Skip to main content
Book cover

Hypoxia pp 117–125Cite as

Hypoxia and Lung Branching Morphogenesis

  • Conference paper

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 543))

Abstract

Morphogens, growth factors and extracellular matrix (ECM) components modulate early lung branching, and have been studied extensively both in vivo and in vitro. In vitro studies have been particularly useful, because tissue can be manipulated either chemically or mechanically. For the most part, such studies have been conducted at ambient oxygen tensions, despite the fact that the fetus develops in a low oxygen environment. Since oxygen tension regulates the expression of various growth factors, adhesion molecules and their receptors, we investigated whether the low oxygen environment of the fetus contributes towards lung branching morphogenesis by affecting one or more these mediators. Using an established fetal lung expiant model, we demonstrated that in comparison to tissues cultured at ambient oxygen concentration (21% O2 ), fetal lung expiants cultured at 3% 02 show increases in terminal branching and cellular proliferation, and they display appropriate proximal to distal differentiation. To investigate the factor(s) mediating the induction of lung branching morphogenesis and differentiation by fetal oxygen tension, we focused on matrix metalloproteinases (MMPs), a group of zinc-dependent enzymes that modify ECM structure and function. Our results reveal that hypoxia suppresses MMP activity, leading to the accumulation of specific ECM components, including tenascin-C (TN-C), that act to stimulate lung branching. These studies demonstrate that low oxygen in the setting of the developing lung positively regulates lung branching morphogenesis, and suggest that the pathologic responses to low oxygen in the adult lung reflect a dysregulation of this lung developmental program.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acarregui, MJ, Snyder, JM and Mendelson, CR. Oxygen modulates the differentiation of human fetal lung in vitro and its responsiveness to cAMP. Am. J. Physiol . 264 (Lung Cell. Mol. Physiol 8):L465–L474, 1993.

    CAS  PubMed  Google Scholar 

  2. Barasch, J, Yang J, Qiao, J, Tempst, P, Erdjument-Bromage, H, Leung, W, and Oliver, JA. Tissue inhibitor of metalloproteinase-2 stimulates mesenchymal growth and regulates epithelial branching during morphogenesis of the rat metanephros. J. Clin. Invest . 103:1299–1307, 1999.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Bernardi, ML, Flechon JE, and Delouis, C. Influence of culture system and oxygen tension on the development of ovine zygotes matured and fertilized in vitro. J. Reprod. Fertil. 106:161–167, 1996.

    Article  Google Scholar 

  4. Chen, E, Fujinaga, M, and Giaccia, AJ. Hypoxic microenvironment within an embryo induces apoptosis and is essential for proper morphological development. Teratology 60(4):215–225, 1999.

    Google Scholar 

  5. Deterding, RR and Shannon, JM. Proliferation and differentiation of fetal rat pulmonary epithe-lium in the absence of mesenchyme. J. Clin. Invest . 95:2963–2972, 1995.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Eppig, JJ and Wigglesworth, K. Factors affecting the developmental competence of mouse oo-cytes growth in vitro oxygen concentration. Mol. Reprod. Dev . 42:447–456, 1995.

    Article  CAS  PubMed  Google Scholar 

  7. Fukuda, Y, Ishizaki, M. , Okada, Y, Seiki, M, and Yamanaka, M. Matrix metalloproteinases and tissue inhibitor of metalloproteinase-2 in fetal rabbit lung. Am. J. Physiol. Lung Cell Mol. Physiol . 279: L555–561, 2000.

    CAS  PubMed  Google Scholar 

  8. Gassmann, M, Fandrey J, Bichet, S, Wartenberg, W, Marti, HH, Bauer, C, Wenger, RH, and Acker, H. Oxygen supply and oxygen-dependent gene expression in differentiating embryonic stem cells. Proc. Natl. Acad. Sci . 93:2867–2872, 1996.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Gebb, SA and Shannon, JM. Hypoxia stimulates fetal lung branching in vitro. Am. J. Respir. Crit. Care Med . 159:A744, 1999.

    Google Scholar 

  10. Gebb, SA and Shannon, JM. Tissue interactions mediate early events in pulmonary vasculogenesis. Dev. Dyn 217: 159–169, 2000.

    Article  CAS  PubMed  Google Scholar 

  11. Gebb, SA and Jones, PL. Matrix metalloproteinase inhibition enhances fetal lung branching and sonic hedgehog expression. Abstract, FASEB J. In Press, 2003.

    Google Scholar 

  12. Gebb, SA, Fox, K, McKean, D, and Jones, PL. Inhibition of matrix metalloproteinase activity enhances branching morphogenesis in fetal rat lung. Am. J. Respir. Crit. Care Med . 165: A223, 2002.

    Google Scholar 

  13. Gross, I. Regulation of fetal lung maturation. Am. J. Physiol . 259 (Lung Cell. Mol. Physiol. 3): L337–L344, 1990.

    CAS  PubMed  Google Scholar 

  14. Hale, LP, Braun, RD, Gwinn, WM, Greer, PK and Dewhirst, MW. Hypoxia in the thymus: role of oxygen tension in thymocyte survival. Am. J. Physiol. Heart Circ Physiol 282(4):H1467–77, 2002.

    Google Scholar 

  15. Jarecki, J, Johnson, E. , and Krasnow, MA. Oxygen regulation of airway branching in Drosophila is mediated by branchless FGF. Cell . 99:211–220, 1999.

    Article  CAS  PubMed  Google Scholar 

  16. Jones, FS and Jones, PL. The tenascin family of ECM glycoproteins: Structure, function, and regulation during embryonic development and tissue remodeling. Dev. Dyn. 218:235–259. 2000.

    Article  CAS  PubMed  Google Scholar 

  17. Jones, PL, and Jones, FS. Tenascin-C in development and disease: gene regulation and cell function. Matrix Biol . 19:581–596, 2000.

    Article  CAS  PubMed  Google Scholar 

  18. Jones, PL, Jones, FS, Zhou, B, and Rabinovitch, M. Induction of vascular smooth muscle cell tenascin-C gene expression by denatured type I collagen is dependent upon a B3 integrin-me-diated mitogen-activated protein kinase pathway and a 122-base pair promoter element. J. Cell Sci . 112, 435–445, 1999.

    CAS  PubMed  Google Scholar 

  19. Klein, JM, McCarthy, TA, Dagle, and Snyder, JM. Antisense inhibition of epidermal growth factor receptor decreases expression of human surfactant protein A. Am. J. Respir. Cell Mol. Biol . 22(6):676–684, 2000.

    Article  CAS  PubMed  Google Scholar 

  20. Leco, KJ, Waterhouse, P, Sanchez, OH, Growing, KLM, Poole, AR, Wakeham, A, Mak, TW, and Khokha, R. Spontaneous air space enlargement in the lungs of mice lacking tissue inhibitor of metalloproteinases-3 (TIMP-3). J. Clin. Invest . 108:817–829, 2001.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Lee, YM, Jeong, CH, Koo, SY, Son, MJ, Song, HS, Bae, SK, Raleigh, JA, Chung, HY, Yoo, MA, and Kim, KW. Determination of hypoxic region by hypoxia marker in develoing mouse embryos in vivo : a possible signal for vessel development. Dev. Dyn . 220(2): 175–86, 2001.

    Article  CAS  PubMed  Google Scholar 

  22. Loughna, S, Yuan, H-T, and Woolf, AS. Effects of oxygen on vascular patterning in Tiel/LacZ metanephric kidneys in vitro. Biochem. Biophys. Res. Comm . 247:361–366, 1998.

    Article  CAS  PubMed  Google Scholar 

  23. Mackie, EJ and Tucker, RP. The tenascin-C knockout revisited. J. Cell Sci . 112: 3847–3853, 1999.

    CAS  PubMed  Google Scholar 

  24. Maltepe, E, and Simon, MC. Oxygen, genes, and development: An analysis of the role of hypoxic gene regulation during murine vascular development. J. Mol. Med . 76:391–401, 1998.

    Article  CAS  PubMed  Google Scholar 

  25. Mendelson, CR. Role of transcription factors in fetal lung development and surfactant protein gene expression. Annu Rev Physiol . 62:875–915, 2000.

    Article  CAS  PubMed  Google Scholar 

  26. Miettinen, PJ, Warburtion, D, Bu, D, Zhao, J-S, Berger, JE, Minoo, P, Koivisto, T. Allen, L, Dobbs, L, Werb, Z, and Derynck, R. Impaired lung branching morphogenesis in the absence of functional EGF receptor. Dev Biol . 186:224–236, 1997.

    Article  CAS  PubMed  Google Scholar 

  27. Minoo, P and King, RJ. Epithelial-mesenchymal interactions in lung development. Annul. Rev. Physiol . 56:13–45, 1994.

    Article  CAS  Google Scholar 

  28. Mitchell, JA and Yochim, JM. Measurement of intrauterine oxygen tension in the rat and its regulation by ovarian steroid hormones. Endocrinology 83(4):691–700, 1968.

    Article  Google Scholar 

  29. Morrison, SJ, Csete, M, Groves, AK, Melaga, W, Wold, B, and Anderson. Culture in reduced levels of oxygen promotes clonogenic sypathoadrenal differentiation by isolated neural crest stem cells. J. Neuroscl . 20:7370–7376, 2000.

    CAS  Google Scholar 

  30. Norman, JT, Orphanides, C, Garcia, P, and Fine, LG. Hypoxia-induced changes in extracellular matrix metabolism in renal cells. Exp. Nephrol . 7(5–6):463–9, 1999.

    Article  CAS  PubMed  Google Scholar 

  31. Pabon, JD, Findley, WE, and Gibbons, WE. The toxic effect of short exposures to the atmo-spheric oxygen concentration on early mouse embryonic development. Fertil Steril 51:896–900, 1989.

    PubMed  Google Scholar 

  32. Perl, AK, and Whitsett, JA. Molecular mechanisms controlling lung morphogenesis. Clin. Genet . 56(1): 14–27, 1999.

    Article  CAS  PubMed  Google Scholar 

  33. Pohl, M, Sakurai, H, Bush, KT, and Nigam, JK. Matrix metalloproteinases and their inhibitors regulate in vitro ureteric bud branching morphogenesis. Am. J. Physiol. Renal Physiol . 279: F891–900. 2000

    Google Scholar 

  34. Roman, J. Fibronectin and fibronectin receptors in lung development. Exp. Lung Res . 23(2): 147–159, 1997.

    Article  CAS  PubMed  Google Scholar 

  35. Saga, Y, Yagi, T, Ikawa, Y, Sakakura, T, and Aizzawa, S. Mice develop normally without tenascin. Genes Dev . 6, 1821–1831, 1992.

    Article  CAS  PubMed  Google Scholar 

  36. Schittny, JC, Hirsh, E, Fassler, R, Evens, A, and Muller, U. Fetal lungs of tenascin-C- and of alpha8 integrin-null mice grow well, but branch poorly in organ culture. Eighth Woods Hole Conference in Lung Cell Biology, Basic Mechanisms of Lung Development. 2000.

    Google Scholar 

  37. Semenza, GL, Agani, F, Iyer, N, Kotch, L. Laughner, E, Leung, S, and Yu, A. Regulation of cardiovascular development and physiology by hypoxia-inducible factor 1. Ann. N. Y. Acad. Sci . 874:262–268, 1999.

    Article  CAS  PubMed  Google Scholar 

  38. Siri, A, Knauper, V, Veirana, N, Caocci, F, Murphy, G, and Zardi, L. Different susceptibility of small and large human tenascin-C isoforms to degradation by matrix metalloproteinases. J. Biol. Chem . 270(15):8650–8654, 1995.

    Article  CAS  PubMed  Google Scholar 

  39. Spooner, B and Wessels, N. Mammalian lung development: Interactions in primordium formation and bronchial morphogenesis. J. Exp. Zool . 175:445–454, 1970.

    Article  CAS  PubMed  Google Scholar 

  40. Swindle, CS, Tran, KT, Johnson, TD, Banerjee, P, Mayes, AM, Griffith, L. and Wells, A. Epidermal growth factor (EGF)-like repeats of human tenascin-C as ligands for EGF receptor. J. Cell Biol . 154:459–468, 2001.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Taderera, JT. Control of lung differentiation in vitro. Dev. Biol . ld6:489–512, 1967.

    Article  Google Scholar 

  42. Tufro-McReddie, A. , Norwood, VF, Aylor, KW, Botkin, SJ, Curry, RM, and Gomez, RA. Oxygen regulates vascular endothelial growth factor-mediated vasculogenesis and tubulogenesis. Dev. Biol . 183:139–149, 1997.

    Article  CAS  PubMed  Google Scholar 

  43. Umaoka, Y, Noda, Y, Narimoto, K, and Mori, T. Effects of oxygen toxicity on early development of mouse embryos. Mol. Reprod. Dev . 31:28–33, 1992.

    Article  CAS  PubMed  Google Scholar 

  44. Vu, TH and Werb, Z. Matrix metalloproteinases: effectors of development and normal physiology. Genes & Dev . 14:2123–2133, 2000.

    Article  CAS  Google Scholar 

  45. Warburton, D, Zhao, J, Berberich, MA and Bernfield, M. Molecular embryology of the lung: then, now, and in the future. Am. J. Physiol. Lung Cell. Mol. Physiol . 276:L697–704, 1999.

    CAS  Google Scholar 

  46. Young, SL, Chang, L-Y, and Erickson, HP. Tenascin-C in rat lung: Distribution, ontogeny and role in branching morphogenesis. Dev. Biol . 161:615–625, 1994.

    Article  CAS  PubMed  Google Scholar 

  47. Yue, X and Tomanek, RJ. Stimulation of coronary vasculogenesis/angiogenesis by hypoxia in cultured embryonic hearts. Dev. Dyn . 216:28–36, 1999.

    Article  CAS  PubMed  Google Scholar 

  48. Zhao, Y. Tenascin is expressed in the mesenchyme of the embryonic lung and down-regulated by dexamethasone in early organogenesis. Biochem. Biophys. Res. Comm . 263:597–602, 1999.

    Article  CAS  PubMed  Google Scholar 

  49. Zhao, Y. and Young, SL. Tenascin in rat lung development: in situ localization and cellular sources. Am. J. Physiol. Lung Cell. Mol. Physiol . 269:L482–491, 1995.

    CAS  Google Scholar 

  50. Zhao, Y. and Young, SL. TGF-B regulates expression of tenascin alternative-splicing isoforms in fetal rat lung. Am. J. Physiol. Lung Cell. Mol. Physiol . 268:L173–180, 1995.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this paper

Cite this paper

Gebb, S.A., Jones, P.L. (2003). Hypoxia and Lung Branching Morphogenesis. In: Roach, R.C., Wagner, P.D., Hackett, P.H. (eds) Hypoxia. Advances in Experimental Medicine and Biology, vol 543. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8997-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8997-0_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4753-8

  • Online ISBN: 978-1-4419-8997-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics