Skip to main content

Genes and Developmental Pathways

  • Chapter
Genes, Development and Cancer
  • 338 Accesses

Abstract

The way in which genes control the growth and development of an organism is a central problem in biology, and one which is currently under study in diverse forms from phage to man. I would like to discuss an approach to this problem which makes use of a series of pseudoallelic genes in Drosophila. Such series of closely linked genes with related effects have, in several instances, been profitably exploited in the bacteria to learn more about how genes control biochemical pathways. Striking examples are the linked genes controlling histidine biosynthesis in Salmonella (Demerec and Hartman, 1959; Ames and Hartman, 1962), or lactose utilization in E. coli (Jacob and Monod, 1961a,b). It may be anticipated that pseudoallelic series affecting morphological traits, such as the case to be described below, can also be profitably exploited to learn more about how genes control developmental pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ames B. N., and P. E. Hartman. 1962. Genes, enzymes and control mechanisms in histidine biosynthesis. p. 322–334. In Molecular basis of neoplasia. Univ. of Texas Press Austin, Texas.

    Google Scholar 

  • Benzer S. 1955. Fine structure of a genetic region in bacteriophage. Proc. Natl. Acad. Sci. 41:344–354.

    Article  PubMed  CAS  Google Scholar 

  • Benzer S. 1957. The elementary units of heredity. p. 70–93. In W. D. McElroy and B. Glass (eds.), The chemical basis of heredity. The Johns Hopkins Press Baltimore, Md.

    Google Scholar 

  • Brown S.W., and A. Hannah. 1952. An induced maternal effect on the stability of the ring-X chromosome of Drosophila melanogaster. Proc. Natl. Acad. Sci. 38:687–693.

    Article  PubMed  CAS  Google Scholar 

  • Carlson E. A. 1959. Comparative genetics of complex loci. Quart. Rev. Biol. 34: 33–67.

    Article  PubMed  CAS  Google Scholar 

  • Case M. E., and N. H. Giles. 1958. Recombination mechanisms at the pan-2 locus in Neurospora crassa. Cold Spr. Harb. Symp. Quant. Biol. 23: 119–135.

    Article  CAS  Google Scholar 

  • Catcheside D. G., and A. Overton. 1958. Complementation between alleles in heterocaryons. Cold Spr. Harb. Symp. Quant. Biol, 23:137–140.

    Article  CAS  Google Scholar 

  • Chovnick A., A Schalet, R. P. Kernaghan, and J. Talsma. 1962. The resolving power of genetic fine structure analysis in higher organisms as exemplified by Drosophila. Amer. Nat. 96: 281–296.

    Article  Google Scholar 

  • Demerec M., and P. E. Hartman. 1959. Complex loci in micro-organisms. Ann. Rev. Microbiol. 13:377–406.

    Article  Google Scholar 

  • Dunn L. C. 1954. The study of complex loci. Proc. 9 Intern. Congr. Genetics, Bellagio, Italy, 1953. Caryologia 6:155–166.

    Google Scholar 

  • Gloor H. 1947. Phanokopie-versuche mit Äther an Drosophila. Rev. Suisse Zool. 54: 637–712.

    Google Scholar 

  • Hannah A. 1953. Non-autonomy of yellow in gynandromorphs of Drosophila melanogster. J. Exptl. Zool. 123: 523–560.

    Article  Google Scholar 

  • Henning U., and C. Yanofsky. 1962. Amino acid replacements associated with reversion and recombination within the A-gene. Proc. Natl. Acad. Sci. 48:1497–1504.

    Article  PubMed  CAS  Google Scholar 

  • Ingram V. M. 1961. Gene evolution and the haemoglobins. Nature 189:704–708.

    Article  PubMed  CAS  Google Scholar 

  • Itikawa N. 1952. Genetical and embryological studies on the E-multiple alleles in the silkworm, Bombyx mori. L. Bull. Sericultural Exptl. Station (Tokyo) 14: 23–91.

    Google Scholar 

  • Itikawa N. 1955. An example of the silkwormmothwhich has the 3rd wing incompletely developed. [in Japanese]. Acta Sericologia 12:13–15.

    Google Scholar 

  • Jacob F., D. Perrin, C. Sanchez, and J. Monod. 1960. L’opéron: groupe de gènes à expression coordonnée par un opérateur. C.R. Acad. Sci. 250:1727–1729.

    CAS  Google Scholar 

  • Jacob F., and J. Monod. 1961a. Genetic regulatory mechanisms in the synthesis of proteins. J. Mol. Biol. 3:318–356.

    Article  PubMed  CAS  Google Scholar 

  • Jacob F., and J. Monod. 1961b. On the regulation of gene activity. Cold Spr. Harb. Symp. Quant. Biol. 26:193–211.

    Article  CAS  Google Scholar 

  • Lewis E. B. 1951. Pseudoallelism and gene evolution. Cold Spr. Harb. Symp. Quant. Biol. 16:159–174.

    Article  CAS  Google Scholar 

  • Lewis E. B. 1954a. The theory and application of a new method of detecting chromosomal rearrangements in Drosophila melanogaster. Amer. Nat. 88:225–239.

    Article  Google Scholar 

  • Lewis E. B. 1954b. Pseudoallelism and the gene concept. Proc. 9 Intern. Congr. Genetics, Bellagio, Italy, 1953. Caryologia 6:100–105.

    Google Scholar 

  • Lewis E. B. 1955. Some aspects of position pseudoallelism. Amer. Nat. 89:73–89.

    Article  Google Scholar 

  • Lewis E. B. 1957. Two wings or four? Engineering and Science Monthly 21:19–21.

    Google Scholar 

  • Mitchell M. B. 1955. Aberrant recombination in Neurospora. Proc. Natl. Acad. Sci. 41: 935–937.

    Article  PubMed  CAS  Google Scholar 

  • Nelson O. E. 1962. The waxy locus in maize. I. Intralocus recombination frequency estimates by pollen and by conventional analyses. Genetics 47:737–742.

    PubMed  CAS  Google Scholar 

  • Pontecorvo G. 1958. Trends in genetic analysis. Columbia University Press New York.

    Google Scholar 

  • Pritchard R. H. 1955. The linear arrangement of a series of alleles of Aspergillus nidulans. Heredity 9:343–371.

    Article  Google Scholar 

  • Pritchard R. H. 1960. The bearing of recombination analysis at high resolution on genetic fine structure in Aspergillus nidulans and the mechanism of recombination in higher organisms. Symp. Soc. Gen. Microbiol. 10:155–180.

    Google Scholar 

  • Roman H. 1956. Studies of gene mutation in Saccharomyces. Cold Spr. Harb. Symp. Quant. Biol. 21: 175–185.

    Article  CAS  Google Scholar 

  • Tsujita M. 1955. On the crossing-over between EH and EK of the E allelic series in the silkworm. Jap. J., Genetics 30:227–235.

    Article  Google Scholar 

  • Welshons W. J., and E. S. Von Halle. 1962. Pseudoallelism at the Notch locus in Drosophila. Genetics 47:743–759.

    PubMed  CAS  Google Scholar 

  • Zalokar M. 1947. Anatomie du thorax de Drosophila melanogaster. Rev. Suisse Zool. 54:17–53.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lewis, E.B. (2004). Genes and Developmental Pathways. In: Lipshitz, H.D. (eds) Genes, Development and Cancer. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8981-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8981-9_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4746-0

  • Online ISBN: 978-1-4419-8981-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics