in transplant recipients. J. Immunol. 164, 2240.PubMedGoogle Scholar
  10. 10.
    Burlingham, W.J., E. Jankowska, A.M. Vanbuskirk, C.G. Orosz, J.H. Lee, and S. Kusaka (2000). Loss of tolerance to a maternal kidney transplant is selective for HLA class II: Evidence from trans-vivo DTH and alloantibody analysis. Hum. Immunol. 61, 1395.PubMedCrossRefGoogle Scholar
  11. 11.
    Burlingham, W.J. and D. Steinmuller (1983). Cell-mediated cytotoxicity to nonmajor histocompatibility complex alloantigens on mouse epidermal cells. V. Contribution of bone marrow-derived cells to Epa-1 antigen expression. Transplantation 35, 130.PubMedCrossRefGoogle Scholar
  12. 12.
    Groux, H., A.O’Garra, M. Bigler, M. Rouleau, S. Antonenko, J.E. De Vries et al. (1997). A CD4+ T cell subset inhibits antigen-specific T-cell responses and prevents colitis. Nature 389, 737.PubMedCrossRefGoogle Scholar
  13. 13.
    Lechler, R.I., G. Lombardi, J.R. Batchelor, N.L. Reinsmoen, and F.H. Bach (1990). The molecular basis of alloreactivity. Immunol. Today 11, 83.PubMedCrossRefGoogle Scholar
  14. 14.
    Pirsch, J.D., A.M. D’Alessandro, H.W. Sollinger, R.M. Hoffmann, E. Roecker, B.J. Voss et al. (1992). The effect of donor age, recipient age, and HLA match on immunologic graft survival in cadaver renal transplant recipients. Transplantation 53, 55.PubMedCrossRefGoogle Scholar
  15. 15.
    van den Berg, J., B.G. Hepkema, A. Gertsma, G.H. Koeter, D.S. Postma, W.J. deBoer et al. (2000). Long term outcome of lung transplantation is predicted by the number of HLA-DR mismatches. Transplantation 71, 368.CrossRefGoogle Scholar
  16. 16.
    Gould, D.S. and H. Auchincloss, Jr. (1999). Direct and indirect recognition: The role of MHC antigens in graft rejection [In Process Citation]. Immunol. Today 20, 77.PubMedCrossRefGoogle Scholar
  17. 17.
    Benichou, G., P.A. Takizawa, C.A. Olson, M. McMillan, and E.E. Sercarz (1992). Donor major histocompatibility complex (MHC) peptides are presented by recipient MHC molecules during graft rejection. J. Exp. Med. 175, 305.PubMedCrossRefGoogle Scholar
  18. 18.
    Fangmann, J., R. Dalchan, and J.W. Fabre (1992). Rejection of skin allografts by indirect allorecognition of donor class I major histocompatibility complex peptides. J. Exp. Med. 175, 1521.PubMedCrossRefGoogle Scholar
  19. 19.
    Clubotariu, R., L. Zhuoru, A. Colovai, and N. Suciu-Foca (1998). Persistent allopeptide reactivity and epitope spreading in chronic rejection of organ allografts. J. Clin. Invest. 101, 1.CrossRefGoogle Scholar
  20. 20.
    Watschinger, B., L. Gallon, C.B. Carpenter, and M. Sayegh (1994). Mechanisms of allo-recognition. Recognition by in vivo-primed T cells of specific major histocompatibility complex polymorphisms presented as peptides by responder antigen-presenting cells. Transplantation 57, 572.PubMedGoogle Scholar
  21. 21.
    Yamada, A., A. Chandraker, T.M. Laufer, A.J. Gerth, M.H. Sayegh, and H. Auchincloss, Jr. (2001). Recipient MHC class II expression is required to achieve long-term survival of murine cardiac allografts after costimulatory blockade. J. Immunol. 167, 5522.PubMedGoogle Scholar
  22. 22.
    Weber, D.A., N.K. Terrell, Y. Zhang, G. Strindberg, J. Martin, A. Rudensky et al. (1995). Requirement for peptide in alloreactive CD4+ T cell recognition of class II MHC molecules. J. Immunol. 154, 5153.PubMedGoogle Scholar
  23. 23.
    Fedoseyeva, E.V., R.C. Tam, P.L. Orr, M.R. Garovoy, and G. Benichou (1995). Presentation of a self-peptide for in vivo tolerance induction of CD4+ T cells is governed by a processing factor that maps to the class II region of the major histocompatibility complex locus. J. Exp. Med. 182, 1481.PubMedCrossRefGoogle Scholar
  24. 24.
    Chiez, R.M., R.G. Urban, W.S. Lane, J.C. Gorga, L.J. Stern, D.A.A. Vignali et al. (1992). Predominant naturally processed peptides bound to HLA-DR1 are derived from MHC-related molecules and are heterogeneous in size. Nature 358, 764.CrossRefGoogle Scholar
  25. 25.
    Frasca, L., A. Amendola, P. Hornick, P. Brookes, G. Aichinger, F. Marelli-Berg et al. (1998). Role of donor and recipient antigen-presenting cells in priming and maintaining T cells with indirect allospecificity. Transplantation 66, 1238.PubMedCrossRefGoogle Scholar
  26. 26.
    Roelen, D., S. van Bree, P. van Hulst, E. van Beelen, and F. Claas (2002). Regulatory functions of human CD4(+) T cells recognizing allopeptides in the context of self-HLA class II. Hum. Immunol. 63, 902.PubMedCrossRefGoogle Scholar
  27. 27.
    Salvatierra, O. Jr., F. Vincenti, W. Amend. D. Potter, Y. Iwaki, G. Opelz et al. (1980). Deliberate donor-specific blood transfusions prior to living related renal transplantation. A new approach. Ann. Surg. 192, 543.PubMedCrossRefGoogle Scholar
  28. 28.
    Lagaaij, E.L., P.H. Henneman, M.B. Ruigrok et al. (1989). Effect of 1 HLA-DR antigen matched and completely HLA-DR mismatched blood transfusions on survival of heart and kidney allografts. N. Engl. J. Med. 321, 701.PubMedCrossRefGoogle Scholar
  29. 29.
    Bean, M.A., E. Mickelson, J. Yanagida, S. Ishioka, G.E. Brannen, and J.A. Hansen (1990). Suppressed antidonor MLC responses in renal transplant candidates conditioned with donor-specific transfusions that carry the recipient’s noninherited maternal HLA haplotype. Transplantation 49, 382.PubMedCrossRefGoogle Scholar
  30. 30.
    van Rood, J.J. and F.H. Claas (1990). The influence of allogeneic cells on the human T and B cell repertoire. Science 248, 1388.PubMedCrossRefGoogle Scholar
  31. 31.
    Owen, R.D., H.R. Wood, A.G. Foord, P. Sturgeon, and L.G. Baldwin (1954). Evidence for actively acquired tolerance to Rh antigens. Proc. Natl. Acad. Sci. USA 40, 420.PubMedCrossRefGoogle Scholar
  32. 32.
    Claas, F.H., Y. Gijbels, J. van Der Velden-de Munck, and J.J. van Rood (1988). Induction of B cell unresponsiveness to noninherited maternal HLA antigens during fetal life. Science 241, 1815.PubMedCrossRefGoogle Scholar
  33. 33.
    Andrassy, J., S. Kusaka, E. Jankowska-Gan, J.R. Torrealba, L.D. Haynes, B.R. Marthaler et al. (2003). Tolerance to noninherited maternal MHC antigens in mice. J. Immunol. 171, 5554.PubMedGoogle Scholar
  34. 34.
    Burlingham, W.J., A.P. Grailer, D.M. Heisey, F.H. Claas, D. Norman, T. Mohanakumar (1998). The effect of tolerance to noninherited maternal HLA antigens on the survival of renal transplants from sibling donors [see comments]. N. Engl. J. Med. 339, 1657.PubMedCrossRefGoogle Scholar
  35. 35.
    van Rood, J.J., F.R. Loberiza, Jr., M.J. Zhang, M. Oudshoorn, E Claas, M.S. Cairo et al. (2002). Effect of tolerance to noninherited maternal antigens on the occurrence of graft-versus-host disease after bone marrow transplantation from a parent or an HLA-haploidentical sibling. Blood 99, 1572.PubMedCrossRefGoogle Scholar
  36. 36.
    Smits, J.M.A., F.H.J. Claas, H.C. van Houwelingen, and G.G. Persijn (1998). Do non-inherited maternal antigens (NIMA’s) enhance renal allograft survival? Transpl. Int. 11, 82.PubMedCrossRefGoogle Scholar
  37. 37.
    Opelz, G. and for the Collaborative Transplant Study. (1990). Analysis of the “NIMA effect” in renal transplantation. In P.I. Terasaki (ed.), Clinical Transplants 1990. UCLA Tissue Typing Laboratory, Los Angeles, CA, pp. 63–67.Google Scholar
  38. 38.
    Burlingham, W.J. (2000). The blood transfusion effect. In S. Thiru and H. Waldmann (eds.), Immunology and Pathology of Transplantation. Blackwell Scientific Publications LTD, Oxford, UK, pp. 92–115.Google Scholar
  39. 39.
    van Rood, J.J. and E Claas (2000). Both self and non-inherited maternal HLA antigens influence the immune response. Immunol. Today 21, 269.PubMedCrossRefGoogle Scholar
  40. 40.
    Terasaki, P.I., J.M. Cecka, D.W. Gjertson, S. Takemoto, Y.W. Cho, and J. Yuge (1996). Risk rate and long term kidney transplant survival. In P.I. Terasaki and J.M. Cecka (eds.), Clinical Transplants 1996. UCLA Tissue Typing Laboratory, Los Angeles, CA, pp. 443–458.Google Scholar
  41. 41.
    Goulmy, E., K. Bittner, E. Blokland, J. Pool, G. Persijn, J.J. van Rood et al. (1991). Renal transplant patients with steroid withdrawal evaluated longitudinally for their donor-specific cytotoxic T cell reactivity. Transplantation 52, 1083.PubMedCrossRefGoogle Scholar
  42. 42.
    Thomas, J., M. Carver, C. Sash, R Cunningham, and F. Thomas (1987). Induction of allogeneic unresponsiveness to renal transplants in rhesus monkeys. Transplant. Proc. 19, 4070.PubMedGoogle Scholar
  43. 43.
    Burlingham, W.J., A.P. Grailer, J.H. Fechner, Jr., S. Kusaka, M. Trucco, M. Kocova et al. (1995). Microchimerism linked to cytotoxic T lymphocyte functional unresponsiveness (clonal anergy) in a tolerant renal transplant recipient. Transplantation 59, 1147.PubMedGoogle Scholar
  44. 44.
    Geissler, F., E. Jankowska-Gan, L.D. DeVito-Haynes, T. Rhein, M. Kalayoglu, H.W. Sollinger (2001). Human liver allograft acceptance and the “tolerance assay”: In vitro anti-donor T cell assays show hyporeactivity to donor cells but, unlike DTH, fail to detect linked suppression. Transplantation 72, 571.PubMedCrossRefGoogle Scholar
  45. 45.
    VanBuskirk, A.M., M.E. Wakely, J.H. Sirak, and C.G. Grosz (1998). Patterns of allosensitization in allograft recipients: Long-term cardiac allograft acceptance is associated with active alloantibody production in conjunction with active inhibition of alloreactive delayed-type hypersensitivity. Transplantation 65, 1115.PubMedCrossRefGoogle Scholar
  46. 46.
    Hara, M., C.I. Kingsley, M. Niimi, S. Read, S.E. Turvey, A.R. Bushell et al. (2001). IL-10 is required for regulatory T cells to mediate tolerance to alloantigens in vivo. J. Immunol. 166, 3789.PubMedGoogle Scholar
  47. 47.
    Dhodapkar, M.V., R.M. Steinman, J. Krasovsky, C. Munz, and N. Bhardwaj (2001). Antigen-specific inhibition of effector T cell function in humans after injection of immature dendritic cells. J. Exp. Med. 193, 233.PubMedCrossRefGoogle Scholar
  48. 48.
    Trombetta, E.S., M. Ebersold, W. Garrett, M. Pypaert, and I. Mellman (2003). Activation of lysosomal function during dendritic cell maturation. Science 299, 1400.PubMedCrossRefGoogle Scholar
  49. 49.
    Gilliet, M. and Y.J. Liu (2002). Generation of human CD8 T regulatory cells by CD40 ligand-activated plasmacytoid dendritic cells. J. Exp. Med. 195, 695.PubMedCrossRefGoogle Scholar
  50. 50.
    Carrodeguas, L., C.G. Orosz, W.J. Waldman, D.D. Sedmak, P.W. Adams, and A.M. VanBuskirk (1999). Trans vivo analysis of human delayed-type hypersensitivity reactivity. Hum. Immunol. 60, 640.PubMedCrossRefGoogle Scholar
  51. 51.
    Rodriguez, D.S., E. Jankowska-Gan, L.D. Haynes et al. (2004). Immune regulation and graft survival in kidney transplant recipients are both enhanced by HLA matching. Am. J. Transplantation 4(4), 537–543.CrossRefGoogle Scholar
  52. 52.
    Torrealba, J.R., M. Katayama, J.H.J. Fechner et al. (2004). Metastable tolerance to Rhesus monkey renal transplants is correlated with allograft TGFß 1 +CD4+ T regulatory cell infiltrates. J. Immunol. in press.Google Scholar
  53. 53.
    Lee, J., E. Jankowska-Gan, J.M. Schultz et al. (2004). Circulating allopeptide-specific CD4+CD25+ T-regulatory cells and corresponding latent TGFI3+ graft-infiltrates in human metastable tolerance. (in preparation).Google Scholar
  54. 54.
    Geissler, E, E. Jankowska-Gan, L.D. DeVito-Haynes, T. Rhein, M. Kalayoglu, H.W. Sollinger, and W.J. Burlingham (2001). Human liver allograft acceptance and the “tolerance assay”: In vitro anti-donor T cell assays show hyporeactivity to donor cells but, unlike DTH, fail to detect linked suppression. Transplantation 72, 571.PubMedCrossRefGoogle Scholar
  55. 55.
    Jankowska-Gan, E., T. Rhein, L. Haynes, F. Geissler, A. Mulder, M. Kalayoglu, H. Sollinger, and W.J. Burlingham (2002). Human liver allograft acceptance and the “tolerance assay”. II. donor HLA-A, -B but not DR antigens are able to trigger regulation of DTH. Hum. Immunol. 63, 862.Google Scholar
  56. 56.
    Nakamura, K., A. Kitani, and W. Strober (2001). Cell contact-dependent immunosuppression by CD4(+)CD25(+) regulatory T cells is mediated by cell surface-bound transforming growth factor beta. J. Exp. Med. 194, 629.PubMedCrossRefGoogle Scholar
  57. 57.
    Annunziato, F., L. Cosmi, F. Liotta, E. Lazzeri, R. Manetti, V. Vanini et al. (2002). Phenotype, localization, and mechanism of suppression of CD4+CD25+ human thymocytes. J. Exp. Med. 196, 379.PubMedCrossRefGoogle Scholar
  58. 58.
    Levings, M.K., R. Sangregorio, C. Sartirana, A.L. Moschin, M. Battaglia, P.C. Orban et al. (2002). Human CD25+CD4+ T suppressor cell clones produce transforming growth factor beta, but not interleukin 10, and are distinct from type 1 T regulatory cells. J. Exp. Med. 196, 1335.PubMedCrossRefGoogle Scholar
  59. 59.
    Piccirillo, C.A., J.J. Letterio, A.M. Thornton, R.S. McHugh, M. Mamura, H. Mizuhara et al. (2002). CD4(+)CD25(+) regulatory T cells can mediate suppressor function in the absence of transforming growth factor betal production and responsiveness. J. Exp. Med. 196, 237.PubMedCrossRefGoogle Scholar
  60. 60.
    Bickerstaff, A.A., J.J. Wang, R.P. Pelletier, and C.G. Orosz. (2001). Murine renal allografts: Spontaneous acceptance is associated with regulated t cell-mediated immunity. J. Immunol. 167, 4821.PubMedGoogle Scholar
  61. 61.
    Bickerstaff, A.A., D. Xia, R.P. Pelletier, and C.G. Orosz (2000). Mechanisms of graft acceptance: Evidence that plasminogen activator controls donor-reactive delayed-type hypersensitivity responses in cardiac allograft acceptor mice../. Immunol. 164, 5132.Google Scholar
  62. 62.
    Oida, T., X. Zhang, M. Goto, S. Hachimura, M. Totsuka, S. Kaminogawa et al. (2003). CD4(+)CD25(-) T cells that express latency-associated peptide on the surface suppress CD4(+)CD45RB(high)-induced colitis by a TGF-beta-dependent mechanism. J. Immunol. 170, 2516.PubMedGoogle Scholar
  63. 63.
    Garba, M.L., C.D. Pilcher, A.L. Bingham, J. Eron, and J.A. Frelinger (2002). HIV antigens can induce TGFbeta(1)-producing immunoregulatory CD8+ T cells. J. Immunol. 168, 2247.PubMedGoogle Scholar
  64. 64.
    den Haan, J.M., L.M. Meadows, W. Wang, J. Pool, E. Blokland, T.L. Bishop et al. (1998). The minor histocompatibility antigen HA-1: A diallelic gene with a single amino acid polymorphism. Science 279, 1054.CrossRefGoogle Scholar
  65. 65.
    Klein, C.A., M. Wilke, J. Pool, C. Vermeulen, E. Blokland, E. Burghart et al. (2002). The hematopoietic system-specific minor histocompatibility antigen HA-1 shows aberrant expression in epithelial cancer cells. J. Exp. Med. 196, 359.PubMedCrossRefGoogle Scholar
  66. 66.
    Cai, J., J. Lee, E. Jankowska-Gan et al. (2004). Minor H antigen HA-1-specific regulator and effector CD8+ T cells, and HA-1 microchimerism, in allograft tolerance. J. Exp. Med. 199(7), 1017–1023.PubMedCrossRefGoogle Scholar
  67. Qin, S., S.P. Cobbold, H. Pope, J. Elliott, D. Kioussis, J. Davies et al. (1993). “Infectious” transplantation tolerance. Science 259, 974.Google Scholar
  68. 68.
    Homann, D., A. Holz, A. Bot, B. Coon, T. Wolfe, J. Petersen et al. (1999). Autoreactive CD4+ T cells protect from autoimmune diabetes via bystander suppression using the IL-4/Stat6 pathway. Immunity 11, 463.PubMedCrossRefGoogle Scholar
  69. 69.
    Billingham, R.E., L. Brent, and P.B. Medawar (1953). Actively acquired tolerance of foreign cells. Nature 172, 603.PubMedCrossRefGoogle Scholar
  70. 70.
    Medawar, P. (1956) A discussion of immunological tolerance. Proc. R. Soc. 146, 1.CrossRefGoogle Scholar
  71. 71.
    Steinman, R.M. and Z.A. Cohn (1973). Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution. J. Exp. Med. 137, 1142.PubMedCrossRefGoogle Scholar
  72. 72.
    Brent, L. (1991). Tolerance: Past, present, and future [Review]. Transplant. Proc. 23, 2056.Google Scholar
  73. 73.
    Wood, K.J. (1991). Transplantation tolerance. Curr. Opin. Immunol. 3, 710.PubMedCrossRefGoogle Scholar
  74. 74.
    Snell, G.D. (1957). The homograft reaction. Ann. Rev. Microbiol. 11, 439.CrossRefGoogle Scholar
  75. 75.
    Steinmuller, D. (1967). Immunization with skin isografts taken from tolerant mice. Science 158, 127.PubMedCrossRefGoogle Scholar
  76. 76.
    Larsen, C.P., P.J. Morris, and J.M. Austyn (1990). Migration of dendritic leukocytes from cardiac allografts into host spleens../. Exp. Med. 171, 307.CrossRefGoogle Scholar
  77. 77.
    Lafferty, K.J., S.J. Prowse, C.J. Simeonovic, and H.S. Warren (1983). Immunobiology of tissue transplantation: A return to the passenger leukocyte concept. Annu. Rev. Immunol. 1, 143.PubMedCrossRefGoogle Scholar
  78. 78.
    Sekine, Y., L.K. Bowen, K.M. Heidler, N. Van Rooijen, J.W. Brown, O.W. Cummings et al. (1997). Role of passenger leukocytes in allograft rejection: Effect of depletion of donor alveolar macrophages on the local production of TNF-alpha, T helper 1/T helper 2 cytokines, IgG subclasses, and pathology in a rat model of lung transplantation. J. Immunol. 159, 4084.PubMedGoogle Scholar
  79. 79.
    Josien, R., M. Heslan, S. Brouard, J.P. Soulillou, and M.C. Cuturi (1998). Critical requirement for graft passenger leukocytes in allograft tolerance induced by donor blood transfusion. Blood 92, 4539.PubMedGoogle Scholar
  80. 80.
    Ko, S., A. Deiwick, M.D. Jager, A. Dinkel, F. Rohde, R. Fischer et al. (1999). The functional relevance of passenger leukocytes and microchimerism for heart allograft acceptance in the rat. Nat. Med. 5, 1292.PubMedCrossRefGoogle Scholar
  81. 81.
    Krasinskas, A.M., S.D. Eiref, A.D. McLean, D. Kreisel, A.E. Gelman, S.H. Popma et al. (2000). Replacement of graft-resident donor-type antigen presenting cells alters the tempo and pathogenesis of murine cardiac allograft rejection. Transplantation 70, 514.PubMedCrossRefGoogle Scholar
  82. 82.
    Demetris, A.J., N. Murase, Q. Ye, F.H. Galvao, C. Richert, R. Saad et al. 1997. Analysis of chronic rejection and obliterative arteriopathy. Possible contributions of donor antigen-presenting cells and lymphatic disruption. Am. J. Pathol. 150, 563.PubMedGoogle Scholar
  83. 83.
    O’Connell, P.J., A. Mba-Jonas, G.E. Leverson, D. Heisey, K.C. Meyer, R.B. Love et al. (1998). Stable lung allograft outcome correlates with the presence of intragraft donor-derived leukocytes. Transplantation 66, 1167.PubMedCrossRefGoogle Scholar
  84. 84.
    Starzl, T.E., A.J. Demetris, M. Trucco, H. Ramos, A. Zeevi, W.A. Rudert et al. (1992). Systemic chimerism in human female recipients of male livers. Lancet 340, 876.PubMedCrossRefGoogle Scholar
  85. 85.
    Starzl, T.E., A.J. Demetris, M. Trucco, C. Ricordi, S. Ildstad, P.I. Terasaki et al. 1993. Chimerism after liver transplantation for type IV glycogen storage disease and type 1 Gaucher’s disease. N. Engl. J. Med. 328, 745.PubMedCrossRefGoogle Scholar
  86. 86.
    Starzl, T.E., A.J. Demetris, N. Murase, A.W. Thomson, M. Trucco, and C. Ricordi (1993). Donor cell chimerism permitted by immunosuppressive drugs: A new view of organ transplantation. Immunol. Today 14, 326.PubMedCrossRefGoogle Scholar
  87. 87.
    Wood, K.J. and D.H. Sachs (1998). Chimerism and transplantation tolerance: Cause and effect. Immunol. Today 17, 584.CrossRefGoogle Scholar
  88. 88.
    Sivasai, K.S., Y.G. Alevy, B.F. Duffy, D.C. Brennan, G.G. Singer, S. Shenoy et al. (1997). Peripheral blood microchimerism in human liver and renal transplant recipients: Rejection despite donor-specific chimerism [published erratum appears in Transplantation (1997 Dec 15) 64(11), 1636]. Transplantation 64, 427.PubMedCrossRefGoogle Scholar
  89. 89.
    Kreisel, D., A.S. Krupnick, A.E. Gelman, F.H. Engels, S.H. Popma, A.M. Krasinskas et al. (2002). Nonhematopoietic allograft cells directly activate CD8+ T cells and trigger acute rejection: An alternative mechanism of allorecognition. Nat. Med. 8, 233.PubMedCrossRefGoogle Scholar
  90. 90.
    Kreisel, D., A.S. Krupnick, K.R. Balsara, M. Riha, A.E. Gelman, S.H. Popma et al. (2002). Mouse vascular endothelium activates CD8+ T lymphocytes in a B7-dependent fashion. J. Immunol. 169, 6154.PubMedGoogle Scholar
  91. 91.
    Valujskikh, A., O. Lantz, S. Celli, P. Matzinger, and P.S. Heeger (2002). Cross-primed CD8(+) T cells mediate graft rejection via a distinct effector pathway. Nat. Immunol. 3, 844.PubMedCrossRefGoogle Scholar
  92. 92.
    Limmer, A., J. Ohl, C. Kurts, H.G. Ljunggren, Y. Reiss, M. Groettrup et al. (2000). Efficient presentation of exogenous antigen by liver endothelial cells to CD8+ T cells results in antigen-specific T-cell tolerance. Nat. Med. 6, 1348.PubMedCrossRefGoogle Scholar
  93. 93.
    el-Sawy, T., N.M. Fahmy, and R.L. Fairchild (2002). Chemokines: Directing leukocyte infiltration into allografts. Curr. Opin. Immunol. 14, 562.PubMedCrossRefGoogle Scholar
  94. 94.
    Bishop, G.A., J. Sun, A.G. Sheil, and G.W. McCaughan (1997). High-dose/activation-associated tolerance: A mechanism for allograft tolerance. Transplantation 64, 1377.PubMedCrossRefGoogle Scholar
  95. 95.
    Wells, A.D., X.C. Li, Y. Li, M.C. Walsh, X.X. Zheng, Z. Wu et al. (1999). Requirement for T-cell apoptosis in the induction of peripheral transplantation tolerance. Nat. Med. 5, 1303.PubMedCrossRefGoogle Scholar
  96. 96.
    Chang, C.C., R. Ciubotariu, J.S. Manavalan, J. Yuan, A.I. Colovai, F. Piazza et al. (2002). Tolerization of dendritic cells by T(S) cells: The crucial role of inhibitory receptors ILT3 and ILT4. Nat. Immunol. 3, 237.PubMedCrossRefGoogle Scholar
  97. 97.
    DeVito-Haynes, L.D., S. Demaria, Y. Bushkin, and W.J. Burlingham (1998). The metalloproteinase-mediated pathway is essential for generation of soluble HLA class I proteins by activated cells in vitro: Proposed mechanism for soluble HLA release in transplant rejection. Hum. Immunol. 59, 426.PubMedCrossRefGoogle Scholar
  98. 98.
    Fedoseyeva, E.V., F. Zhang, P.L. Orr, D. Levin, H.J. Buncke, and G. Benichou (1999). De novo autoimmunity to cardiac myosin after heart transplantation and its contribution to the rejection process. J. Immunol. 162, 6836.PubMedGoogle Scholar
  99. 99.
    Hague, M.A., T. Mizobuchi, K. Yasufuku, T. Fujisawa, R.R. Brutkiewicz, Y. Zheng et al. (2002). Evidence for immune responses to a self-antigen in lung transplantation: Role of type V collagen-specific T cells in the pathogenesis of lung allograft rejection. J. Immunol. 169, 1542.Google Scholar
  100. 100.
    Burlingham, W.J., L.D. Haynes, E. Jankowska-Gan, D.S. Rodriguez, Y. Zhang, K. Heidler et al. (2003). Correlation of bronchiolitis obliterans syndrome (BOS) with autoimmunity to collagen (V). Am. J. Transplantation 3, 152(Abstract#1).Google Scholar
  101. 101.
    Yasufuku, K., K.M. Heidler, P.W. O’Donnell, G.N. Smith, Jr., O.W. Cummings, B.H. Foresman et al. (2001). Oral tolerance induction by type V collagen downregulates lung allograft rejection. Am. J. Respir. Cell Mol. Biol. 25, 26.PubMedGoogle Scholar
  102. 102.
    Chase, M.W. (1982). The induction of tolerance to allergenic chemicals. Ann. N.Y. Acad. Sci. 392, 228.PubMedCrossRefGoogle Scholar
  103. 103.
    Chen, W., W. Jin, M. Cook, H.L. Weiner, and S.M. Wahl (1998). Oral delivery of group A streptococcal cell walls augments circulating TGF-beta and suppresses streptococcal cell wall arthritis. J. Immunol. 161, 6297.PubMedGoogle Scholar
  104. 104.
    Niederkorn, J.Y., E. Mayhew, and Y. He (1995). Alloantigens introduced into the anterior chamber of the eye induce systemic suppression of delayed hypersensitivity to third-party alloantigens through “linked recognition”. Transplantation 60, 348.PubMedCrossRefGoogle Scholar
  105. 105.
    Lee, J., E. Jankowska-Gan, T.T. Kratochwill, S. Kusaka, A.M. VanBuskirk, and W.J. Burlingham (2002). Human CD4+CD25low T regulatory cells specific for donor-derived HLA-B allopeptide mediate CTLA-4 and TGFß1-dependent inhibition of delayed-type hypersensitivity during allograft acceptance. Am. J. Transplantation 2, 213(Abstract#300).Google Scholar
  106. 106.
    Robertson, H., W.K. Wong, D. Talbot, A.D. Burt, and J.A. Kirby (2001). Tubulitis after renal transplantation: Demonstration of an association between CD103+ T cells, transforming growth factor betal expression and rejection grade. Transplantation 71, 306.PubMedCrossRefGoogle Scholar
  107. 107.
    Powrie, F., M.W. Leach, S. Mauze, S. Menon, L.B. Caddie, and R.L. Coffman (1994). Inhibition of Thl responses prevents inflammatory bowel disease in scid mice reconstituted with CD45RBhi CD4+ T cells. Immunity 1, 553.PubMedCrossRefGoogle Scholar
  108. 108.
    Annes, J.P., J.S. Munger, and D.B. Rifkin (2003). Making sense of latent TGFbeta activation. J. Cell Sci. 116, 217.PubMedCrossRefGoogle Scholar
  109. 109.
    Graca, L., S.P. Cobbold, and H. Waldmann (2002). Identification of regulatory T cells in tolerated allografts. J. Exp. Med. 195, 1641.PubMedCrossRefGoogle Scholar
  110. 110.
    Burnet, F.M. and F. Fenner (1949). The Production of Antibodies. Macmillan, New York.Google Scholar
  111. 111.
    Ridge, J.P., E.J. Fuchs, and P. Matzinger (1996). Neonatal tolerance revisited: Turning on newborn T cells with dendritic cells. Science 271, 1723.PubMedCrossRefGoogle Scholar
  112. 112.
    Pasare, C. and R. Medzhitov (2003). Toll pathway-dependent blockade of CD4+CD25 + T cell-mediated suppression by dendritic cells. Science 299, 1033.PubMedCrossRefGoogle Scholar
  113. 113.
    Cjte, I., N.J. Rogers, and R.I. Lechler (2001). Allorecognition. Transfus. Clin. Biol. 8, 318.Google Scholar
  114. 114.
    Sheng-Tanner, X. and R.G. Miller (1992). Correlation between lymphocyte-induced donor-specific tolerance and donor cell recirculation. J. Exp. Med. 176, 407.PubMedCrossRefGoogle Scholar
  115. 115.
    Sakaguchi, S., N. Sakaguchi, M. Asano, M. Itoh, and M. Toda (1995). Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J. Immunol. 155, 1151.PubMedGoogle Scholar
  116. 116.
    Dische, F.E., B.M. Herbertson, D.H. Melcher, and A.R. Morley (1981). Membranous glomerulonephritis in transplant kidneys: Recurrent or de novo disease in four patients. Clin. Nephrol. 15, 154.PubMedGoogle Scholar
  117. 117.
    Fedoseyeva, E.V., K. Kishimoto, H.K. Rolls, B.M. Illigens, V.M. Dong, A. Valujskikh et al. (2002). Modulation of tissue-specific immune response to cardiac myosin can prolong survival of allogeneic heart transplants. J. Immunol. 169, 1168.PubMedGoogle Scholar
  118. 118.
    Dilts, S.M. and K.J. Lafferty (1999). Autoimmune diabetes: The involvement of benign and malignant auto-immunity. J. Autoimmun. 12, 229.PubMedCrossRefGoogle Scholar
  119. 119.
    Belkaid, Y., C.A. Piccirillo, S. Mendez, E.M. Shevach, and D.L. Sacks (2002). CD4+CD25+ regulatory T cells control Leishmania major persistence and immunity. Nature 420, 502.PubMedCrossRefGoogle Scholar
  120. 120.
    Iellem, A., M. Mariani, R. Lang, H. Recalde, R Panina-Bordignon, F. Sinigaglia et al. (2001). Unique chemotactic response profile and specific expression of chemokine receptors CCR4 and CCR8 by CD4(+)CD25(+) regulatory T cells. J. Exp. Med. 194, 847.PubMedCrossRefGoogle Scholar
  121. 121.
    Szanya, V., J. Ermann, C. Taylor, C. Holness, and C.G. Fathman (2002). The subpopulation of CD4+CD25+ splenocytes that delays adoptive transfer of diabetes expresses L-selectin and high levels of CCR7. J. Immunol. 169, 2461.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • William J. Burlingham
    • 1
  • Jose Torrealba
    • 2
  1. 1.Department of SurgeryUniversity of Wisconsin School of MedicineMadison
  2. 2.Department of PathologyUniversity of Wisconsin School of MedicineMadison

Personalised recommendations