Intrinsic Fiber-Optic Sensors for Spatially Resolved Combinatorial Screening

  • Peter Geissinger
  • Alan W. Schwabacher


Computational methods for the calculation of the structure and properties of molecules have achieved a high degree of accuracy. However, structure-based drug design, while being a powerful approach, often does not afford the reliability needed for targeted synthesis of molecules that show a desired drug action. An alternative approach is the synthesis of large numbers of compounds and the systematic evaluation of these compounds for a desired effect. This approach led to the development of the field of combinatorial chemistry. For the combinatorial approach to be effective, three basic questions must be addressed.


Critical Angle Total Internal Reflection Fiber Core Evanescent Field Sensor Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lam, K. S., Lebl, M., Krchnák, V. The “one-bead-one-compound” combinatorial library method. Chem. Rev. 1997, 97, 411–448.CrossRefGoogle Scholar
  2. 2.
    Pirrung, M. C. Spatially addressable combinatorial libraries. Chem. Rev. 1997, 97, 473–488.CrossRefGoogle Scholar
  3. 3.
    Schwabacher, A.W., Shen, Y., Johnson, C.W. Fourier transform combinatorial chemistry. J. Am. Chem. Soc. 1999, 121, 8669–8670.CrossRefGoogle Scholar
  4. 4.
    Marcuse, D. Theory of Dielectric Optical Waveguides, 2nd ed., 1999, Boston, MA: Academic Press.Google Scholar
  5. 5.
    Snyder, A. W., Love, J. D. Optical Waveguide Theory 1983, London: Chapman & Hall.Google Scholar
  6. 7.
    Harrick, N. J. Internal Reflection Spectroscopy 1967, New York: Wiley-Interscience.Google Scholar
  7. 8.
    Harrick, N. J. Electric field strengths at totally reflecting interfaces. J. Opt. Soc. Am. 1965, 55, 851–857.CrossRefGoogle Scholar
  8. 9.
    Newton, I. Opticks, vol. 3, 2nd ed., 1717.Google Scholar
  9. 10.
    Quincke, G. Optische Experimental Untersuchungen. Über das Eindringen des total reflektierten Lichtes in das dünnere Medium. Ann. Phys. (Leipzig) 1866, 127, 1–29.Google Scholar
  10. 11.
    Quincke, G. Optische Experimental-Untersuchungen. II. Über die elliptische Polarisation des bei totaler Reflexion eingedrungenen oder zurück-geworfenen Lichtes. Ann. Phys. (Leipzig) 1866, 127, 199.Google Scholar
  11. 12.
    Hall, E. E. The penetration of totally reflected light into the rarer medium. Phys. Rev. 1902, 15, 73–106.Google Scholar
  12. 13.
    Sélényi, P. Sur l’exi stence et l’observation des ondes lumineuses sphériques inhornogènes C. R. Acad. Sci. Paris 1913, 157, 1408.Google Scholar
  13. 14.
    Schaefer, C., Gross, G. Untersuchungen über die Totalreflexion. Ann. Phys. (Leipzig) 1910, 32, 648–672.Google Scholar
  14. 15.
    Drexhage, K. H. Monomolecular layers and light. Sci. Am. 1970, 222, 108–119.CrossRefGoogle Scholar
  15. 16.
    Goos, F., Hänchen, H. Über das Eindringen des total reflektierten Lichtes in das dünnere Medium. Ann. Phys. (Leipzig) 1943, 43, 383–392.Google Scholar
  16. 17.
    Goos, F., Hänchen, H. Ein neuer und fundamental Versuch zur Totalreflexion. Ann. Phys. (Leipzig) 1947, 1, 333.Google Scholar
  17. 18.
    Goos, F., Linberg-Hänchen, H. Neumessung des Strahlversetzungseffektes bei Totalreflexion. Ann. Phys. (Leipzig) 1949, 5, 251.Google Scholar
  18. 19.
    Renard, R. H. Total reflection: A new evaluation of the Goos-Hänchen shift. J. Opt. Soc. Am. 1964, 54, 1190–1197.CrossRefGoogle Scholar
  19. 21.
    MacChesney, J. B., DiGiovanni, D. J. Materials development of optical fiber. J. Am. Ceram. Soc. 1990, 73, 3537–3556.CrossRefGoogle Scholar
  20. 22.
    Thomas, G. A., Shraiman, B. I., Glodis, P. F., Stephen, M. J. Towards the clarity limit in optical fibres. Nature 2000, 404, 262–264.CrossRefGoogle Scholar
  21. 23.
    Culshaw, B. Basic concepts of optical fiber sensors. In B. Culshaw and J.P. Dakin (Eds.), Optical Fiber Sensors: Systems and Components, Vol. 1, 1988, Norwood, MA: Artech House, pp. 9–24.Google Scholar
  22. 24.
    Paul, P. H., Kychakoff, G. Fiber-optic evanescent field absorption sensor. Appl. Phys. Lett. 1987, 51, 12.CrossRefGoogle Scholar
  23. 25.
    Blair, D. S., Burgess, L. W., Brodsky, A. M. Study of analyte diffusion into a silicone-clad fiber-optic chemical sensor by evanescent wave spectroscopy. Appl. Spectrosc. 1995, 49, 1636–1645.CrossRefGoogle Scholar
  24. 26.
    Egami, C., Takeda, K., Isai, M., Ogita, M. Evanescent wave spectroscopic fiber optic pH sensor. Opt. Commun. 1996, 122, 122–126.CrossRefGoogle Scholar
  25. 27.
    Gupta, B. D., Khijwania, S. K. Experimental studies on the response of the fiber optic evanescent field absorption sensor. Fiber Integr. Opt. 1998, 17, 63–73.CrossRefGoogle Scholar
  26. 28.
    Dakin, J. P., Pratt, D. J. Fibre-optic distributed temperature measurement-a comparative study of techniques. Proc. IEE Colloquium on Distributed Optical Fibre Sensors, 1986, London: The Institute of Electrical Engineers, pp. 10/11–16.Google Scholar
  27. 29.
    Culshaw, B., Davies, D. E. N., Kingsley, S. A. Acoustic sensitivity of optical-fibre waveguides. Electron. Lett. 1977, 13, 760–761.CrossRefGoogle Scholar
  28. 30.
    Fields, J. N. Coupled waveguide acoustooptic hydrophone. Appl. Opt. 1979, 18, 3533–3534.CrossRefGoogle Scholar
  29. 31.
    DeGrandpre, M. D., Burgess, L. W. Long path fiber-optic sensor for evanescent field absorbance measurements. Anal. Chem. 1988, 60, 2582–2586.CrossRefGoogle Scholar
  30. 32.
    Vo-Dinh, T., Nolan, T., Cheng, Y. F., Alarie, J. P., Spaniak, M. J. A fiber optic antibody-based biosensor with time-resolved detection. Proc. Conf. on Chemical, Biochemical, and Environmental Fiber Sensors, 1989, Boston. MA: The International Society for Optical Engineering (SPIE) pp. 266–272.Google Scholar
  31. 33.
    Hale, Z. M., Payne, F. P. Demonstration of an optimized evanescent field optical fibre sensor Anal. Chim. Acta 1994, 293, 49–54.CrossRefGoogle Scholar
  32. 34.
    Lieberman, R. A., Blyler, L. L., Cohen, L. G. A Distributed fiber optic sensor based on cladding fluorescence. J. Lightwave Technol. 1990, 8, 212–220.CrossRefGoogle Scholar
  33. 35.
    Marcuse, D. Launching light into fiber cores from sources located in the cladding. J. Lightwave Technol. 1988, 6, 1273–1279.CrossRefGoogle Scholar
  34. 36.
    Christensen, D., Andrade, J., Wang, J., Ives, J., Yoshida, D. Evanescent-wave coupling of fluorescence into guided modes: FDTD analysis. Proc. Conf. on Chemical, Biochemical, and Environmental Fiber Sensors, 1989, Boston, MA: The International Society for Optical Engineering (SPIE) pp. 70–74.Google Scholar
  35. 37.
    Ueno, Y., Shimizu, M. An optical fiber fault location method. IEEE J. Quantum Electron. 1975, QE-11, 77D–78D.Google Scholar
  36. 38.
    Ueno, Y., Shirnizu, M. Optical fiber fault location method. Appl. Opt. 1976, 15, 1385–1388.CrossRefGoogle Scholar
  37. 39.
    Personick, S. D. Photon probe—An optical-fiber time-domain reflectometer. Bell Syst. Tech. J. 1977, 56, 355–366.Google Scholar
  38. 40.
    Barnoski, M. K., Jensen, S. M. Fiber Waveguides: A novel technique for investigating attenuation. Appl. Opt. 1976, 15, 2112–2115.CrossRefGoogle Scholar
  39. 41.
    Barnoski, M. K., Rourke, M. D., Jensen, S. M., Melville, R. T. Optical time domain reflectometer. Appl. Opt. 1977, 16, 2375–2379.CrossRefGoogle Scholar
  40. 42.
    Kharaz, A., Jones, B. E. A distributed fiber optic sensing system for humidity measurements. Meas. Control 1995, 28, 101–103.Google Scholar
  41. 43.
    Kvasnik, F., McGrath, A. D. Distributed chemical sensing utilising evanescent wave interactions. Proc. Conf. on Chemical, Biochemical, and Environmental Fiber Sensors 1989, Boston. MA: The International Society for Optical Engineering (SPIE), pp. 75–82.Google Scholar
  42. 44.
    Browne, C. A., Tarrant, D. H., Olteanu, M. S., Mullens, J. W., Chronister, E. L. Intrinsic sol-gel clad fiber-optic sensors with time-resolved detection. Anal. Chem. 1996, 68, 2289–2295.CrossRefGoogle Scholar
  43. 45.
    Dakin, J. P. Distributed optical fiber sensors. Proc. Conf. on Distributed and Multiplexed Fiber Optic Sensors II, 1992, Boston. MA: The International Society for Optical Engineering (SPIE), pp. 76–108.Google Scholar
  44. 46.
    Prince, B. J., Schwabacher, A. W., Geissinger, P. A readout scheme for closely packed fluorescent chemosensors on optical libers. Anal. Chem. 2001, 73, 1007–1015.CrossRefGoogle Scholar
  45. 47.
    Blyler, L. L., Lieberman, R. A., Cohen, L. G., Ferrara, J. A., MacChesney, J. B. Optical fiber chemical sensors utilizing dye-doped silicone polymer claddings. Polym. Eng. Sci. 1989, 29, 1215–1218.CrossRefGoogle Scholar
  46. 48.
    Gloge, D. Dispersion in weakly guiding fibers, Appl. Opt. 1971, 10, 2442–2445.CrossRefGoogle Scholar
  47. 49.
    Prince, B. J., Schwabacher, A. W., Geissinger, P. Fluorescent fiber-optic sensor arrays probed utilizing evanescent fiber-fiber coupling. Appl. Spectrosc. 2001, 55, 1018–1024.CrossRefGoogle Scholar
  48. 50.
    Prince, B. J., Schwabacher, A. W., Geissinger, P. An optical readout scheme providing high spatial resolution for the evaluation of combinatorial libraries on optical fibers. J. Assoc. Lab. Autom. 2002, 7, 66–73.CrossRefGoogle Scholar
  49. 51.
    Gloge, D. Weakly guiding fibers. Appl. Opt. 1971, 10, 2252–2258.CrossRefGoogle Scholar
  50. 52.
    Payne, F. P., Hale, Z. M. Deviation from Beer’s law in multimode optical fibre evanescent field sensors. Int. J. Optoelectron. 1993, 8, 743–748.Google Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Peter Geissinger
    • 1
  • Alan W. Schwabacher
    • 1
  1. 1.Department of ChemistryUniversity of Wisconsin-MilwaukeeMilwaukeeUSA

Personalised recommendations