Advertisement

Binding and Extraction of Pertechnetate and Perrhenate by Azacages

  • Holger Stephan
  • Karsten Gloe
  • Werner Kraus
  • Hartmut Spies
  • Bernd Johannsen
  • Kathrin Wichmann
  • GUnter Reck
  • DillipK. Chand
  • Parimal K. Bharadwa
  • Ute Müller
  • WalterM. Müller
  • Fritz Vögtle

Abstract

The design and synthesis of anion receptors of technical and biochemical significance is receiving more and more attention.1, 2, 3, 4, 5, 6, 7, 8Currently, effective binding and selective phase transfer of the oxoanions pertechnetate and perrhenate is of considerable interest from different point of view. Due to its long half-life and environmental mobility, the radioactive pertechnetate is one of the most hazardous contaminants. In this context, effective and selective separation processes are of utmost importance.9, 10, 11, 12 On the other hand, there are some emerging possibilities for the application of the radiochemically active oxoanions pertechnetate and perrhenate in nuclear medicine.13,14 The most commonly used isotope in diagnostic nuclear medicine 99mTc is readily available from a 99Mo/99mTc generator system.15, 16, 17, 18, 19 Likewise, the β-emitting 188Re - discussed as one of the most interesting radionuclides for specific therapeutic applications — is conveniently produced by a 188W/188Re generator.20, 21, 22 In both cases the radionuclides are available as oxoanions in isotonic solut ion, and it appears highly desirable to directly complex 99mTcO 4 and 188ReO 4 as they exist in the generator eluate itself. But, the binding of such large, lowly charged anions is a difficult venture. The enthalpic contribution for complexation is rather small. Hence, host compounds being capable to encapsulate these oxoanions are of great interest.

Keywords

Neutral Medium Dalton Trans Anion Receptor Chemistry ofAnions Cage Compound 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

6 References

  1. 1.
    Comprehensive Supramolecular Chemistry, edited by J. L. Atwood, J. E. D. Davies, D. D. MacNicol, F. Vögtle, and J.-M. Lehn (Pergamon, Oxford, 1996).Google Scholar
  2. 2.
    Supramolecular Chemistry ofAnions, edited by A. Bianchi, K. Bowman-James, and E. Garcia-Espana (WILEY-VCH, Weinheirn, 1997)Google Scholar
  3. 3.
    B. Dietrich, Design of Anion Receptors: Applications, PureAppl. Chem. 65, 1457–64(1993).CrossRefGoogle Scholar
  4. 4.
    C Seel, A. Galan, and J. DeMendoza, Molecular Recognition of Organic Acids and Anions — Receptor Models for Carboxylates, Amino Acids, and Nucleotides, Top. CurroChem. 175, 101–132 (1995).Google Scholar
  5. 5.
    F. P. Schmidtchen and M. Berger, Artificial Organic Host Molecules for Anions, Chem. Rev. 97, 1609–46 (1997).CrossRefGoogle Scholar
  6. 6.
    M.M.G. Antonisse and D. N. Reinhoudt, Neutral Anion Receptors: Design and Application, Chem. Commun. 443–448 (1998).Google Scholar
  7. 7.
    P. D. Beer and P. A. Gale, Anion Recognition and Sensing: The State of the Art and Future Perspectives, Angew. Chem. Int. Ed. Engl. 40, 487–516 (2001).CrossRefGoogle Scholar
  8. 8.
    K. Gloe, H. Stephan, and M. Grotjahn, Quo Vadis Anion Extraction, Chem-Ing-Tech. 74, 767–777 (2002).CrossRefGoogle Scholar
  9. 9.
    P. V. Bonnesen, B. A. Moyer, D. J. Presley, V. S. Armstrong, T. J. Haverlock, R. M. Counce, and R. A. Sachleben, Alkaline-side Extraction of Technetium from Tank Waste using Crown Ethers and other Extractants, Oak Ridge National Laboratory(ORNL)-Report TM13241 (1996).Google Scholar
  10. 10.
    R. A. Leonard, C Conner, M.W. Liberatore, P. V. Bonnesen, D. J. Presley, B. A. Moyer, and G. J. Lumetta, Developing and Testing an Alkaline-side Solvent Extraction Process for Technetium Separat ion from Tank Waste, Sep. Sci. Technol. 34, 1043–1068 (1999).CrossRefGoogle Scholar
  11. 11.
    K. L. Nash, R. E. Barrans, R. Chiarizia, M. L. Dietz, M. P. Jensen, P. G. Rickert, B. A. Moyer, P. V. Bonnesen, J. C Bryan, and R. A. Sachleben, Fundamental Investigations of Separations Science for Radioactive Materials, SolventExtr. Ion Exch. 18, 605–631 (2000).CrossRefGoogle Scholar
  12. 12.
    J. A. Gawenis, J. F. Kauffman, and S. S Junsson, Ion Pairing as a Strategy for Extraction by Modified Supercritical Carbon Dioxide: Extraction of Radioactive Metal Ions, Anal. Chem. 73, 2022–2026 (2001).CrossRefGoogle Scholar
  13. 13.
    H. Stephan, R. Berger, H. Spies, B. Johannsen, and F. P. Schmidtchen, Efficient Phase Transfer of Penechnetate with Bicyclic Guanidinium Compounds, J. Radioanal. Nucl.Chem. 242, 399–403 (1999)CrossRefGoogle Scholar
  14. 14.
    H. Stephan, H. Spies, B Johannsen, E. Nicoletti, and F. P. Schmidtchen, ITC Analysis of Binding Perrhenate using Monopyridinium-a-Cyclodextrin, Annual Report Forschungszentrum Rossendorf FZR312, 54–56 (2000)Google Scholar
  15. 15.
    K. Schwochau, Technetium: Chemistry and Radiopharmaceutical Applications (WILEY-VCH, Weinheim, 1997)Google Scholar
  16. 16.
    B. Johannsen, and H. Spies, Technetium(V) Chemistry as Relevant to Nuclear Medicine, Top. Curro Chem. 176, 77–121 (1996)CrossRefGoogle Scholar
  17. 17.
    D Parker, Imaging and Targeting, in Comprehensive Supramolecular Chemistry. vol. 10 “Supramolecular Technology.” edited by J. L. Atwood, J. E. D. Davies, D. D. MacNicol, F. Vögtle, and J.-M. Lehn (Pergamon, Oxford, (1996), pp. 487–536.Google Scholar
  18. 18.
    D. E. Reichert, J. S Lewis. and C. J. Anderson, Metal Complexes as Diagnostic Tools, Coord. Chem. Rev. 184, 3–66 (1999)CrossRefGoogle Scholar
  19. 19.
    S. S Jurisson and J. D. Lydon, Potential Technetium Small Molecule Radiopharmaceuticals, Chem. Rev. 99, 2205–2218 (1999)CrossRefGoogle Scholar
  20. 20.
    M. J. Heeg and S. S Jurisson, The Role of Inorganic Chemistry in the Development of Radiometal Agents for Cancer Therapy, Acc. Chem. Res. 32, 1053–1060 (1999).CrossRefGoogle Scholar
  21. 21.
    P. J Blower and S. Prakash, The Chemistry of Rhenium in Nuclear Medicine, in Perspectives on BioinorganicChemistry. vol. 4 (JAI Press, London, 1999), pp. 91–143.Google Scholar
  22. 22.
    W. A Volken and T. J Hoffman, Therapeutic Radiopharmaceuticals, Chem. Rev. 99, 2269–2292 (1999)CrossRefGoogle Scholar
  23. 23.
    Y. Marcus, Ion Properties (Marcel Dekker, New York, 1997)Google Scholar
  24. 24.
    B. A. Moyer and P. V. Bonnesen, Physical Factors in Anion Separations, in Supramolecular Chemistry of Anions, edited by A. Bianchi, K. Bowman-James, E. Garcia-Espana (WILEY-VCH, Weinheim, 1997), pp. 1–44.Google Scholar
  25. 25.
    T. Nakashima and K. H. Lieser, Proton Association of Pertechnetate, Perrhenate and Perchlorate Anions, Radiochim. Acta 38, 203–206 (1985).Google Scholar
  26. 26.
    Handbook of Chemistry and Physics, edited by D. R. Lide and H. P. R. Frederikse (CRC Press, Boca Raton, 1997)Google Scholar
  27. 27.
    J. Nelson, V. McKee, and G Morgan, Coordination Chemistry of Azacryptands, in: Progress in Inorganic Chemistry. vol. 47, edited by K. D. Karlin (Wiley, New York, 1998), pp. 167–316.Google Scholar
  28. 28.
    S Mason, T. Clifford, L. Seib, K. Kuczera, and K. Bowman-James, Unusual Encapsulation of Two Nitrates in a Single Bicyclic Cage, J. Am. Chem. Soc. 120, 8899–8900 (1998).CrossRefGoogle Scholar
  29. 29.
    G. Morgan, V. Mckee. and J. Nelson, Caged Anions: Perchlorate and Perfluoroanion Cryptates, Chem. Commun. 1649–52 (1995).Google Scholar
  30. 30.
    M. J. Hynes, B. Maubert, V. McKee, R. M. Town, and J. Nelson, Protonated Azacryptate Hosts for Nitrate and Perchlorate, J. Chem. Soc., Dalton Trans. 2853–2859 (2000).Google Scholar
  31. 31.
    B. M. Maubert, J. Nelson, V. McKee, R. M. Town, and I. Pal, Selectivity for Dinegative versus Mononegative Oxoan ionic Guests within a Cryptand Host, J. Chem. Soc.. Dalton Trans. 1395–97 (2001)Google Scholar
  32. 32.
    M. Arthurs, V. McKee, J. Nelson, and R. M. Town, Chemistry in Cages: Dinucleating Azacryptand Hosts and their Cation and Anion Cryptates, J. Chem. Ed. 78, 1269–1272 (2001)CrossRefGoogle Scholar
  33. 33.
    H. Stephan, H. Spies, and F. P. Schmidtchen, unpublished results.Google Scholar
  34. 34.
    K. M. Rohal, D. M. Van Seggen, J. F. Clark, M. K. McClure, C. K. Chambliss, S. H. Strauss, and N. C Schroeder, Solvent Extraction of Pertechnetate and Perrhenate Ions from Nitrate-rich Acidic and Alkaline Aqueous Solution, Solvent Extr. Ion Exch. 14, 401–416 (1996)CrossRefGoogle Scholar
  35. 35.
    H. Stephan, H Spies. B. Johannsen, L. Klein, and F. Vögtle, Lipophilic Urea-functionalized Dendrimers as Efficient Carriers for Oxoanions, Chem. Commun. 1875–1876, (1999).Google Scholar
  36. 36.
    H. Stephan, H. Spies, B. Johannsen, K. Gloe, M. Gorka, F. Vögtle, Synthesis and Host-Guest Properties of Multi-Crown Dendrimers towards Sodium Pertechnetate and Mecury(II) Chloride, Eur. J. Inorg. Chem 2957–2963 (2001)Google Scholar
  37. 37.
    J. L. Atwood. K. T. Holman, and J. W Steed, Laying Traps for Elusive Prey: Recent Advances in the Non-covalent Binding of Anions, Chem. Commun. 1401–07 (1996).Google Scholar
  38. 39.
    C Bazzicalupi, P Bandyopadhyay, A. Bencini, C. Giorgi, B. Valtancoli, D. Bharadwaj, P. K. Bharadwaj, and R. J. Butcher, Complexation Properties of Heteroditopic Cryptands towards Cu2+, Zn2+, Cd2+, and Pb2+ in Aqueous Solution: Crystal Structures of [(H5L1)(ClO4)5]·4H2O and [(NiL2Cl)Cl]·5.5H2O·CH3OH, Eur. J. lnorg. Chem. 2111–16 (2000).Google Scholar
  39. 40.
    P. Ghosh, S. S. Gupta, and P. K. Bharadwaj, Complexation Properties of a Heteroditopic Cryptand towards CuII and NiII, Crystal Structures of the Cryptand and its Nickel(II) Cascade Complex, J. Chem. Soc.. Dalton Trans. 935–938 (1997).Google Scholar
  40. 41.
    D. K. Chand, K. G. Ragunathan, T. C. W. Mak, and P. K. Bharadwaj, Tetrahedral Recognition of a Water Molecule by Heteroditopic Cryptands: X-ray Structural Studies, J. Org. Chem. 61, 1169–71 (1996).CrossRefGoogle Scholar
  41. 42.
    D. K. Chand, and P. K. Bharadwaj, Heteroditopic Cryptands of Tunable Cavity Size: Imposition of Distorted Geometry onto Copper(II) and Nickel (II) and Molecular Recognition of Water Molecules, Inorg. Chem. 37, 5050–55 (1998).CrossRefGoogle Scholar
  42. 43.
    F. Arnaud-Neu, S. Fuangswasdi, B. Maubert, J. Nelson, and V. McKee, Binding Properties of Octaaminocryptands, lnorg. Chem. 39, 573–579 (2000).CrossRefGoogle Scholar
  43. 44.
    A. Bencini, A. Bianchi, E. Garcia-Espana, M. Micheloni, J. A. Ramirez, Proton Coordination by Polyamine Compounds in Aqueous Solution, Coord Chem. Rev. 188, 97–156 (1999).CrossRefGoogle Scholar
  44. 45.
    M. Möder, K. Wichmann, K. Gloe, and F. Vögtle, Study on Formation and Stability of Azacage Metal Complexes using Electrospray Mass Spectrometry, Int. J. MassSpectr. 210/211, 327–339 (2001).CrossRefGoogle Scholar
  45. 46.
    The hexamethylated bis-tren cage with m-xylyl spacers has a significant higher lipophilicity as the structure related m-pyridine bridged compound 4 (72% towards 0% in octanol); the resulting extractabilities for both cages using the experimental conditions of Fig.3 are 48% and 14%, respectively: D. Farrell, K. Gloe, K. Gloe, G. Goretzki, V. McKee, J. Nelson, I. Pal, H. Stephan, R. M. Town, and K. Wichmann, Towards Promising Oxoanions extractants: Azacages and Open-chain Counterparts, J. Chern. Soc.. Dalton Trans. to be published in 2003.Google Scholar
  46. 47.
    J. C. Bryan, cis-syn-cis-Dicyclohexano-18-crown-6 Sodium Perrhenate, Acta Cryst. C54, 1569–1571 (1998).Google Scholar
  47. 48.
    J.C. Bryan, and R. Sachleben, Synthesis of a New Dibenzo-14-Crown-4 Lariat Ether and Structure of its Sodium Perrhenate Complex, J. Chem. Cryst. 29, 1255–1259 (1999).CrossRefGoogle Scholar
  48. 49.
    J. Nelson, M. Nieuwenhuyzen, I. Pal, and R. M. Town, Dual-Mode Recognition of Oxalate by Protonated Azacryptate Hosts; Confonnational Response of the Guest Maximizes p-Stacking Interactions, Chem. Cornrnun. in press.Google Scholar
  49. 50.
    M. A. Hossain, J. M. Llinares, S. Mason, P. Morehouse, D. Powell, and K. Bowman-James, Parallels in Cation and Anion Coordination: A New Class of Cascade Complexes, Angew. Chem. 114, 2441–2444 (2002).CrossRefGoogle Scholar
  50. 51.
    D. K. Chand and P. K. Bharadwaj, Synthesis of a Heteroditopic Cryptand Capable of Imposing a Distorted Coordination Geometry onto Cu(II): Crystal Structures of the Cryptand (L), [Cu(L)(CN)](picrate), and (Cu(L)(NCS)](picrate) and Spectroscopic Studies of the Cu(II) Complexes, Inorg. Chern. 35, 3380–3387 (1996).CrossRefGoogle Scholar
  51. 52.
    G.M. Sheldrick, SHELXL-97, Universität Göttingen (1997).Google Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Holger Stephan
    • 1
  • Karsten Gloe
    • 2
  • Werner Kraus
    • 3
  • Hartmut Spies
    • 1
  • Bernd Johannsen
    • 1
  • Kathrin Wichmann
    • 1
  • GUnter Reck
    • 2
  • DillipK. Chand
    • 3
  • Parimal K. Bharadwa
    • 4
  • Ute Müller
    • 4
  • WalterM. Müller
    • 5
  • Fritz Vögtle
    • 5
  1. 1.Forschungszentrum RossendorfInstitut für Bioanorganische und Radiopharmazeutische ChemieGermany
  2. 2.Institut für Anorganische ChemieTechnische Universität DresdenDresdenGermany
  3. 3.Bundesanstalt für Materialforschung und -prüfungBerlinGermany
  4. 4.Department of ChemistryIndian Institute of TechnologyKanpurIndia
  5. 5.Universität Bonn, Kekulé-Institut für OrganischeChemie und BiochemieBonnGermany

Personalised recommendations