Spectroscopic Imaging in the Mid-Infrared Applied to High-Throughput Studies of Supported Catalyst Libraries

  • Steven S. Lasko
  • Reed J. Hendershot
  • Yu Fu
  • Mark-Florian Fellmann
  • Gudbjorg Oskarsdottir
  • Christopher M. Snively
  • Jochen Lauterbach


The “combinatorial approach” has shown very promising results for pharmaceuticals and small organic molecules [1, 2, 3]. High-throughput (HT) screening of heterogeneous catalysts goes back at least IS years [4], but has recently been rediscovered as a method for rapidly and efficiently identifying catalyst formulations [5, 6, 7, 8, 9, 10, 11, 12, 13, 14]. The approach consists of two key steps: the systematic synthesis of a large number of potentially useful formulations (collectively referred to herein as a “library,” although this term has recently been contested [15), and the subsequent rapid testing of this library to determine the usefulness of each formulation to the specific application. Several methodologies have been developed for the rapid and efficient generation of catalyst libraries, ranging from evaporation methods [16] and robotic dispensing of catalyst precursors [17–19] to parallel hydrothermal processing [20, 21, 22]. Once generated, the libraries must be characterized and tested. For heterogeneously catalyzed reactions, this step can range from simple qualitative activity screening to the quantitative measurement of selectivity or turnover rates. Currently available analytical techniques are often incapable of keeping pace with the large numbers of compounds created. This creates a bottleneck, slowing the entire discovery process, and has created a serious demand for the development of analytical techniques specifically designed for the HT analysis of combinatorial heterogeneous catalyst libraries.


Spectroscopic Image Mercury Cadmium Telluride Indium Antimonide FTIR Imaging Thermal Cross Talk 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Szostak, J. W. Chem. Rev. 1997, 97, 347–348.CrossRefGoogle Scholar
  2. 2.
    Terrett, N. Drug Discovery Today 1997, 2, 250.Google Scholar
  3. 3.
    Terrett, N. K. Combinatorial Chemistry 1998, New York: Oxford University Press.Google Scholar
  4. 4.
    Creer, J. G., Jackson, P., Pandy, G., Percival, G. G., Seddon, D. Appl. Catal. 1986, 22, 85–95.CrossRefGoogle Scholar
  5. 5.
    Senkan, S. Angew. Chem. Int. Ed. 2001, 40, 312–329.CrossRefGoogle Scholar
  6. 6.
    Hagemeyer, A., Jandeleit, B., Liu, Y. M., Poojary, D. M., Turner, H. W., Volpe, A. F., Weinberg, W. H. Appl. Catal. A 2001, 221, 23–43.CrossRefGoogle Scholar
  7. 7.
    Engstrom, J. R., Weinberg, W. H. AIChE J. 2000, 46, 2–5.CrossRefGoogle Scholar
  8. 8.
    Weinberg, W. H., McFarland, E. W. Tibtech 1999, 17, 107–115.CrossRefGoogle Scholar
  9. 9.
    Jandeleit, B., Schaefer, D. J., Powers, T. S., Turner, H. W., Weinberg, W. H. Angew. Chem. Int. Ed. 1999, 38, 2495–2532.CrossRefGoogle Scholar
  10. 10.
    Jandeleit, B., Turner, H. W., Uno, T., van Beek, J. A. M., Weinberg, W. H. Cat Tech 1998, 2, 101–123.Google Scholar
  11. 11.
    Cong, P., Giaquinta, D., Guan, S., McFarland, E., Turner, H., Weinberg, W. H. AIChE Spring National Meeting, New Orleans, LA, 1998.Google Scholar
  12. 12.
    Scheidtmann, J., Weiss, P. A., Maier, W. F. Appl. Catal. A 2001, 222, 79–89.CrossRefGoogle Scholar
  13. 13.
    Maier, W. F., Kirsten, G., Orschel, M., Weiss, P. A. Chim. Oggi-Chem. Today 2000, 18, 15–19.Google Scholar
  14. 14.
    Maier, W. F. Angew. Chem. Int. Ed. 1999, 38, 1216–1218.CrossRefGoogle Scholar
  15. 15.
    Hoffmann, R. Angew. Chem. Int. Ed. 2001, 40, 3337.CrossRefGoogle Scholar
  16. 16.
    Liu, Y. M., Cong, P. J., Doolen, R. D., Turner, H. W., Weinberg, W. H. Catal. Today 2000, 61, 87–92.CrossRefGoogle Scholar
  17. 17.
    Richter, A., Langpape, M., Kolf, S., Grubert, G., Eckelt, R., Radnik, J., Schneider, A., Pohl, M. M., Fricke, R. Appl. Catal. B 2002, 36, 261–277.CrossRefGoogle Scholar
  18. 18.
    Rodemerck, U., Wolf, D., Buyevskaya, O. V., Claus, P., Senkan, S., Baerns, M. Chem. Eng. J. 2001, 82, 3–11.CrossRefGoogle Scholar
  19. 19.
    Krantz, K., Ozturk, S., Senkan, S. Catal. Today 2000, 62, 281–289.CrossRefGoogle Scholar
  20. 20.
    Newsam, J. M., Bein, T., Klein, J., Maier, W. F., Stichert, W. Micropor. Mesopor. Mater. 2001, 48, 355–365.CrossRefGoogle Scholar
  21. 21.
    Bein, T., Gardner, D., Hilbrandt, N., Choi, K., Fanwick, P. Abstr. Pap. Am. Chem. Soc. 1999, 218, 143-ANYL.Google Scholar
  22. 22.
    Bein, T. Angew. Chem. Int. Ed. 1999, 38, 323–326.CrossRefGoogle Scholar
  23. 23.
    Hoffmann, C., Wolf, A., Schuth, F. Angew. Chem. Int. Ed. 1999, 38, 2800–2803.CrossRefGoogle Scholar
  24. 24.
    Reetz, M. T., Kuhling, K. M., Wilensek, S., Husmann, H., Hausig, U. W., Hermes, M. Catal. Today 2001, 67, 389–396.CrossRefGoogle Scholar
  25. 25.
    Buyevskaya, O. V., Bruckner, A., Kondratenko, E. V., Wolf, D., Baerns, M. Catal. Today 2001, 67, 369–378.CrossRefGoogle Scholar
  26. 26.
    Hagemeyer, A., Borade, R., Desrosiers, P., Guan, S. H., Lowe, D. M., Poojary, D. M., Turner, H., Weinberg, H., Zhou, X. P., Armbrust, R., Fengler, G., Notheis, U. Appl. Catal. A 2002, 227, 43–61.CrossRefGoogle Scholar
  27. 27.
    Desrosiers, P., Guram, A., Hagemeyer, A., Jandeleit, B., Poojary, D. M., Turner, H., Weinberg, H. Catal. Today 2001, 67, 397–402.CrossRefGoogle Scholar
  28. 28.
    Orschel, M., Klein, J., Schmidt, H.-W., Maier, W. F. Angew. Chem. Int. Ed. 1999, 38, 2791–2794.CrossRefGoogle Scholar
  29. 29.
    Weinberg, H. w., McFarland, E. w., Cong, P., Guan, S. US Patent 5,959,297, 1999 (to Symyx Technologies).Google Scholar
  30. 30.
    Claus, P., Honicke, D., Zech, T. Catal. Today 2001, 67, 319–339.CrossRefGoogle Scholar
  31. 31.
    Schrader, W., Eipper, A., Pugh, D. J., Reetz, M. T. Can. J. Chem.—Rev. Can. Chim. 2002, 80, 626–632.CrossRefGoogle Scholar
  32. 32.
    Yamada, Y., Ueda, A., Zhao, Z., Maekawa, T., Suzuki, K., Takada, T., Kobayashi, T. Catal. Today 2001, 67, 379–387.CrossRefGoogle Scholar
  33. 33.
    Senkan, S. M. Nature 1998, 394, 350–353.CrossRefGoogle Scholar
  34. 34.
    Su, H., Hou, Y. J., Houk, R. S., Schrader, G. L., Yeung, E. S. Anal. Chem. 2001, 73, 4434–4440.CrossRefGoogle Scholar
  35. 35.
    Su, H., Yeung, E. S. J. Am. Chem. Soc. 2000, 122, 7422–7423.CrossRefGoogle Scholar
  36. 36.
    Maier, W. F., Holzwarth, A., Schmidt, H. W. Angew. Chem. Int. Ed. 1998, 37, 2644–2647.CrossRefGoogle Scholar
  37. 37.
    Moates, F. C., Somani, M., Annamalai, J., Richardson, J. T., Luss, D., Willson, R. C. Ind. Eng. Chem. Res. 1996, 35, 4801–4803.CrossRefGoogle Scholar
  38. 38.
    Snively, C. M., Oskarsdottir, G., Lauterbach, J. Catal. Today 2001, 67, 357–368.CrossRefGoogle Scholar
  39. 39.
    Snively, C. M., Oskarsdottir, G., Lauterbach, J. Angew. Chem. Int. Ed. 2001, 40, 3028–3030.CrossRefGoogle Scholar
  40. 40.
    Snively, C. M., Oskarsdottir, G., Lauterbach, J. J. Comb. Chem. 2000, 2, 243–245.CrossRefGoogle Scholar
  41. 41.
    Snively, C. M., Lauterbach, J. Spectroscopy 2002, 17, 26–33.Google Scholar
  42. 42.
    Snively, C. M., Lauterbach, J. In E. G. Derouane, F. Lemos, A. Corma, and F. R. Ribero (Eds.), Combinatorial Catalysis and High-Throughput Catalyst Design and Testing, Vol. 560, 1999, Kluwer Academic, pp. 437–439.Google Scholar
  43. 43.
    Snively, C. M., Katzenberger, S., Oskarsdottir, G., Lauterbach, J. Opt. Lett. 1999, 24, 1841–1843.CrossRefGoogle Scholar
  44. 44.
    Lauterbach, J., Snively, C. M., Oskarsdottir, G. In R. Malhotra (Ed.), Combinatorial Materials Development, Vol. 814, 2002, Washington, DC: American Chemical Society, 65–87.CrossRefGoogle Scholar
  45. 45.
    Lauterbach, J., Snively, C. M., Oskarsdottir, G. Abstr. Pap. Am. Chem. Soc. 2000, 219, 6-MTLS.Google Scholar
  46. 46.
    Snively, C. M., Koenig, J. L. Appl. Spectrosc. 1999, 53, 170–177.CrossRefGoogle Scholar
  47. 47.
    Snively, C. M., Koenig, J. L. J. Polym. Sci. Polym. Phys. Ed. 1999, 37, 2353–2359.CrossRefGoogle Scholar
  48. 48.
    Snively, C. M. Unpublished PhD Thesis, 1999, Department of Macromolecular Science, Case Western Reserve University; Cleveland, OH.Google Scholar
  49. 49.
    Snively, C. M., Koenig, J. L. J. Polym. Sci. Polym. Phys. Ed. 1999, 37, 2261–2268.CrossRefGoogle Scholar
  50. 50.
    Snively, C., Lauterbach, J. US Patent, pending.Google Scholar
  51. 51.
    Snively, C. M., Koenig, J. L. J. Polym. Sci. Polym. Phys. Ed. 1999, 37, 2353–2359.CrossRefGoogle Scholar
  52. 52.
    Snively, C. M., Koenig, J. L. Macromol. 1998, 31, 3753–3755.CrossRefGoogle Scholar
  53. 53.
    Koenig, J. L., Snively, C. M. Spectroscopy 1998, 13, 22–28.Google Scholar
  54. 54.
    Lewis, E. N., Levin, I. w., Crocombe, R. A. Mikrochim. Acta 1997, Suppl. 14, 589–590.Google Scholar
  55. 55.
    Lewis, E. N., Kidder, L. H., Pentchev, I. W., Levin, I. W., Lester, D. S. Biophys. J. 1997, 72, MPME5.Google Scholar
  56. 56.
    Lewis, E. N., Gorbach, A. M., Marcott, C., Levin, I. W. Appl. Spectrosc. 1996, 50, 263–269.CrossRefGoogle Scholar
  57. 57.
    Kidder, L. H., Levin, I. w., Lewis, E. N., Kleiman, V. D., Heilweil, E. J. Opt. Lett. 1997, 22, 742–744.CrossRefGoogle Scholar
  58. 58.
    Lewis, E. N., Levin, I. W. Appl. Spectrosc. 1995, 49, 672–678.CrossRefGoogle Scholar
  59. 59.
    Lewis, E. N., Treado, P. J., Reeder, R. C., Story, G. M., Dowrey, A. E., Marcott, C., Levin, I. W. Anal. Chem. 1995, 67, 3377–3381.CrossRefGoogle Scholar
  60. 60.
    Treado, P. J., Levin, I. W., Lewis, E. N. Appl. Spectrosc. 1994, 48, 607–615.CrossRefGoogle Scholar
  61. 61.
    Griffiths, P. R., de Haseth, J. A. Fourier Transform Infrared Spectrometry, 1986, New York: John Wiley.Google Scholar
  62. 62.
    Fanson, P. T., Delgass, W.N., Lauterbach, J. J. Cat. 2001, 204, 35–52.CrossRefGoogle Scholar
  63. 63.
    Barshad, Y., Zhou, X., Gulari, E. J. Cat. 1985, 94, 128–141.CrossRefGoogle Scholar
  64. 64.
    Ryczkowski, J. Catal. Today 2001, 68, 263–381.CrossRefGoogle Scholar
  65. 65.
    Hall, J., Lundgren, S., Keck, K. E., Kasemo, B. Int. J. Mass Spectrom. Ion Phys. 1991, 108, 1–21.CrossRefGoogle Scholar
  66. 66.
    Gaskell, S. J., Finlay, E. M. H. Trac-Trends Anal. Chem. 1988, 7, 202–208.CrossRefGoogle Scholar
  67. 67.
    Babalievski, F.V. Anal. Chim. Acta 1987, 201, 241–252.CrossRefGoogle Scholar
  68. 68.
    Adams, M. J. Chemometrics in Analytical Spectroscopy, 1995, Cambridge: Royal Society of Chemistry.Google Scholar
  69. 69.
    Miller, J. C., Miller, J. N. Statistics for Analytical Chemistry, 1988, Chichester, UK: Ellis Horwood.Google Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Steven S. Lasko
    • 1
  • Reed J. Hendershot
    • 1
  • Yu Fu
    • 1
  • Mark-Florian Fellmann
    • 1
  • Gudbjorg Oskarsdottir
    • 1
  • Christopher M. Snively
    • 1
  • Jochen Lauterbach
    • 1
  1. 1.Department of Chemical EngineeringUniversity of DelawareNewarkUSA

Personalised recommendations