Skip to main content

Hypoxic Induction of Myocardial Vascularization During Development

  • Conference paper
Hypoxia

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 543))

Abstract

The development of the heart is closely linked to its temporally and spatially regulated vascularization. Hypoxia has been shown to stimulate myocardial capillary growth and improve myocardial perfusion during reperfusion in postnatal animals exposed to chronic or intermittent exposure to hypobaria. Vascular endothelial growth factor (VEGF) is up-regulated by hypoxia via HIF-1α, and these two molecules are colocalized with presumptive regions of hypoxia. VEGF up-regulation in embryonic and fetal hearts correlates with vascular tube formation which progresses from an epicardial to endocardial direction prior to the establishment of a functional coronary circulation. Our studies on explanted embryonic quail hearts indicate that vascular tube formation is enhanced by hypoxia (5–10% O2) and inhibited by hyperoxia. Three splice variants of VEGF (122, 126, 190) were found to increase and decrease with hypoxia and hyperoxia, respectively. While VEGF synthesis is stimulated by hypoxia, there are differences in the vascular patterning between exogenous VEGF-induced vascularization and that induced by hypoxia. Thus, other, yet to be identified, molecules are recruited by hypoxia. Acute hypoxia selectively enhances at least three splice variants of VEGF-A, and also selectively up-regulates VEGFR-1 (flt-1). However, we suggest that VEGF-B, a ligand for VEGFR-1 may contribute to embryonic myocardial vascularization, since we have shown that it plays a key role in this process under normoxic conditions. A second mechanism by which hypoxia may play a role in vascularization of the heart is via its vasodilatory effects, once the coronary circulation is functional. Increased blood flow serves as a mechanical (stretch) trigger for activation of VEGF and its receptors. In sum, there is evidence that a relative hypoxia provides both metabolic and mechanical stimuli for vascular growth in the developing heart.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adair TH, Gay WJ, Montani JP. Growth regulation of the vascular system: evidence for a meta-olic hypothesis. Am J Physiol 259:393–404, 1990.

    Google Scholar 

  2. Adair TH, Guyton AC, Montani J-P, Lindsay LH, Stanek KA. Whole body structural vascular adaptation to prolonged hypoxia in chick embryos. Am J Physiol 252:H1228–H1234, 1987.

    CAS  PubMed  Google Scholar 

  3. Becker EL, Cooper RG, and Hataway, GD. Capillary vascularization in puppies born at a simulated altitude of 20,000 feet. J Appl Physiol 8:166–168, 1955.

    CAS  PubMed  Google Scholar 

  4. Berra E, Milamni J, Richard DE, Le Gall M, Viñals F, Gothié E, Roux D, Pagès G, Pouysségur J. Signaling angiogenesis via p42/p44 MAP kinase and hypoxia. Biochem Pharmacol 8:1171–1178, 2000.

    Article  Google Scholar 

  5. Bunn HF, and Poyton RO. Oxygen sensing and molecular adaptation to hypoxia. Physiol Rev 76:839–885, 1996.

    CAS  PubMed  Google Scholar 

  6. Enholm B, Paavonen K, Ristimäki A, Kumar V, Gunji Y, Klefstrom J, Kivinen L, Laiho M, Olofsson B, Joukov V, Eriksson U, Alitalo K. Comparison of VEGF, VEGF-B, VEGF-C, and Ang-1 mRNA regulation by serum, growth factors, oncoproteins and hypoxia. Oncogene 14: 2475–2483, 1997.

    Article  CAS  PubMed  Google Scholar 

  7. Fandrey J. Hypoxia-inducible gene expression. Respiration Physiology 101:1–10, 1995.

    Article  CAS  PubMed  Google Scholar 

  8. Forsythe JA, Jiang B-H, Iyer NV, Agani F, Leung SW, Koos RD, Semenza GL. Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol and Cell Biol 16:4604–4613, 1996

    CAS  Google Scholar 

  9. Gerber H-P, Condorelli F, Park J, Ferrara N. Differential transcriptional regulation of the two vascular endothelial growth factor receptor genes. J Biol Chem 272(38):23659–23667, 1997.

    Article  CAS  PubMed  Google Scholar 

  10. Goldberg MA, Schneider TJ. Similarities between the oxygen sensing mechanisms regulating the expression of vascular endothelial growth factor and erythropoietin. J Biol Chem 269: 4355–4359, 1994.

    CAS  PubMed  Google Scholar 

  11. Grandtner M, Turek Z, and Kreuzer F. Cardiac hypertrophy in the first generatin of rats native to simulated high altitude. Pflügers Arch 350:241–248, 1974.

    Article  CAS  PubMed  Google Scholar 

  12. Humar R, Kiefer FN, Berns H, Resink TJ, Battegay EJ. Hypoxia enhances vascular cell proliferation and angiogenesis in vitro via rapamycin (mTOR)-dependent signaling. FASEB J 16: 771–780,2002.

    Article  CAS  PubMed  Google Scholar 

  13. Jung F, Palmer LA, Zhou N, Johns, RA. Hypoxic regulation of inducible nitric oxide synthase via hypoxia inducible factor-1 in cardiac myocytes. Circ Res 86:319–325, 2000.

    Article  CAS  PubMed  Google Scholar 

  14. Kayar SR, and Banchero N. Myocardial capillarity in acclimation to hypoxia. Pflügers Arch 404:319–325, 1985.

    Article  CAS  PubMed  Google Scholar 

  15. Kuwabara K, Ogawa S, Matsumoto M, Koga S, Clauss M, Pinsky DJ, Lyn P, Leavy J, Witte L, Joseph-Silverstein J, Furie MB, Torcia G, Cozzolino F, Kamada T, and Stern DM. Hypoxia-mediated induction of acidic/basic fibroblast growth factor and platelet-derived growth factor in mononuclear phagocytes stimulates growth of hypoxic endothelial cells. Proc Natl Acad Sci 92:4606–4610, 1995.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Ladoux A, Frelin C. Hypoxia is a strong inducer of vascular endothelial growth factor mRNA expression in the heart. Biochem Biophys Res Commun 195:1005–1010, 1993.

    Article  CAS  PubMed  Google Scholar 

  17. Lee YM, Jeong C-H, Koo S-Y, Son MJ, Song HS, Bae S-K, Raleigh JA, Chung H-Y, Yoo M-A, Kim K-W. Determination of hypoxic region by hypoxia marker in developing mouse embryos in vivo: A possible signal for vessel development. Dev Dyn 220:175-186, 2001.

    Article  CAS  PubMed  Google Scholar 

  18. Lee YM, Kim S-H, Kim H-S, Son MJ, Nakajima H, Kwon HJ, Kim K-W. Inhibition of hypoxia- induced angiogenesis by FK228, a specific histone deacetylase inhibitor, via suppression of HIF-1α activity. Biochem and Biophys Res Comm 300:241–246, 2003.

    Article  CAS  Google Scholar 

  19. Levy AP. Hypoxic regulation of VEGF mRNA stability by RNA-binding proteins. Trends Cardiovas Med 8:246–250, 1998.

    Article  CAS  Google Scholar 

  20. Lewis AM, Mathieu-Costello O, McMillan PJ, and Gilbert RD. Effects of long-term, high-alti-tude hypoxia on the capillarity of the ovine fetal heart. Am J Physiol 277 (Heart Circ Physiol 46) : H756–H762, 1999.

    CAS  PubMed  Google Scholar 

  21. Lund DD, and Tomanek RJ. The effects of chronic hypoxia on the myocardial cell of normoten-sive and hypertensive rats. Anat Rec 196:421–430, 1980.

    Article  CAS  PubMed  Google Scholar 

  22. Maltepe E, Schmidt JV, Baunoch D, Bradfield CA, Simon MC. Abnormal angiogenesis and responses to glucose and oxygen deprivation in mice lacking the protein ARNT. Nature 386: 403–406, 1997.

    Article  CAS  PubMed  Google Scholar 

  23. Manohar M, Parks CM, Busch MA, Bisgard GE. Transmural coronary vasodilator reserve and flow distribution in unanesthetized calves sojourning at 3500 m. J of Surg Res 39(6):499–509, 1985.

    Article  CAS  Google Scholar 

  24. Marti HH, Risau W. Systemic hypoxia changes the organ-specific distribution of vascular endo-thelial growth factor and its receptors. Proc Natl Acad Sci USA 95:15809–15814, 1998.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Maxwell PH and Ratcliffe PJ. Oxygen sensors and angiogenesis. Cell and Dev Biol 13:29–37, 2002.

    Article  CAS  Google Scholar 

  26. Meerson FZ, Gomzakov OA, Shimkovich MV. Adaptation of high altitude hypoxia as a factor preventing development of myocardial ischemic necrosis. Am J of Cardiol 31:30–34, 1973.

    Article  CAS  Google Scholar 

  27. Minchenko A, Bauer T, Salceda S, Caro J. Hypoxic stimulation of vascular endothelial growth factor exprssion in vitro and in vivo. Lab Invest 71:374–379, 1995.

    Google Scholar 

  28. Moravec J, Cluzeaud F, Rakusan K, and Turek Z. Capillary supply and utilization of intracel-lular oxygen in the left ventricular myocardium from rats adapted to high altitude. Adv Exper Med Biol 159:243–252, 1983.

    Article  CAS  Google Scholar 

  29. Moravec J, Turek Z, and Moravec J. Persistence of neoangiogenesis and cardiomyocyte divisions in right ventricular myocardium of rats born and raised in hypoxic conditions. Basic Res Cardiol 97:153–160,2002.

    Article  PubMed  Google Scholar 

  30. Pietschmann M, and Bartels H. Cellular hyperplasia and hypertrophy, capillary proliferation and myoglobin concentration in the heart of newborn and adult rats at high altitude. Resp Physiol 59:347–360, 1985.

    Article  CAS  Google Scholar 

  31. Rakusan K, Cicutti N, Kolar F. Cardiac function, microvascular structure, and capillary hema-tocrit in hearts of polycythemic rats. Am J Physiol Heart Circ Physiol 281:H2425–H2431, 2001.

    CAS  PubMed  Google Scholar 

  32. Rakusan K, Turek Z, and Kreuzer F. Myocardial capillaries in guinea pigs native to high altitude (Junin, Peru, 4,105 m). Pflügers Arch 391:22–24, 1981.

    Article  CAS  PubMed  Google Scholar 

  33. Reller MD, Morton MJ, Giraud GD, Wu DE, Thornburg KL. Maximal myocardial blood flow is enhanced by chronic hypoxemia in late gestation fetal sheep. AmJofPhys 263:H1327–1329, 1992.

    Google Scholar 

  34. Ryan HE, Lo J, and Johnson RS. HIF-1ą is required for solid tumor formation and embryonic vascularization. EMBOJ. 17:3005–3015, 1998.

    Article  CAS  Google Scholar 

  35. Souhrada J, Mrzena B, Poupa O, and Bullard RW. Functional changes of cardiac muscle in adaptation to two types of chronic hypoxia. J of Applied Physiol 30:214–218, 1971.

    CAS  Google Scholar 

  36. Takagi H, King GL, Ferrara N, Aiello LP. Hypoxia regulates vascular endothelial growth factor receptor KDR/Flk gene expression through adenosine A2 receptors in retinal capillary endo-thelial cells. Invest Opthomol Vis Sci 37:1311–1321, 1996.

    CAS  Google Scholar 

  37. Tomanek RJ, Holifield JS, Reiter RS, Sandra A, and Lin JJ-C. Role of VEGF family members and receptors in coronary vessel formation. Dev Dyn 225:233–240, 2002.

    Article  CAS  PubMed  Google Scholar 

  38. Tomanek RJ, Ratajska A, Kitten GT, Yue X, and Sandra A. Vascular endothelial growth factor coincides with coronary vasculogenesis and angiogenesis. Dev Dyn 215:54–61, 1999.

    Article  CAS  PubMed  Google Scholar 

  39. Tomanek RJ, Yue X, Zheng W. Vascular development of the heart. In: Assembly of the Vascula-ture and its Regulation, edited by Tomanek RJ. Boston: Birkhäuser, 133–155, 2002.

    Chapter  Google Scholar 

  40. Tomanek RJ, Zheng W, Peters KG, Lin P, Holifield JS, and Suvarna PR. Multiple growth factors regulate coronary embryonic vasculogenesis. Dev Dyn 221:265–273, 2001.

    Article  CAS  PubMed  Google Scholar 

  41. Turek Z, Grandtner M, and Kreuzer F. Cardiac hypertrophy, capillary and muscle fiber density, muscle fiber diameter, capillary radius and diffusion distance in the myocardium of growing rats adapted to a simulated altitude of 3500 m. Pflügers Arch 335:19–28, 1972.

    Article  CAS  Google Scholar 

  42. Turek Z, Hoofd LJ, Ringnalda BE, Rakusan K. Myocardial capillarity of rats exposed to simulated high altitude. Adv. Exp. Med. Biol 191:249–255, 1985.

    Article  CAS  PubMed  Google Scholar 

  43. Wang GL, and Semenza GL. Characterization of hypoxia-inducible factor 1 and regulation of DNA binding activity by hypoxia. J Biol Chem 268:21513–21518, 1993.

    CAS  PubMed  Google Scholar 

  44. Wiesener MS, Jürgensen JS, Rosenberger C, Scholze CK, Hörstrup, Warnecke C, Mandriota S, Bechmann I, Frei UA, Pugh CW, Ratcliffe PF, Bachmann S, Maxwell PH and Eckardt K-U. Widespread hypoxia-inducible expression of HIF-2α in distant cell populations of different organs. FASEB 17:271–273, 2003.

    CAS  Google Scholar 

  45. William C, Koehne P, Jürgensen JS, Gräfe M, Wager KD, Bachmann S, Fre U, Eckardt K-U. Tie2 receptor expression is stimulated by hypoxia and proinflammatory cytokines in human endothelial cells. Circ Res 87:370–377, 2000.

    Article  Google Scholar 

  46. Yue X, and Tomanek RJ. Stimulation of coronary vasculogenesis/angiogenesis by hypoxia in cultured embryonic hearts. Dev Dyn 216:28–36, 1999.

    Article  CAS  PubMed  Google Scholar 

  47. Yue X, and Tomanek RJ. Effects of VEGF165 and VEGF121 on vasculogenesis and angiogenesis in cultured embryonic quail hearts. Am J Physiol Heart Circ Physiol 280:H2240–H2247, 2001.

    CAS  PubMed  Google Scholar 

  48. Zhao L, Eghbali-Webb N. Release of pro- and anti-angiogenic factors by human cardiac fibro- blasts: effects on DNA synthesis and protection under hypoxia in human endothelial cells. Biochimica et Biophysica Acta 1538:273–282, 2001.

    Article  CAS  PubMed  Google Scholar 

  49. Zhong N, Zhang Y, Zhu H-F, Wang J-C, Fang Q-Z, Zhou Z-N. Myocardial capillary angiogenesis and coronary flow in ischemia tolerance rat by adaptation to intermittent high altitude. Acta Pharmacol Sin 23(4):305–310, 2002.

    PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this paper

Cite this paper

Tomanek, R.J., Lund, D.D., Yue, X. (2003). Hypoxic Induction of Myocardial Vascularization During Development. In: Roach, R.C., Wagner, P.D., Hackett, P.H. (eds) Hypoxia. Advances in Experimental Medicine and Biology, vol 543. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8997-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8997-0_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4753-8

  • Online ISBN: 978-1-4419-8997-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics