Skip to main content

Fundamental Electron-Molecule Interactions and Their Technological Significance

  • Chapter
Fundamental Electron Interactions with Plasma Processing Gases

Part of the book series: Physics of Atoms and Molecules ((PAMO))

  • 490 Accesses

Abstract

The study of fundamental electron-molecule collision processes and the behavior of slow electrons in gases under an applied electric field traces back for about 100 years (see, for example, Refs. [121]). The systematic study of electron-molecule (or atom) interactions as a function of the electron energy for atoms in their ground electronic state and for molecules in their ground vibrational and electronic states, especially since the 1960’s, has produced a wealth of knowledge. This knowledge has advanced our understanding of the structure of atoms and molecules, the phenomena which accompany the interaction of ionizing radiation with matter and the deposition of energy by radiation in matter, the transport of electricity in gases, the interactions of electrons in plasmas, and the behavior of electrons in the condensed phases of matter. Concomitantly, this fundamental knowledge has underpinned and is underpinning the development of many of today’s advanced technologies, including the environmental and life sciences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. J. Thomson and G. P. Thomson, Conduction of Electricity Through Gases, Vol. I, Cambridge, At the University Press, 1928.

    MATH  Google Scholar 

  2. R. H. Healey and J. W. ReedThe Behaviour of Slow Electrons in GasesAmalgamated Wireless (Australia) Limited, Sydney, 1941.

    Google Scholar 

  3. J. Townsend, Electrons in Gases, Hutchinson’s Scientific and Technical Publications, London, 1947.

    Google Scholar 

  4. H. S. W. Massey and E. H. S. Burhop, Electronic and Ionic Impact Phenomena, Oxford, At the Clarendon Press, 1952.

    MATH  Google Scholar 

  5. L. B. LoebBasic Processes of Gaseous ElectronicsUniversity of California Press, Berkeley and Los Angeles, 1955.

    MATH  Google Scholar 

  6. A. von Engel, Ionized Gases, Oxford, At the Clarendon Press, 1955.

    MATH  Google Scholar 

  7. W. P. Allis, inHandbuch der PhysikS. Fliigge (Ed.), Springer-Verlag, Berlin, 1956, Vol. 21, p. 413.

    Google Scholar 

  8. J. D. Craggs and H. S. W. Massey, inHandbuch der PhysikS. Flugge (Ed.), Springer-Verlag, Berlin, 1956, Vol. XXXVII, p. 314.

    Google Scholar 

  9. J. B. HastedPhysics of Atomic CollisionsButter worths, London, 1964.

    Google Scholar 

  10. E. W. McDanielCollision Phenomena in Ionized GasesJohn Wiley & Sons, Inc., New York, 1964.

    Google Scholar 

  11. H. S. W. Massey and E. H. S. BurhopElectronic and Ionic Impact PhenomenaVol. ICollisions of Electrons with AtomsOxford, At the Clarendon Press, 1969.

    Google Scholar 

  12. H. S. W. Massey, Electronic and Ionic Impact Phenomena, Vol. II, Electron Collisions with Molecules and Photoionization, Oxford, At the Clarendon Press, 1969.

    Google Scholar 

  13. L. G. Christophorou, Atomic and Molecular Radiation Physics, Wiley-Interscience, London, 1971.

    Google Scholar 

  14. G. J. Schultz, Rev. Mod. Phys. 45, 378 (1973) (alsoResonances in Electron Impact on Atoms and Diatomic MoleculesNSRDS-NBS 50, October 1973).

    Article  ADS  Google Scholar 

  15. L. G. H. Huxley and R. W. Crompton, The Diffusion and Drift of Electrons in Gases, Wiley-Interscience, New York, 1974.

    Google Scholar 

  16. H. S. W. Massey, Negative Ions, 3rd Edition, Cambridge University Press, Cambridge, 1976.

    Google Scholar 

  17. J. M. Meek and J. D Craggs (Eds.), Electrical Breakdown of Gases, John Wiley &Sons, Chichester, 1978.

    Google Scholar 

  18. L. G. Christophorou (Ed.)Electron-Molecule Interactions and Their Appli-cationsAcademic, New York, Vols. 1 and 2, 1984.

    Google Scholar 

  19. E. E. Kunhardt, L. G. Christophorou, and L. H. Luessen (Eds.), The Liquid State and Its Electrical Properties, Plenum, New York,1988.

    Google Scholar 

  20. L. G. Christophorou, E. Illenberger, and W. F. Schmidt (Eds.), Linking the Gaseous and Condensed Phases of Matter: The Behavior of Slow Electrons, Plenum, New York, 1994.

    Google Scholar 

  21. L. G. Christophorou and J. K. Olthoff, Adv. At. Mol. Opt. Phys. 44, 155 (2000).

    Article  Google Scholar 

  22. L. G. Christophorou, J. K. Olthoff, and M. V. V. S. Rao, J. Phys. Chem. Ref. Data 25, 1341 (1996) [Electron Interactions with CF4].

    ADS  Google Scholar 

  23. L. G. Christophorou, J. K. Olthoff, and M. V. V. S. Rao, J. Phys. Chem. Ref. Data 26, 1 (1997) [Electron Interactions with CHF3].

    ADS  Google Scholar 

  24. L. G. Christophorou, J. K. Olthoff, and Y. Wang, J. Phys. Chem. Ref. Data 26, 1205 (1997) [Electron Interactions with CCl2F2].

    Google Scholar 

  25. L. G. Christophorou and J. K. Olthoff, J. Phys. Chem. Ref. Data 27, 1 (1998) [Electron Interactions with C2F6].

    ADS  Google Scholar 

  26. L. G. Christophorou and J. K. Olthoff, J. Phys. Chem. Ref. Data 27, 889 (1998) [Electron Interactions with C3F8].

    ADS  Google Scholar 

  27. L. G. Christophorou and J. K. Olthoff, J. Phys. Chem. Ref. Data 28, 131 (1999) [Electron Interactions with Cl2].

    ADS  Google Scholar 

  28. L. G. Christophorou and J. K. Olthoff, J. Phys. Chem. Ref. Data 28, 967 (1999) [Electron Interactions with Plasma Processing Gases: An Update for CF4, CHF3, C2F6, and C3F8].

    ADS  Google Scholar 

  29. L. G. Christophorou and J. K. Olthoff, J. Phys. Chem. Ref. Data 29, 267 (2000) [Electron Interactions with SF6].

    ADS  Google Scholar 

  30. L. G. Christophorou and J. K. Olthoff, J. Phys. Chem. Ref. Data 29, 553 (2000) [Electron Interactions with CF3I].

    ADS  Google Scholar 

  31. L. G. Christophorou and J. K. Olthoff, J. Phys. Chem. Ref. Data 30, 449 (2001) [Electron Interactions with c-C4F8].

    ADS  Google Scholar 

  32. L. G. Christophorou and J. K. Olthoff, J. Phys. Chem. Ref. Data 31 971 (2002) [Electron Interactions with BC13].

    ADS  Google Scholar 

  33. S. Trajmar and D. C. Cartwright, inElectron-Molecule Interactions and Their ApplicationsL. G. Christophorou (Ed.), Academic, New York, Vol. 1, Ch. 2, 1984.

    Google Scholar 

  34. L. G. Christophorou, Adv. Electr. Electron Phys. 46, 55 (1978).

    Article  Google Scholar 

  35. L. G. Christophorou, D. L. McCorkle, and A. A. Christodoulides, inElectron- Molecule Interactions and Their ApplicationsL. G. Christophorou (Ed.), Academic, New York, Vol. 1, Ch. 6, 1984.

    Google Scholar 

  36. A. A. Christodoulides, D. L. McCorkle, and L. G. Christophorou, inElectron- Molecule Interactions and Their ApplicationsL. G. Christophorou (Ed.), Academic, New York, Vol. 2, Ch. 6, 1984.

    Google Scholar 

  37. L. G. Christophorou, P. G. Datskos, and H. Faidas, J. Chem. Phys. 101, 6728 (1994).

    Article  ADS  Google Scholar 

  38. P. G. Datskos, J. G. Carter, and L. G. Christophorou, Chem. Phys. Lett. 239, 38 (1995).

    Article  ADS  Google Scholar 

  39. J. N. Bardsley, A. Herzenberg, and F. Mandl, Proc. Phys. Soc. (London) 89, 321 (1966).

    Article  ADS  Google Scholar 

  40. T. F. O’Malley, Phys. Rev. 150, 14 (1966).

    Article  ADS  Google Scholar 

  41. R. W. Crompton, inProc. XVI Int. Conf. on Phenomena in Ionized Gases, Invited PapersW. Botticher, H. Wenk, and E. Schulz-Guide (Eds.), Diisseldorf, August/September, 1983, p. 58.

    Google Scholar 

  42. C. C. Lin and L. W. Anderson, Adv. At. Mol. Opt. Phys. 29, 1 (1992).

    Article  MATH  Google Scholar 

  43. S. Trajmar and J. C. Nickel, Adv. At. Mol. Opt. Phys. 30, 45 (1993).

    Article  Google Scholar 

  44. L. G. Christophorou, L. A. Pinnaduwage, and P. G. Datskos, inLinking the Gaseous and Condensed Phases of Matter: The Behavior of Slow ElectronsL. G. Christophorou, E. Illenberger, and W. F. Schmidt (Eds.), Plenum, New York, 1994, p. 415.

    Google Scholar 

  45. S. J. Buckman, M. T. Elford, and D. S. Newman, J. Phys. B 20, 5175 (1987).

    Article  ADS  Google Scholar 

  46. J. Ferch, C. Masche, and W. Raith, J. Phys. B 14, L97 (1981).

    Article  ADS  Google Scholar 

  47. M. A. Morrison, N. F. Lane, and L. A. Collins, Phys. Rev. A 15, 2186 (1977).

    Article  ADS  Google Scholar 

  48. J. Ferch, C. Masche, W. Raith, and L. Wiemann, Phys. Rev. A 40, 5407 (1989).

    Article  ADS  Google Scholar 

  49. P. G. Datskos, L. G. Christophorou, and J. G. Carter, J. Chem. Phys. 97, 9031 (1992).

    Article  ADS  Google Scholar 

  50. L. G. Christophorou and P. G. Datskos, Int. J. Mass Spectrom. Ion Physics 149/150, 59 (1995).

    Google Scholar 

  51. P. G. Datskos, L. G. Christophorou, and J. G. Carter, J. Chem. Phys. 99, 8607 (1993).

    Article  ADS  Google Scholar 

  52. R. I. Hall and S. Trajmar, J. Phys. B 8, L293 (1975).

    Article  ADS  Google Scholar 

  53. P. B. Armentrout, S. M. Tarr, A. Dori, and R. S. Freund, J. Chem. Phys. 75, 2786 (1981).

    Article  ADS  Google Scholar 

  54. D. Ton-That and M. R. Flannery, Phys. Rev. A 15, 517 (1977).

    Article  ADS  Google Scholar 

  55. W. M. Huo, inNon-Equilibrium Processes in Partially Ionized GasesM. Capitelli and J. N. Bardsley (Eds.), Plenum, New York, 1990, p. 341.

    Google Scholar 

  56. D. C. Cartwright, S. Trajmar, A, Chutjian, and W. Williams, Phys. Rev. A 16, 1041 (1977).

    Article  ADS  Google Scholar 

  57. S. Trajmar, D. F. Register, and A. Chutjian, Phys. Repts. 97, 219 (1983).

    Article  ADS  Google Scholar 

  58. R, Celotta, H. Brown, R. Molof, and B. Bederson, Phys. Rev A 3, 1622 (1971).

    Article  ADS  Google Scholar 

  59. E. J. Robinson, Phys. Rev. 182, 196 (1969).

    Article  ADS  Google Scholar 

  60. K. Jost, P. G. F. Bishing, F. Erchen, M. Felsmann, and J. Walther, in Xlllth International Conference on the Physics of Electronic and Atomic Collisions, Abstracts of Contributed Papers, Berlin, 1983, p. 91.

    Google Scholar 

  61. J. C. Nickel, K. Imre, D. F. Register, and S. Trajmar, J. Phys. B 18, 125 (1985).

    Article  ADS  Google Scholar 

  62. J. Ferch, B. Granitza, C. Masche, and W. Raith, J. Phys. B 18, 967 (1985).

    Article  ADS  Google Scholar 

  63. H. B. Milloy, R. W. Crompton, J. A. Rees, and A. G. Robertson, Austr. J. Phys. 30, 61 (1977).

    Article  ADS  Google Scholar 

  64. A. J. Dixon, M. F. A. Harrison, and A. C. H. Smith, inProceedings of the VIHth International Conference on the Physics of Electronic and Atomic Collisions, Book of AbstractsBelgrade, 1973, p. 405.

    Google Scholar 

  65. E. Krishnakumar and S. K. Srivastava, J. Phys. B 21, 1055 (1988).

    Article  ADS  Google Scholar 

  66. L. G. Christophorou and E. Illenberger, Phys. Lett. A 173, 78 (1993).

    Article  ADS  Google Scholar 

  67. P. D. Burrow, J. Chem. Phys. 59, 4922 (1973).

    Article  ADS  Google Scholar 

  68. T. Jaffke, M. Meinke, R. Hashemi, L. G. Christophorou, and E. Illenberger, Chem. Phys. Lett. 193, 62 (1992).

    Article  ADS  Google Scholar 

  69. D. Rapp and D. D. Briglia, J. Chem. Phys. 43, 1480 (1965).

    Article  ADS  Google Scholar 

  70. L. G. Christophorou, S. R. Hunter, L. A. Pinnaduwage, J. G. Carter, A. A. Christodoulides, and S. M. Spyrou, Phys. Rev. Lett. 58, 1316 (1987).

    Article  ADS  Google Scholar 

  71. T. Jaffke, R. Hashemi, L. G. Christophorou, E. Illenberger, H. Baumgartel, and L. A. Pinnaduwage, Chem. Phys. Lett. 203, 21 (1993).

    Article  ADS  Google Scholar 

  72. E. Krishnakumar, S. V. K. Kumar, S. A. Rangwala, and S. K. Mitra, Phys. Rev. A 56, 1945 (1997).

    Article  ADS  Google Scholar 

  73. L. G. Christophorou, Chem. Revs. 76, 409 (1976).

    Article  Google Scholar 

  74. S. R. Hunter and L. G. Christophorou, inElectron-Molecule Interactions and Their ApplicationsL. G. Christophorou (Ed.), Academic, New York, Vol. 2, Ch. 3, 1984.

    Google Scholar 

  75. L. G. Christophorou, inThe Liquid State and its Electrical PropertiesE. E. Kunhardt, L. G. Christophorou, and L. H. Luessen (Eds.), Plenum, New York, 1988, p. 283.

    Google Scholar 

  76. L. G. Christophorou, inLinking the Gaseous and Condensed Phases of Mat-ter: The Behavior of Slow ElectronsL. G. Christophorou, E. Illenberger, and W. F. Schmidt (Eds.), Plenum, New York, 1994, p. 3.

    Chapter  Google Scholar 

  77. L. G. Christophorou and K. Siomos, inElectron-Molecule Interactions and Their ApplicationsL. G. Christophorou (Ed.), Academic, New York, Vol. 2, Ch. 4, 1984.

    Google Scholar 

  78. C. Ferradini and J.-P. Jay-Gerin (Eds.), Excess Electrons in Dielectric Media, CRC Press, Boca Raton, 1991.

    Google Scholar 

  79. R. A. Holroyd, inLinking the Gaseous and Condensed Phases of Matter: The Behavior of Slow ElectronsL. G. Christophorou, E. Illenberger, and W. F. Schmidt (Eds.), Plenum, New York, 1994, p. 443.

    Google Scholar 

  80. W. F. Schmidt, Liquid State Electronics of Insulating Liquids, CRC Press, Boca Raton, 1997.

    Google Scholar 

  81. L. Sanche, J. Phys. B 23, 1597 (1990).

    Article  ADS  Google Scholar 

  82. L. Sanche, inLinking the Gaseous and Condensed Phases of Matter: The Behavior of Slow ElectronsL. G. Christophorou, E. Illenberger, and W. F. Schmidt (Eds.), Plenum, New York, 1994, p. 31.

    Google Scholar 

  83. E. Illenberger, Chem. Revs. 92, 1589 (1992).

    Article  Google Scholar 

  84. J. Jortner, Z. Phys. D 24, 247 (1992).

    Article  ADS  Google Scholar 

  85. O. Ingolfsson, F. Weik, and E. Illenberger, Int. J. Mass Spectrom. Ion Physics 155, 1 (1996).

    Article  ADS  Google Scholar 

  86. L. G. Christophorou, J. Phys. Chem. 76, 3730 (1972).

    Article  Google Scholar 

  87. B. E. Springett, J. Jortner, and M. H. Cohen, J. Chem. Phys. 48, 2720 (1968).

    Article  ADS  Google Scholar 

  88. Y. Yamaguchi, T. Nakajima, and M. Nishikawa, J. Chem. Phys. 71, 550 (1979).

    Article  ADS  Google Scholar 

  89. H. Faidas, L. G. Christophorou, P. G. Datskos, and D. L. McCorkle, J. Chem. Phys. 90, 6619 (1989).

    Article  ADS  Google Scholar 

  90. H. Faidas, L. G. Christophorou, D. L. McCorkle, and J. G. Carter, Nucl. Instr. Meth. Phys. Res. A 294, 575 (1990).

    Article  ADS  Google Scholar 

  91. L. G. Christophorou, J. G. Carter, and D. V. Maxey, J. Chem. Phys. 76, 2653 (1982).

    Article  ADS  Google Scholar 

  92. L. S. Miller, S. Howe, and W. E. Spear, Phys. Rev. 166, 871 (1968).

    Article  ADS  Google Scholar 

  93. S. R. Hunter, J. G. Carter, and L. G. Christophorou, Phys. Rev. A385539

    Article  ADS  Google Scholar 

  94. Y. Sakai, S. Nakamura, and H. Tagashira, IEEE Trans. Electr. Insul. EI-20, 133 (1985).

    Article  Google Scholar 

  95. P. Krebs and M. Heintze, J. Chem. Phys. 76, 5484 (1982).

    Article  ADS  Google Scholar 

  96. L. Sanche and M. Michaud, Phys. Rev. B 27, 3856 (1983).

    Article  ADS  Google Scholar 

  97. L. G. Christophorou, Z. Phys. Chem. 195, 195 (1996).

    Article  Google Scholar 

  98. U. Fano, J. A. Stevens, and M. Inokuti, Chem. Phys. 85, 6239 (1986).

    ADS  Google Scholar 

  99. L. Sanche, inExcess Electrons in Dielectric MediaC. Ferradini and J.-P. Jay-Gerin (Eds.), CRC Press, Boca Raton, 1991, p. 1.

    Google Scholar 

  100. G. Bakale, U. Sawada, and W. F. Schmidt, J. Phys. Chem. 80, 2556 (1976).

    Article  Google Scholar 

  101. T. Jaffke, R. Hashemi, L. G. Christophorou, and E. Illenberger, Z. Phys. D: 25, 77 (1992).

    Article  ADS  Google Scholar 

  102. R. E. Goans and L. G. Christophorou, J. Chem. Phys. 60, 1036 (1974).

    Article  ADS  Google Scholar 

  103. R. Hashemi, T. Jaffke, L. G. Christophorou, and E. Illenberger, J. Phys. Chem. 96, 10605 (1992).

    Article  Google Scholar 

  104. E. Illenberger, inLinking the Gaseous and Condensed Phases of Matter: The Behavior of Slow ElectronsL. G. Christophorou, E. Illenberger, and W. F. Schmidt (Eds.), Plenum, New York, 1994, p. 49.

    Google Scholar 

  105. B. Raz and J. Jortner, Chem. Phys. Lett. 4, 155 (1969).

    Article  ADS  Google Scholar 

  106. R. A. Holroyd, J. Chem. Phys. 57, 3007 (1972).

    Article  ADS  Google Scholar 

  107. R. A. Holroyd and R. L. Russell, J. Phys. Chem. 78, 2128 (1974).

    Article  Google Scholar 

  108. W. F. Schmidt, IEEE Trans. Electr. Insul. EI-19, 389 (1984).

    Article  Google Scholar 

  109. H. Faidas and L. G. Christophorou, Rad. Phys. Chem. 32, 433 (1988).

    Google Scholar 

  110. I. T. Steinberger, inThe Liquid State and Its Electrical PropertiesE. E. Kunhardt, L. G. Christophorou, and L. H. Luessen (Eds.), Plenum, New York, 1988, p. 235.

    Google Scholar 

  111. U. Sowada and R. A. Holroyd, J. Phys. Chem. 84, 1150 (1980).

    Article  Google Scholar 

  112. H. Faidas, L. G. Christophorou, and D. L. McCorkle, Chem. Phys. Lett. 193, 487 (1992).

    Article  ADS  Google Scholar 

  113. L.-S. Zheng, C. M. Karner, P. J. Brucat, S. H. Yang, C. L. Pettiette, M. J. Craycraft, and R. E. Smalley, J. Chem. Phys. 85, 1681 (1986).

    Article  ADS  Google Scholar 

  114. D. G. Leopold, J. Ho, and W. C. Lineberger, J. Chem. Phys. 86, 1715 (1987).

    Article  ADS  Google Scholar 

  115. M. J. DeLuca, C.-C. Han, and M. A. Johnson, J. Chem. Phys. 93, 268 (1990).

    Article  ADS  Google Scholar 

  116. V. Tarnovsky, P. Kurunczi, D. Rogozhnikov, and K. Becker, Int. J. Mass Spectrom. Ion Processes 128, 181 (1993).

    Article  ADS  Google Scholar 

  117. V. Tarnovsky, A. Levin, and K. Becker, J. Chem. Phys. 100, 5626 (1994).

    Article  ADS  Google Scholar 

  118. V. Tarnovsky, A. Levin, K. Becker, R. Basner, and M. Schmidt, Int. J. Mass Spectrom. Ion Processes 133, 175 (1994).

    Article  ADS  Google Scholar 

  119. V. Tarnovsky, A. Levin, H. Deutsch, and K. Becker, J. Phys. B29139(1996).

    Article  ADS  Google Scholar 

  120. V. Tarnovsky, H. Deutsch, K. E. Martus, and K. Becker, J. Chem. Phys. 109, 6596 (1998).

    Article  ADS  Google Scholar 

  121. Y.-K. Kim and K. K. Irikura, inAtomic and Molecular Data and Their ApplicationsK. A. Berrington and K. L. Bell (Eds.), American Institute of Physics Conference Proceedings, New York, Vol.5432000, p. 220.

    Google Scholar 

  122. M. A. Ali, K. K. Irikura, and Y.-K. Kim, Int. J. Mass Spectrom. 201, 187 (2000).

    Article  Google Scholar 

  123. H. Deutsch, K. Becker, S. Matt, and T. D. Mark, Int. J. Mass Spectrom. 197, 37 (2000).

    Article  Google Scholar 

  124. H. Deutsch, K. Becker, and T. D. Mark, Int. J. Mass Spectrom. Ion Processes 167/168, 503 (1997).

    Google Scholar 

  125. W. M. Huo, V. Tarnovsky, and K. H. Becker, Chem. Phys. Lett. 358, 328 (2002).

    Article  ADS  Google Scholar 

  126. W. McKoy, C. Winstead, W. L. Morgan, and P. D. HaalandData Compi-lation for Plasma ChemistriesSEMATECH, Technology Transfer Report # 98063515A-TR, June 30, 1998.

    Google Scholar 

  127. W. McKoy, W. L. Morgan, P. D. Haaland, C. Winstead, W. K. Trail, and C. JiaoData Compilation for Plasma ChemistriesSEMATECH, Technology Transfer Report # 00023909A-TR, March 31, 2000.

    Google Scholar 

  128. W. McKoy, C. Winstead, and W. L. MorganData Compilation for Plasma ChemistriesSEMATECH, Technology Transfer Report # 97043274A-TR, August 22, 1997.

    Google Scholar 

  129. E. Stoffels, W. W. Stoffels, D. Vender, M. Haverlag, G. M. W. Kroesen, and F. J. de Hoog, Contrib. Plasma Phys. 4–5, 331 (1995).

    Google Scholar 

  130. E. Stoffels, W. W. Stoffels, D. Vender, M. Kando, G. M. W. Kroesen, and F. J. de Hoog, Phys. Rev. E 51, 2425 (1995).

    Article  ADS  Google Scholar 

  131. E. Stoffels, W. W. Stoffels, D. Vender, G. M. W. Kroesen, and F. J. de Hoog J. Vac. Sci. Technol. A 13, 2051 (1995).

    ADS  Google Scholar 

  132. E. Stoffels, W. W. Stoffels, and G. M. W. Kroesen, Plasma Sources Sci. Technol. 10, 311 (2001).

    Article  ADS  Google Scholar 

  133. N. G. Adams, D. Smith, and C. R. Herd, Int. J. Mass Spectrom. Ion Processes 84, 243 (1988).

    Article  Google Scholar 

  134. E. Stoffels, W. W. Stoffels, and K. Tachibana, Rev. Sci. Instrum. 69, 116 (1998).

    Article  ADS  Google Scholar 

  135. L. G. Christophorou and S. R. Hunter, inElectron-Molecule Interactions and Their ApplicationsL. G. Christophorou (Ed.), Academic, New York, Vol. 2, Ch. 5, 1984.

    Google Scholar 

  136. H. S. W. Massey, E. W. McDaniel, and B. Bederson (Eds.)Applied Atomic Collision PhysicsVols. 1–5, Academic, New York, 1982–1984.

    Google Scholar 

  137. M. A. Lieberman and A. J. Lichtenberg, Principles of Plasma Discharges and Materials Processing, Wiley, New York, 1994.

    Google Scholar 

  138. M. Inokuti and K. H. Becker (Eds.), Adv. At. Mol. Opt. Phys. 43, 2000.

    Google Scholar 

  139. M. Kimura and Y. Itikawa (Eds.), Adv. At. Mol. Opt. Phys. 44, 2000.

    Google Scholar 

  140. J. N. Bardsley, inAtomic and Molecular Data and Their Applications(ICAMDATA-First International Conference, Gaithersburg, Maryland, Oc-tober 1997), P. J. Mohr and W. L. Wiese (Eds.), The American Institute of Physics Conference Proceedings 434, Woodbury, New York, 1998, p. 333.

    Google Scholar 

  141. C. Winstead and V. McKoy, Adv. At. Mol. Opt. Phys. 43, 111 (2000).

    Article  Google Scholar 

  142. W. L. Morgan, Adv. At. Mol. Opt. Phys. 43, 79 (2000).

    Article  Google Scholar 

  143. D. J. Economou, Thin Solid Films 365, 348 (2000).

    Article  ADS  Google Scholar 

  144. E. Meeks and P. Ho, Thin Solid Films 365, 334 (2000).

    Article  ADS  Google Scholar 

  145. IEEE Trans. Plasma Sci. 27 (5) 1999.

    Google Scholar 

  146. K. Becker, H. Deutsch, and M. Inokuti, Adv. At. Mol. Opt. Phys. 43, 399 (2000).

    Article  Google Scholar 

  147. S. M. Rossnagel, J. J. Cuomo, and W. D. Westwood (Eds.)Handbook of Plasma Processing TechnologyFundamentals, Etching, Deposition, and Surface Interactions, Noyes Publications, Park Ridge, NJ, 1990.

    Google Scholar 

  148. Y. P. Raizer, M. N. Shneider, and N. A. Yatsenko, Radio-Frequency Capaci-tive Discharges, CRC Press, London, 1995.

    Google Scholar 

  149. S. Wolf and R. N. TauberSilicon Processing for the VLSI Era, Volume 1 - Process TechnologyLattice Press, Sunset Beach, CA, 1986.

    Google Scholar 

  150. T. Makabe (Ed.), Advances in Low Temperature RF Plasmas, Elsevier, Am-sterdam, 2002.

    Google Scholar 

  151. P. L. G. Ventzek, R. J. Hoekstra, and M. J. Kushner, J. Vac. Sci. Technol. B 12, 461 (1994).

    Article  Google Scholar 

  152. D. P. Lymberopoulos and D.J. Economou, IEEE Trans. Plasma Science 23, 573 (1995).

    Article  ADS  Google Scholar 

  153. J. D. Bukowski, D. B. Graves, and P. Vitello, J. Appl. Phys. 80, 2614 (1996).

    Article  ADS  Google Scholar 

  154. M. Meyyappan and T. R. Govindan, J. Appl. Phys. 80, 1345 (1996).

    Article  ADS  Google Scholar 

  155. L. E. Kline and M. J. Kushner, Crit. Rev. in Solid State and Materials Sciences 16, 1 (1989).

    Article  ADS  Google Scholar 

  156. G. G. Lister, J. Appl. Phys. D 25, 1649 (1992).

    Article  MathSciNet  ADS  Google Scholar 

  157. D. B. Graves, IEEE Trans. Plasma Sci. 22, 31 (1994).

    Article  ADS  Google Scholar 

  158. H. Tanaka and M. Inokuti, Adv. At. Mol. Opt. Phys. 43, 1 (2000).

    Article  Google Scholar 

  159. Y. Hatano, Adv. At. Mol. Opt. Phys. 43, 231 (2000).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Christophorou, L.G., Olthoff, J.K. (2004). Fundamental Electron-Molecule Interactions and Their Technological Significance. In: Fundamental Electron Interactions with Plasma Processing Gases. Physics of Atoms and Molecules. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8971-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8971-0_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4741-5

  • Online ISBN: 978-1-4419-8971-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics