Advertisement

Neuroprotection and Epilepsy

  • Péter Halász
  • György Rásonyi
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 541)

Abstract

Epilepsy is a brain disorder affecting 0,5–1,0% of the population, characterised by recurrent seizures. Scizures are the result of excessive discharges of neo-or archi-cortical neurons firing in an abnormal synchrony. The symptomes and consequentes of seizures are determined by the function of the brain region from which the abnormal discharge originates, by the degree of spread to other structures of the brain, and by the quantity and ratio of excitatory and inhibitory neurons participating. Scizures are only the tip of the iceberg represented by the disease process itself about which a growing body of knowledge has become available.

Keywords

Granule Cell Status Epilepticus Temporal Lobe Epilepsy Mossy Fiber Kainic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adam, C, Baulac, M., Saint-Hilaire, J.M., Landau, J., Granat, O., and Laplane, D, 1994, Value of magnetic resonance imaging-based measurements of hippocampal formations in patients with partial epilepsy, Arch. Neurol. 51:130–138.Google Scholar
  2. Amano, K., Hamada, K., Yagi, K., and Scino, M., 1998, Antiepileptic effects of topiramate on amygdaloid kindling in rats, Epilepsy Res. 31:123–128.Google Scholar
  3. André, V., Ferrandon, A., Marescaux, C, and Nehlig, A., 2001, Vigabatrin protects against hippocampal damage but is not antiepileptogenic in the lithium-pilocarpine model of temporal lobe epilepsy, Epilepsy Res. 47(l-2):99–117.Google Scholar
  4. Annegers, J.F., Hauser, W.A., Coan, S.P., and Rocca, W.A., 1998, A population-based study of seizures after traumatic brain injuries, N.Engl. J Med. 338:20–24.Google Scholar
  5. Applegate, T.L., Karjalainen. A., and Bygrave, F.L., 1997, Rapid Ca2+ influx induced by the action of dibutylhydroquinone and glucagon in the perfused rat liver, Biochem J. 15:463–467.Google Scholar
  6. Arroyo, S., Brodie, M.J., Avanzini, G., Baumgartner, C, Chiron, C, Dulac, O., French, J.A., and Serratosa, J. M., 2002, Is refractory epilepsy preventable? Epilepsia 43:437–444.Google Scholar
  7. Babb, T.L., Pereira-Leite, J., Mathern, G.W., Pretorius, J.K, 1995, Kainic acid induced hippocampal seizures in rats: comparisons of acute and chronic seizures using intrahippocampal versus systemic injections, Ital. J. Neurol. Sci. 16(l-2):39–44.Google Scholar
  8. Babb, T.L., Kupfer, W.R., Pretorius, J.K., Crandall, P.H., and Levesque, M.F., 1991, Synaptic reorganization by mossy fibers in human epileptic fascia dentata, Neuroscience 42:351–363.Google Scholar
  9. Ben Ari, Y., 1985, Limbic seizure and brain damage produced by kainic acid: mechanisms and relevance to human temporal lobe epilepsy, Neuroscience 14:375–403.Google Scholar
  10. Ben Ari, Y., Tremblay, E., Otterson, O.P., and Maldrum, B.S., 1980, The role of epileptic activity in hippocampus and remote cerebral lesion induced by kainate, Brain Res. 191:79–97.Google Scholar
  11. Berg, A.T. and Shinnar, S., 1997, Do seizures beget seizures? An assessment of the clinical evidence in humans, J. Clin. Neurophysiol 14:102–110.Google Scholar
  12. Bolanos, A.R., Sarkisian, M., Yang, Y., Hori, A., Helmers, S.L., Mikati, M., Tandon, P., Stafstrom, C.E., and Holmes, G.L.,1998, Comparison of valproate and phenobarbital treatment after status epilepticus in rats, 51:41–48.Google Scholar
  13. Braendgaard, H., Gundersen, H.J.G., 1986, The impact of recent stereological advances on quantitative studies of the nervous system. J. Neurosci. Met 18:39–78.Google Scholar
  14. Cavalheiro, E.A., Leite, J.P., Bortolotto, Z.A., Turski, W.A., Ikonomidou, C, and Turski, L., 1991, Longterm effects of pilocarpine in rats: structural damage of the brain triggers kindling and spontaneous recurrent seizures, Epilepsia 32(6):778–82.Google Scholar
  15. Cavazos, J.E., Golarai, G., and Sutula, T.P., 1991, Mossy fibres reorganization induced by kindling; Time course of development, progression, and permanence, J. Neurosci. 11:2795–2803.Google Scholar
  16. Cendes, F., Andermann, F., Gloor, P., Evans, A., Jones-Gotman, M., Watson, C, Melanson, D., Olivier, A., Peters, T., Lopes-Cendes, I., and Leroux, G., 1993, MRI volumetric measurement of amygdala and hippocampus in temporal lobe epilepsy, Neurology 43:719–725.Google Scholar
  17. Charton, G., Rovira, C, Ben Ari, Y., and Leviel, V., 1985, Spontaneous and evoked release of endogenous Zn2+ in the hippocampal MF zone in situ, Exp. Brain Res. 58:202–205.Google Scholar
  18. Cilio, M.R., Bolanos, A.R., Liu, Z., Schmid, R., Yang, Y., Stafstrom, C.E., Mikati, M.A., and Holmes, G.L., 2001, Anti-convulsant action and long-term effects of gabapentin in the immature brain, Neuropharmacology 40:139–147.Google Scholar
  19. DeGiorgio, C.M., Tomiyasu, U., Gott, P.S., and Treiman, D.M.,1992, Hippocampal pyramidal cell loss in human status epilepticus, 33:23–27.Google Scholar
  20. Devinsky, O., 1999, Patients with refractory seizures, N Engl J Med 340:1565–1570.Google Scholar
  21. Ebert, U., Brandt, C., and Loscher, W., 2002, Delayed sclerosis, neuroprotection, and limbic epileptogenesis after status epilepticus in the rat, Epilepsia; 43(S5):86–95.Google Scholar
  22. Feksi, A.T., Kaamugisha, J., Sander, J.W., Gatiti, S., and Shorvon, S.D., 1991, Comprehensive primary health care antiepileptic drug treatment programme in rural and semi-urban Kenya, ICBERG (International Community-based Epilepsy Research Group) Lancet 337(8738):406–9.Google Scholar
  23. French, J.A., Williamson, P.D., Thadani, V.M., Darcey, T.M., Mattson, R.H., Spencer, S.S., and Spencer, D. D., 1993, Characteristics of medial temporal lobe epilepsy: I. Results of history and physical examination, Ann.Neurol. 34:774–780.Google Scholar
  24. Fuerst, D., Shah, J., Kupsky, W.J., Johnson, R., Shah, A., Hayman-Abello B., Ergh, T., Poore, Q., Canady, A., and Watson, C, 2001, Volumetric MRI, pathological, and neuropsychological progression in hippocampal sclerosis, Neurology 57(2):184–8.Google Scholar
  25. Fuerst, D., Shah, J., Shah, A., and Watson, C, 2003, Hippocampal sclerosis is a progressive disorder: A longitudinal volumetric MRI study, Ann. Neurol. 53(3):413–6.Google Scholar
  26. Gall, C, and Isackson, P.J., 1989, Limbic seizures increase neuronal production of messenger RNA for nerve growth factor, Science, 245:758–761.Google Scholar
  27. Goddard, G.V., 1967, Development of epileptic seizures through brain stimulation at low intensity, Nature 214:1020–1021.Google Scholar
  28. Gundersen, H.J. G., Bendtsen, T.F., Korbo, L., Marcussen, N., Moller, A., Nielsen, K., Nyengaard, J.R., Pakkenberg, B., Sorensen, F.B., Vesterby, A., and West, M. J, 1988, Some new, simple and efficient stereological methods and their use in pathological research and diagnosis, APMIS 96:379–394.Google Scholar
  29. Halonen, T., Nissinen, J., Pitkänen, A., 1999, Neuroprotective effect of remacemide hydrochloride in a perforant pathway stimulation model of status epilepticus in the rat, Epilepsy Res. 34:251–269.Google Scholar
  30. Halonen, T., Nissinen, J., and Pitkänen, A., 2001a, Effect of lamotrigine treatment on status epilepticus-induced neu-ronal damage and memory impairment in rat, Epilepsy Res. 46:205–223.Google Scholar
  31. Halonen, T., Nissinen, J., and Pitkänen, A., 2001b, Chronic elevation of brain GABA levels beginning two days after status epilepticus does not prevent epileptogenesis in rats, Neu-ropharmacology 40:536–550.Google Scholar
  32. Hort, J., Brozek, G., Mares, P., Langmeier, M., and Komarek, V., 1999, Cognitive functions after pilocarpineinduced status epilepticus: changes during silent period precede appearance of spontaneous recurrent seizures, Epilepsia 40:1177–1183.Google Scholar
  33. Houser, C.R., 1990, Granule cell dispersion in the dentate gyrus of humans with temporal lobe epilepsy. Brain Res 535:195–204.Google Scholar
  34. Jack, C.R. Jr., Sharbrough, F.W., Twomey, C.K., Cascino, G.D., Hirschorn, K.A., Marsh, W.R., Zinsmeister, A.R., and Scheithauer, B., 1990, Temporal lobe seizures: Lateralization with MR volume measurements of the hippocampal formation, Radiology 175:423–429.Google Scholar
  35. Jackson, G.D., 1995, The diagnosis of hippocampal sclerosis: other techniques. Magn. Resort. Imaging.; 13(8):1081–93. Review.Google Scholar
  36. Janszky, J., Barsi, P., Halasz, P., Erőss, L., and Rásonyi, Gy., 1999, Temporal lobe epilepsy syndrome with peritrigonal nodular heterotopia, Clin Neurosci. 52(l-2):44–50.Google Scholar
  37. Jensen, F.E., Holmes, G.L., Lombroso, C.T., Blume, H.K., and Firkusny, I.R., 1992, Age-dependent changes in long-term seizure susceptibility and behavior after hypoxia in rats, Epilepsia 33:971–980.Google Scholar
  38. Jolkkonen, J., Halonen, T., Jolkkonen, E., Nissinen, J., and Pitkänen, A., 1996, Scizure-induced damage to the hippocampus is prevented by modulation of the GABAergic system, NeuroReport 7:2031–2035.Google Scholar
  39. Jope, R.S., Song, L., and Kolasa, K., 1992, Inositol trisphosphate, cyclic AMP, and cyclic GMP in rat brain regions after lithium and seizures, Biol Psychiatry 31:505–514.Google Scholar
  40. Kito, S., and Miyosi, R., 1991, Effect of neuropeptides on classic types of neurotransmission in the rat central nervous system, in Kito, S., et al (eds.), Neuroreceptors Mechanisms in Brain Plenum Press, New York, pp. 1–11.Google Scholar
  41. Klitgaard, H., 2001, Levetiracetam: the preclinical profile of a new class of antiepileptic drugs? Epilepsia 42(S4):13–8.Google Scholar
  42. Kwan, P. and Brodie, M.J., 2000, Early identification of refractory epilepsy, N. Engl. J Med. 342:314–319.Google Scholar
  43. Upton, S.A. and Rosenberg, P.A., 1994, Excitatory amino acids as a final common pathway for neurologic disorders. 330:613–622.Google Scholar
  44. Liu, R.S., Lemieux, L., Bell, G.S., Hammers, A., Sisodiya, S.M., Bartlett, P.A., Shorvon, S.D., Sander, J. W., and Duncan, J.S., 2003, Prograssive neocortical damage in epilepsy, Ann. Neurol. 53:312–324.Google Scholar
  45. Loscher, W., 2002, Animal models of epilepsy for the development of antiepileptogenic and disease-modifying drugs. A comparison of the pharmacology of kindling and post-status epilepticus models of temporal lobe epilepsy, Epilepsy Res. 50:105–123.Google Scholar
  46. Loscher, W., Honack, D., and Rundfeldt, C, 1998, Antiepileptogenic effects of the novel anticonvulsant levetiracetam (ucb L059) in the kindling model of temporal lobe epilepsy, J Pharmacol.Exp.Ther. 284:474–479.Google Scholar
  47. Lothman, E.W., Williamson, J.M., Goosens, K.A., Bertram, E.H., 1996. Vigabatrin improves behavioral outcome in a rat model of mesial temporal lobe epilepsy, Abstract in HMR exhibition in connections of 1996 American Epilepsy Society meeting in San Fransisco. Google Scholar
  48. Maglóczky, ZS., Wittner, L., Borhegyi, ZS., Halász, P., Vajda, J., Czirják, S., and Freund, T., 2000, Changes in the distribution and connectivity of interneurons in the epileptic human dentate gyrus. Neuroscience 96:7–25.Google Scholar
  49. Mares, P., 1973, Ontogenetic development of bioelectrical activity of the epileptogenic focus in rat neocortex Neuropadiatrie 4:434–445.Google Scholar
  50. Margerison, J.H., and Corsellis, J.A. N., 1966, Epilepsy and the temporal lobes. A clinical, electroencephalographic and neuropathological study of the brain in epilepsy with particular reference to the temporal lobes, Brain 89:499–530.Google Scholar
  51. Mazarati, A.M., Baldwin, R.A., Sofia, R.D., and Wasterlain, C.W., 2000, Felbamate in experimental model of status epilepticus, Epilepsia 41(2):123–127.Google Scholar
  52. McNamara, J.O., and Wada, J.A., 1997, Kindling model.in Engel J. Jr and Pedly TA eds, Epilepsy: A Comprehensive Textbook, Lippincott-Ravan, Philadelphia.,Pp. 419–425.Google Scholar
  53. Meyer, A., Falconer, M.A., and Beck, E., 1954, Pathological findings in temporal lobe epilepsy. J. Neurol.Neurosurg. Pychia, 3:276–285.Google Scholar
  54. Michelson, H.B., Williamson, J.M., Lothman, E.W., 1989, Ontogeny of kindling: the acquisition of kindled responses at different ages with rapidly recurring hippocampal seizures, Epilepsia, 30, 672.Google Scholar
  55. Musicco, M., Beghi, E., Solari, A., and Viani, F., 1997, Treatment of first tonic-clonic seizure does not improve the prognosis of epilepsy, First Scizure Trial Group (FIRST Group, Neurology 49:991–998.Google Scholar
  56. Niebauer, M., Gruenthal, M., 1999, Topiramate reduces neu-ronal injury after experimental status epilepticus, Brain Res. 837, 263–269.Google Scholar
  57. Niquet, J., Ben Ari, Y., Faissner, A., Represa, A., 1995, Lesion and fibre sprouting in the hippocampus is associed with an increase of tenascin immunoreactivity, an extracellular glycoprotein with repulsive properties. J. Neurocytol 24, 611–624.Google Scholar
  58. Niquet, J., Ben Ari, Y., Represa, A., 1994, Glial reaction after seizure induced hippocampal lesion: Immunocytochemical characterization of proliferating glial cell. J. Neurocytol 24, 641–656.Google Scholar
  59. Nohria, V., Lee, N., Tien, R.D., Heinz, E.R., Smith JS., DeLong, G, R., Skeen, M.B., Resnick, T.J., Crain, B., and Lewis, D.V., 1994, Magnetic resonance imaging evidence of hippocampal sclerosis in progression: a case report. Epilepsia 35(6):1332–6.Google Scholar
  60. Oorschot, D.E., 1994, Are you using neuronal densities, synaptic densities or neurochemical densities as your definitive data? There is a better way to go, Prog. Neurobiol 44:233–247.Google Scholar
  61. Pitkänen A, Halonen T. Prevention of epilepsy. Trends Pharmacol Sci. 1998 Jul;19(7):253–5.PubMedCrossRefGoogle Scholar
  62. Pitkänen, A., Nissinen, J., Jolkkonen, E., Tuunanen, J., Halonen, T., 1999, Effects of vigabatrin treatment on status epilepticus-induced neuronal damage and mossy fiber sprouting in the rat hippocampus. Epilepsy Res. 33:67–85.Google Scholar
  63. Placencia, M., Sander, J.W., Roman, M., Madera, A., Crespo, F., Cascante, S., and Shorvon, S.D., 1994, The characteristics of epilepsy in a largely untreated population in rural Ecuador, 57:320–325.Google Scholar
  64. Placencia, M., Sander, J.W., Shorvon, S.D., Roman, M., Alarcon, F., Bimos, C, and Cascante, S., 1993, Antiepileptic drug treatment in a community health care setting in northern Ecuador: a prospective 12-month assessment. 14:237–244.Google Scholar
  65. Raymond, A.A., Fish, D.R., Stevens, J.M., Cook, M.J., Sisodiya, S.M., and Shorvon, S.D., 1994, Association of hippocampal sclerosis with cortical dysgenesis in patients with epilepsy, Neurology, 44:1841–1845.Google Scholar
  66. Represa, A., Le Gall Salle, G., Ben Ari, Y. (1989) Hippocampal plasticity in the kindling model of epilepsy in rats. Neurosci. Lett 99:345–350.PubMedCrossRefGoogle Scholar
  67. Represa, A., Niquet, J., Charriot Marlangue, C, and Ben Ari, Y., 1993a Reactive astrocytes in the kainic acid damaged hippocampus have the phenotype features of type II astrocytes, J.Neurocytol, 22:299–310.Google Scholar
  68. Represa, A., Pollard, H., Moreau, J., Ghilini, G., Khrestcharisky, M., and Ben Ari, Y., 1993b, Mossy fibres sprouting in epileptic rats is associated with a transient increased expression of tubulin. Neurosci Lett 156:149–152.Google Scholar
  69. Reynolds, E.H., 1987, Early treatment and prognosis of epilepsy, Epilepsia 28(2):97–106.Google Scholar
  70. Ribak, C.B., and Peterson, G.M., 1991, Intragraular mossy fibers in rats and gerbils taken from synapsus with somatic and proximal dendrites of basket cells in the dentate gyrus, Hippocampus 1:355–364.Google Scholar
  71. Rizzi, M., Monno, A., Samanin, R., Sperk, G., and Vezzani, A., 1993, Electrical kindling of the hippocampus is associated with functional activation of neuropeptide Y-containing neurons. Eur J Neurosci 5:1534–1538.Google Scholar
  72. Schmutz, M., Klebs, K., andBaltzer, V., 1988, Inhibition or enhancement kindling evolution by antiepileptics. J. Neu-ral. Transm. 72:245–257.Google Scholar
  73. Semah F, Picot MC, Actam C, Broglin D, Arzimanoglou A, Bazin B, Cavalcanti D, Baulac M., 1998, Is the underlying cause of epilepsy a major prognostic factor for recurrence? Neurology 51(5):1256–62.Google Scholar
  74. Shin, C, Rigsbee, L.C., McNamara, J.O., 1986, Anti-seizure and anti-epileptogenic effect of γ-vinyl γ-aminobutyric acid in amygdaloid kindling, Brain Res. 398:370–374.Google Scholar
  75. Silver, J.M., Shin, C, and McNamara, J.O., 1991, Antiepilepto-genic effects of conventional anticonvulsants in the kin-dling model of epilepsy, Ann. Neurol. 29:356–363.Google Scholar
  76. Stauder, K.H., 1936, Epilepsie und Schlafenlappen. Arch. Psychiat. Nervenkr 104:181–211.Google Scholar
  77. Stratton, S. C, Large, C.H., Cox, B., Davies, G., and Hagan, R.M., 2003, Effects of lamotrigine and levetiracetam on seizure development in a rat amygdala kindling model, Epilepsy Res. 53(l-2):95–106.Google Scholar
  78. Sutula, T., Cascino, G., Cavazos, J., Parada, I., and Ramirez, L., 1989, Mossy fiber synaptic reorganization in the epileptic human temporal lobe, Ann.Neurol. 26:321–330.Google Scholar
  79. Sutula, T., Cavazos, J., Golarai, G., 1992. Alteration of longlasting structural and functional effects of kainic acid in the hippocampus by brief treatment with phenobarbital, J. Neurosci. 12:4173–4187.Google Scholar
  80. Swann, J. and Moshé, L.S., 1997, Developmental issues in animal models, in: J. Engel Jr. and T.A. Pedley (eds.), Epilepsy: A Comprehensive Textbook, Lippincott-Raven, Philadelphia, pp. 467–479.Google Scholar
  81. Tasch, E., Cendes, F., Li LM, Dubeau, F., Andermann, F., and Arnold, D.L., 1999, Neuroimaging evidence of progressive neuronal loss and dysfunction in temporal lobe epilepsy, Ann Neurol. 45(5):568–76.Google Scholar
  82. Tauck, D.L., and Nadler, J.V., 1985, Evidence of functional mossy fibre sprouting in hippocampal formation of kainic acid treated rats. J. Neurosci. 5:1016–1022.Google Scholar
  83. Temkin, N.R., 2001, Antiepileptogenesis and seizure prevention trials with antiepileptic drugs: meta-analysis of controlled trials, Epilepsia 42:515–524.Google Scholar
  84. Theodore, W.H., Bhatia, S., Hatta, J., Fazilat, S., DeCarli, C, Bookheimer, S.Y., and Gaillard, W.D., 1999, Hippocampal atrophy, epilepsy duration, and febrile seizures in patients with partial seizures. Neurology 52(1):132–6.Google Scholar
  85. Timofeev, I., Grenier, F., and Steriade, M., 1998, Spike-wave complexes and fast components of cortically generated seizures. IV. Paroxysmal fast runs in cortical and thalamic neurons, J Neurophysiol. 80(3):1495–513.Google Scholar
  86. Turski, W.A., Cavalheiro, E.A., Coimbra, C, da Penha, Berzaghi, M., Ikonomidou-Turski, C, and Turski, L., 1987, Only certain antiepileptic drugs prevent seizures induced by pilocarpine, Brain Res. 434(3):281–305.Google Scholar
  87. Turski, W.A., Cavalheiro, E.A., Schwartz, M., Czuczwar, S.J., Kleinrok, Z., and Turski, L., 1983, Limbic seizures produced by pilocarpine in rats: behavioural electroencephalographic and neuropathological study, Behav Brain Res 9:315–335.Google Scholar
  88. Tuunanen, J. and Pitkanen, A., 2000, Do seizures cause neuronal damage in rat amygdala kindling? 39:171–176.Google Scholar
  89. Vajda, F.J. E., 2002, Neuroprotection and neurodegenerative disease, J. Clin. Neuroscience 9(1):4–8.Google Scholar
  90. Van Paesschen, W., Revesz, T., Duncan, J.S., King, M.D., and Connelly, A., 1997, Quantitative neuropathology and quantitative magnetic resonance imaging of the hippocampus in temporal lobe epilepsy, Ann Neurol. 42(5):756–66.Google Scholar
  91. Walker, M. C, White, H.S., and Sander, J.W., 2002, Disease modification in partial epilepsy, Brain 125:1937–1950.Google Scholar
  92. Wang, Q., Theard, A.M., Pelligrino, D.A., Baughman, V., and Hoffmann, W.E., 1994, Nitric oxide (NO) is an endogenous anticonvulsant but not a mediator of the cerebral hyperemia accompanying bicuculline induced seizures in rats, Brain Res. 658:142–148.Google Scholar
  93. Willmore, L.J. and Rubin, J.J., 1984, Effects of antiperoxidants on FeC12-induced lipid peroxidation and focal edema in rat brain, Exp. Neurol. 83:62–70.Google Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Péter Halász
    • 1
  • György Rásonyi
    • 1
  1. 1.National Institute of Psychiatry and NeurologyEpilepsy centreBudapestHungary

Personalised recommendations