Fuzzy Sets and Fuzzy Logic

  • Christer Carlsson
  • Mario Fedrizzi
  • Robert Fullér
Part of the International Series in Operations Research & Management Science book series (ISOR, volume 66)


Fuzzy sets were introduced by Zadeh [9] in 1965 to represent/manipu-late data and information possessing nonstatistical uncertainties. Fuzzy sets serve as a means of representing and manipulating data that are not precise, but rather fuzzy.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Bellman R.E. and Zadeh L.A., Decision-making in a fuzzy environmentMan-agement Sciences Ser. B 17(1970) 141–164.MathSciNetGoogle Scholar
  2. [2]
    Carlsson C. and Fullér R., A position paper on agenda for soft decision analysisFuzzy Sets and Systems131(2002) 3–11.MathSciNetMATHCrossRefGoogle Scholar
  3. [3]
    Carlsson C. and Fullér R., On possibilistic mean value and variance of fuzzy numbersFuzzy Sets and Systems 122(2001) 139–150.MathSciNetCrossRefGoogle Scholar
  4. [4]
    Dubois D. and Prade H., The mean value of a fuzzy number, Fuzzy Sets and Systems 24(1987) 279–300.MathSciNetMATHCrossRefGoogle Scholar
  5. [5]
    Hamacher H., Über logische Aggregationen nicht binär explizierter Entschei-dung-kriterien (Rita G. Fischer Verlag, Frankfurt, 1978)Google Scholar
  6. [6]
    Keeny R.L. and Raiffa H.,Decisions with Multiple ObjectivesJohn Wiley & Sons, 1976.Google Scholar
  7. [7]
    Schweizer B. and Sklar A., Associative functions and abstract semigroups, Publ. Math. Debrecen 10(1963) 69–81.MathSciNetGoogle Scholar
  8. [8]
    Yager R.R., Ordered weighted averaging aggregation operators in multi-criteria decision makingIEEE Trans. on Systems, Man and Cybernetics 18(1988) 183–190.MathSciNetMATHCrossRefGoogle Scholar
  9. [9]
    Zadeh L.A., Fuzzy Sets, Information and Control 8(1965) 338–353.MathSciNetMATHCrossRefGoogle Scholar
  10. [10]
    Zadeh L.A., “A Computational Approach to Fuzzy Quantifiers in Natural Lan-guages”, Computer Mathematics with applications, 9, 1983, 149–183.MathSciNetMATHCrossRefGoogle Scholar
  11. [11]
    Zadeh L.A., A computational theory of dispositions, Int. Journal of Intelligent Systems 2(1987) 39–63.MATHGoogle Scholar
  12. [12]
    Zadeh, L.A., Outline of a New Approach to the Analysis of Complex Systems and Decision Processes, IEEE Transactions on Systems, Man and Cybernetics, SMC-3 1973.Google Scholar
  13. [13]
    Zadeh L.A., A theory of approximate reasoning, In: J. Hayes, D. Michie and L. I. Mikulich eds.Machine Intelligence, Vol.9 (Halstead Press, New York, 1979) 149–194Google Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Christer Carlsson
    • 1
  • Mario Fedrizzi
    • 2
  • Robert Fullér
    • 3
  1. 1.IAMSRÅbo Akademi UniversityÅboFinland
  2. 2.Department of Computer and Management SciencesUniversity of TrentoTrentoItaly
  3. 3.Department of Operations ResearchEötvös Loránd UniversityBudapestHungary

Personalised recommendations