Skip to main content

Multi-photon Excitation Fluorescence Microscopy

  • Conference paper
Frontiers in Biomedical Engineering
  • 389 Accesses

Abstract

Multi-photon microscopy is an emerging technique with far reaching impact in biological and medical analysis of tissues, cells and biomolecules. This paper reviews the basic principles of multi-photon microscopy and provide an overview of some cutting edge developments such as spectral resolved imaging techniques and high throughput image cytometry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bacskai BJ, Kajdasz ST, Christie RH, Carter C, Games D, Seubert P, Schenk D, Hyman BT. 2001. Imaging of amyloid-beta deposits in brains of living mice permits direct observation of clearance of plaques with immunotherapy. Nat Med 7(3):369–72.

    Article  Google Scholar 

  2. Baird GS, Zacharias DA, Tsien RY. 1999. Circular permutation and receptor insertion within green fluorescent proteins. Proc Natl Acad Sci USA 96(20): 11241–6.

    Article  Google Scholar 

  3. Barad Y, Eisenberg H, Horowitz M, Silberberg Y. 1997. Nonlinear scanning laser microscopy by third harmonic generation. Appl. Phys. Lett. 70(8):922–4.

    Article  Google Scholar 

  4. Beauvoit B, Chance B. 1998. Time-resolved spectroscopy of mitochondria, cells, and tissues under normal and pathological conditions. Molecular and Cellular Biochemistry 184:445–455.

    Article  Google Scholar 

  5. Bennett BD, Jetton TL, Ying G, Magnuson MA, Piston DW. 1996. Quantitative subcellular imaging of glucose metabolism within intact pancreatic islets. J. Biol. Chem. 271(7):3647–51.

    Article  Google Scholar 

  6. Buehler C, Kim KH, Dong CY, Masters BR, So PTC. 1999. Innovations in two-photon deep tissue microscopy. IEEE Eng. Med. Biol. Mag. 18(5):23–30.

    Article  Google Scholar 

  7. Campagnola PJ, Clark HA, Mohler WA, Lewis A, Loew LM. 2001. Second-harmonic imaging microscopy of living cells. J Biomed Opt 6(3):277–86.

    Article  Google Scholar 

  8. Campagnola PJ, Wei M-D, Lewis A, Loew LM. 1999. High-resolution nonlinear optical imaging of live cells by second harmonic generation. Biophys. J. 77:3341–3349.

    Article  Google Scholar 

  9. Centonze VE, White JG. 1998. Multiphoton excitation provides optical sections from deeper within scattering specimens than confocal imaging. Biophys. J. 75(4):2015–24.

    Article  Google Scholar 

  10. Chalfie M, Tu Y, Euskirchen G, Ward WW, Prasher DC. 1994. Green Fluorescent Protein as a Marker for Gene Expression. Science 263:802–805.

    Article  Google Scholar 

  11. Christie RH, Bacskai BJ, Zipfel WR, Williams RM, Kajdasz ST, Webb WW, Hyman BT. 2001. Growth arrest of individual senile plaques in a model of Alzheimer’s disease observed by in vivo multiphoton microscopy. J Neurosci 21(3):858–64.

    Google Scholar 

  12. Cothren RM, Richards-Kortum R, Sivak M, Fitzmaurice M, Rava R, Boyce G, Doxtader M, Blackman R, Ivanc T, Hayes G. 1990. Gastrointentinal tissue diagnostic by laser-induced fluorescence spectroscopy at endoscopy. Gastrointest. Endosc. 36:105–111.

    Article  Google Scholar 

  13. Dabbous MK. 1966. Inter-and intramolecula cross-linking in tyrosinase-treated tropocollagen. J. Bio. Chem. 241:5307–5312.

    Google Scholar 

  14. Denk W, Delaney KR, Gelperin A, Kleinfeld D, Strowbridge BW, Tank DW, Yuste R. 1994. Anatomical and functional imaging of neurons using 2-photon laser scanning microscopy. J. Neurosci. Methods 54 (2):151–62.

    Article  Google Scholar 

  15. Denk W, Detwiler PB. 1999. Optical recording of light-evoked calcium signals in the functionally intact retina. Proc. Natl. Acad. Sci. USA 96(12):7035–40.

    Article  Google Scholar 

  16. Denk W, Strickler JH, Webb WW. 1990. Two-photon laser scanning fluorescence microscopy. Science 248(4951):73–6.

    Article  Google Scholar 

  17. Denk W, Sugimori M, Llinas R. 1995a. Two types of calcium response limited to single spines in cerebellar Purkinje cells. Proc. Natl. Acad. Sci. USA 92(18):8279–82.

    Article  Google Scholar 

  18. Denk WJ, Piston DW, Webb WW. 1995b. Two-photon molecular excitation laser-scanning microscopy. In: Pawley JB, editor. Handbook of Biological Confocal Microscopy. 2nd ed. New York: Plenum Press. p 445–458.

    Chapter  Google Scholar 

  19. Dunn AK, Wallace VP, Coleno M, Berns MW, Tromberg BJ. 2000. Influence of optical properties on two-photon fluorescence imaging in turbid samples. Applied Optics 39:1194–1201.

    Article  Google Scholar 

  20. Engert F, Bonhoeffer T. 1999. Dendritic spine changes associated with hippocampal long-term synaptic plasticity. Nature 399(6731):66–70.

    Article  Google Scholar 

  21. Fetcho JR, O’Malley DM. 1997. Imaging neuronal networks in behaving animals. Curr. Opin. Neurobiol. 7(6):832–8.

    Article  Google Scholar 

  22. Freund I, Deutsch M, Sprecher A. 1986. Connective tissue polarity. Optical second-harmonic microscopy, crossed-beam summation, and small-angle scattering in rat-tail tendon. Biophys J 50(4):693–712.

    Article  Google Scholar 

  23. Gannaway JN, Sheppard CJR. 1978. Second harmonic imaging in the scanning optical microscope. Optics and Quantum Electronics 10:435–439.

    Article  Google Scholar 

  24. Goppert-Mayer M. 1931. Uber Elementarakte mit zwei Quantensprungen. Ann Phys (Leipzig) 5:273–94.

    Article  Google Scholar 

  25. Grewal BS, Naik A, Irwin WJ, Gooris G, de Grauw CJ, Gerritsen HG, Bouwstra JA. 2000. Transdermal macromolecular delivery: real-time visualization of iontophoretic and chemically enhanced transport using two-photon excitation microscopy. Pharm Res 17(7):788–95.

    Article  Google Scholar 

  26. Gu M, Sheppard CJR. 1995. Comparison of Three-Dimensional Imaging Properties between Two- Photon and Single-Photon Fluorescence Microscopy. J. Microsc. 177:128–137.

    Article  Google Scholar 

  27. Hellwarth R, Christensen P. 1974. Nonlinear optical microscopic examination of structures in polycrystaline ZnSe. Opt. Commun. 12:318–322.

    Article  Google Scholar 

  28. Helmchen F, Svoboda K, Denk W, Tank DW. 1999. In vivo dendritic calcium dynamics in deep-layer cortical pyramidal neurons. Nat. Neurosci. 2(11):989–96.

    Article  Google Scholar 

  29. Hockberger PE, Skimina TA, Centonze VE, Lavin C, Chu S, Dadras S, Reddy JK, White JG. 1999. Activation of flavin-containing oxidases underlies light-induced production of H202 in mammalian cells. Proc. Natl. Acad. Sci. USA 96(11):6255–60.

    Article  Google Scholar 

  30. Hoerman KC, Balekjian AY. 1966. Some quantum aspects of collagen. Federation Proc. 25(1016–1021).

    Google Scholar 

  31. Jacques SL, McAuliffe DJ, Blank IH, Parrish J A. 1987. Controlled removal of human stratum corneum by pulsed laser. J. Invest. Dermatol. 88(l):88–93.

    Article  Google Scholar 

  32. Jones KT, Soeller C, Cannell MB. 1998. The passage of Ca2+ and fluorescent markers between the sperm and egg after fusion in the mouse. Development 125(23):4627–35.

    Google Scholar 

  33. Kaiser W, Garrett CGB. 1961. Two-photon excitation in CaF2:Eu2+. Phys. Rev. Lett. 7:229–231.

    Article  Google Scholar 

  34. Keyse SM, Tyrrell RM. 1990. Induction of the heme oxygenase gene in human skin fibroblasts by hydrogen peroxide and UVA (365 nm) radiation: evidence for the involvement of the hydroxyl radical. Carcinogenesis 11(5):787–91.

    Article  Google Scholar 

  35. Kierdaszuk B, Malak H, Gryczynski I, Callis P, Lakowicz JR. 1996. Fluorescence of Reduced Nicotinamides using One-and Two-Photon Excitation. Biophys. Chem. 62:1–13.

    Article  Google Scholar 

  36. Kim BM, Eichler J, Reiser KM, Rubenchik AM, Da Silva LB. 2000. Collagen structure and nonlinear susceptibility: effects of heat, glycation, and enzymatic cleavage on second harmonic signal intensity. Lasers Surg Med 27(4):329–35.

    Article  Google Scholar 

  37. Kim KH, Stitt MS, Hendricks CA, Almeida KH, Engelward BP, So PTC. In Press. Three-dimensional image cytometry based on a high-speed two-photon scanning microscope. SPIE Proc.

    Google Scholar 

  38. Kleinfeld D, Mitra PP, Helmchen F, Denk W. 1998. Fluctuations and stimulus-induced changes in blood flow observed in individual capillaries in layers 2 through 4 of rat neocortex. Proc. Natl. Acad. Sci. U S A 95(26):15741–6.

    Article  Google Scholar 

  39. Kleinman DA. 1962. Nonlinear dielectric polarization in optical media. Phys. Rev. 126:1977–1979.

    Article  Google Scholar 

  40. Koester HJ, Baur D, Uhl R, Hell SW. 1999. Ca2+ fluorescence imaging with pico-and femtosecond two-photon excitation: signal and photodamage. Biophy. J. 77(4):2226–36.

    Article  Google Scholar 

  41. Konig K, Becker TW, Fischer P, Riemann I, Halbhuber K-J. 1999. Pulse-length dependence of cellular response to intense near-infrared laser pulses in multiphoton microscopes. Opt. Lett. 24(2): 113–15.

    Article  Google Scholar 

  42. Konig K, So PTC, Mantulin WW, Tromberg BJ, Gratton E. 1996. Two-photon excited lifetime imaging of autofluorescence in cells during UVA and NIR photostress. J. Microsc. 183(Pt 3): 197–204.

    Google Scholar 

  43. LaBella FS. 1961. Studies on the soluble products released from purified elastic fibers by pancreatic elastase. Arch. Biochm. Biophys. 93:72–79.

    Article  Google Scholar 

  44. LaBella FS, Gerald P. 1965. Structure of collagen from human tendon as influence by age and sex. J. Gerontol. 20:54–59.

    Article  Google Scholar 

  45. LaBella FS, Lindsay WG. 1963. The structure of human aortic elastin as influence by age. J. Gerontol. 18: 111–118.

    Article  Google Scholar 

  46. Lakowicz JR, Gryczynski I. 1992. Tryptophan Fluorescence Intensity and Anisotropy Decays of Human Serum Albumin resulting from One-Photon and Two-Photon Excitation. Biophys. Chem. 45:1–6.

    Article  Google Scholar 

  47. Lakowicz JR, Kierdaszuk B, Callis P, Malak H, Gryczynski I. 1995. Fluorescence Anisotropy of Tyrosine using One-and Two-Photon Excitation. Biophys. Chem. 56:263–271.

    Article  Google Scholar 

  48. Licha K, Riefke B, Ntziachristos V, Becker A, Chance B, Semmler W. 2000. Hydrophilic cyanine dyes as contrast agents for near-infrared tumor imaging: Synthesis, photophysical properties and spectroscopic in vivo characterization. Photochemistry and Photobiology 72:392–398.

    Article  Google Scholar 

  49. Mainen ZF, Malinow R, Svoboda K. 1999. Synaptic calcium transients in single spines indicate that NMDA receptors are not saturated. Nature 399(6732): 151–5.

    Article  Google Scholar 

  50. Maletic-Savatic M, Malinow R, Svoboda K. 1999. Rapid dendritic morphogenesis in CA1 hippocampal dendrites induced by synaptic activity. Science 283(5409): 1923–7.

    Article  Google Scholar 

  51. Masters BR, Chance B. 1999. Redox confocal imaging: intrinsic fluorescent probes of cellular metabolism. In: Mason WT, editor. Fluorescent and Luminescent Probes for Biological Activity. London: Academic Press. p 361–374.

    Chapter  Google Scholar 

  52. Masters BR, So PT, Gratton E. 1997. Multiphoton excitation fluorescence microscopy and spectroscopy of in vivo human skin. Biophys. J. 72(6):2405–12.

    Article  Google Scholar 

  53. Mohler WA, Simske JS, Williams-Masson EM, Hardin JD, White JG. 1998. Dynamics and ultrastructure of developmental cell fusions in the Caenorhabditis elegans hypodermis. Curr. Biol. 8(19): 1087–90.

    Article  Google Scholar 

  54. Mohler WA, White JG. 1998. Stereo-4-D reconstruction and animation from living fluorescent specimens. Biotechniques 24(6):1006–10, 1012.

    Google Scholar 

  55. Napadow VJ, Chen Q, Mai V, So PTC, Gilbert RJ. 2001. Quantitative analysis of three-dimensional-resolved fiber architecture in heterogeneous skeletal muscle tissue using nmr and optical imaging methods. Biophys J 80(6):2968–75.

    Article  Google Scholar 

  56. Niswender KD, Blackman SM, Rohde L, Magnuson MA, Piston DW. 1995. Quantitative imaging of green fluorescent protein in cultured cells: comparison of microscopic techniques, use in fusion proteins and detection limits. J. Microsc. 180(Pt 2):109–16.

    Article  Google Scholar 

  57. Oheim M, Beaurepaire E, Chaigneau E, Mertz J, Charpak S. 2001. Two-photon microscopy in brain tissue: parameters influencing the imaging depth. J Neurosci Methods 11(11):29–37.

    Article  Google Scholar 

  58. Piston DW, Knobel SM, Postic C, Shelton KD, Magnuson MA. 1999. Adenovirus-mediated knockout of a conditional glucokinase gene in isolated pancreatic islets reveals an essential role for proximal metabolic coupling events in glucose-stimulated insulin secretion. J. Biol. Chem. 274(2): 1000–4.

    Article  Google Scholar 

  59. Piston DW, Masters BR, Webb WW. 1995. Three-dimensionally resolved NAD(P)H cellular metabolic redox imaging of the in situ cornea with two-photon excitation laser scanning microscopy. J. Microsc. 178(Pt l):20–7.

    Article  Google Scholar 

  60. Potter SM, Wang CM, Garrity PA, Fraser SE. 1996. Intravital Imaging of Green Fluorescent Protein Using Two-Photon Laser-Scanning Microscopy. Gene 173:25–31.

    Article  Google Scholar 

  61. Pustovalov VK. 1995. Initiation of explosive boiling and optical breakdown as a result of the action of laser pulses on melanosome in pigmented biotissues. Kvantovaya Elektronika 22(11): 1091–4.

    Google Scholar 

  62. Richards-Kortum R, Rava RP, Fitzmaurice M, Tong L, Ratliff NB, Kramer JR, Feld MS. 1991a. A one layer model of laser induced fluorescence for diagnosis of diseases in human tissue: application to humar tissue. IEEE Trans. Biomed. Eng 36:1222–1232.

    Article  Google Scholar 

  63. Richards-Kortum R, Rava RP, Petras RE, Fitzmaurice M, Sivak M, Feld MS. 1991b. Spectroscopic diagnosis of colonic dysplasia. Photochem Photobiol 53(6):777–86.

    Google Scholar 

  64. Riegler M, Castagliuolo I, So PT, Lotz M, Wang C, Wlk M, Sogukoglu T, Cosentini E, Bischof G, Hamilton G et al., 1999. Effects of substance P on human colonic mucosa in vitro. Am. J. Physiol. 276 (6 Pt l):G1473–83.

    Google Scholar 

  65. Roth S, Freund I. 1981. Optical second-harmonic scattering in rat-tail tendon. Biopolymers 20(6): 1271–90.

    Article  Google Scholar 

  66. Sako Y, Sekihata A, Yanagisawa Y, Yamamoto M, Shimada Y, Ozaki K, Kusumi A. 1997. Comparison of two-photon excitation laser scanning microscopy with UV- confocal laser scanning microscopy in three-dimensional calcium imaging using the fluorescence indicator Indo-1. J. Microsc. 185(Pt l):9–20.

    Article  Google Scholar 

  67. Schonle A, W. HS. 1998. Heating by absorption in the focus of an objective lens. Opt. Lett. 23(5):325–7.

    Article  Google Scholar 

  68. Sheppard CJR, Gu M. 1990. Image formation in two-photon fluorescence microscope. Optik 86:104–6.

    Google Scholar 

  69. Sheppard CJR, Kompfner R, Gannaway J, Walsh D. The scanning harmonic optical microscope. IEEE Journal of Quantum electronics; 1977; Washington. p 100D.

    Google Scholar 

  70. Shi SH, Hayashi Y, Petralia RS, Zaman SH, Wenthold RJ, Svoboda K, Malinow R. 1999. Rapid spine delivery and redistribution of AMPA receptors after synaptic NMDA receptor activation. Science 284 (5421):1811–6.

    Article  Google Scholar 

  71. Singh S, Bradley LT. 1964. Three-photon absorption in naphthalene crystals by laser excitation. Phys. Rev. Lett. 12:162–164.

    Article  Google Scholar 

  72. Squier JA, Muller M, Brakenhoff GJ, Wilson KR. 1998. Third harmonic generation microscopy. Opt. Exp. 3(9):315–324.

    Article  Google Scholar 

  73. Squirrell JM, Wokosin DL, White JG, Bavister BD. 1999. Long-term two-photon fluorescence imaging of mammalian embryos without compromising viability. Nat. Biotechnol. 17(8):763–7.

    Article  Google Scholar 

  74. Stoller P, Kim BM, Rubenchik AM, Reiser KM, Da Silva LB. 2002. Polarization-dependent optical second-harmonic imaging of a rat-tail tendon. J Biomed Opt 7(2):205–14.

    Article  Google Scholar 

  75. Summers RG, Piston DW, Harris KM, Morrill JB. 1996. The orientation of first cleavage in the sea urchin embryo, Lytechinus variegatus, does not specify the axes of bilateral symmetry. Dev. Biol. 175 (l):177–83.

    Article  Google Scholar 

  76. Svoboda K, Denk W, Kleinfeld D, Tank DW. 1997. In vivo dendritic calcium dynamics in neocortical pyramidal neurons. Nature 385(6612):161–5.

    Article  Google Scholar 

  77. Svoboda K, Helmchen F, Denk W, Tank DW. 1999. Spread of dendritic excitation in layer 2/3 pyramidal neurons in rat barrel cortex in vivo. Nat. Neurosci. 2(l):65–73.

    Article  Google Scholar 

  78. Theodossiou T, Georgiou E, Hovhannisyan V, Yova D. 2001. Visual observation of infrared laser speckle patterns at half their fundamental wavelength. Lasers Med Sci 16(l):34–9.

    Article  Google Scholar 

  79. Theodossiou T, Rapti GS, Hovhannisyan V, Georgiou E, Politopoulos K, Yova D. 2002. Thermally induced irreversible conformational changes in collagen probed by optical second harmonic generation and laser-induced fluorescence. Lasers Med Sci 17(1):34–41.

    Article  Google Scholar 

  80. Thomas J, Elsden DF, M. PS. 1963. Degradation products from elastin. Nature 200:651–652.

    Article  Google Scholar 

  81. Tsien RY. 1998. The green fluorescent protein. Annu Rev Biochem 67:509–44.

    Article  Google Scholar 

  82. Tyrrell RM, Keyse SM. 1990. New trends in photobiology. The interaction of UVA radiation with cultured cells. J. Photochem. Photobiol. B 4(4):349–61.

    Article  Google Scholar 

  83. Wokosin DL, Centonze VE, White J, Armstrong D, Robertson G, Ferguson AI. 1996. All-solid-state ultrafast lasers facilitate multiphoton excitation fluorescence imaging. IEEE Journal of Selected Topics in Quantum Electronics 2:1051–1065.

    Article  Google Scholar 

  84. Xu C, Webb WW. 1996. Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050 nm. J. Opt. Soc. Am. B 13(3):481–91.

    Article  Google Scholar 

  85. Yu B, Dong CY, So PTC, Blankschtein D, Langer R. 2001. In vitro visualization and quantification of oleic acid induced changes in transdermal transport using two-photon fluorescence microscopy. J Invest Dermatol 117(1): 16–25.

    Article  Google Scholar 

  86. Yuste R, Denk W. 1995. Dendritic spines as basic functional units of neuronal integration. Nature 375 (6533):682–4.

    Article  Google Scholar 

  87. Yuste R, Majewska A, Cash SS, Denk W. 1999. Mechanisms of calcium influx into hippocampal spines: heterogeneity among spines, coincidence detection by NMDA receptors, and optical quantal analysis. J Neurosci. 19(6): 1976–87.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this paper

Cite this paper

So, P.T.C. (2003). Multi-photon Excitation Fluorescence Microscopy. In: Hwang, N.H.C., Woo, S.LY. (eds) Frontiers in Biomedical Engineering. Topics in Biomedical Engineering International Book Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8967-3_35

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8967-3_35

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4739-2

  • Online ISBN: 978-1-4419-8967-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics