In What Manner Did They Walk on Two Legs?

An Architectural Perspective for the Functional Diagnostics of the Early Hominid Foot
  • Gilles Berillon
Chapter

Abstract

When Mary Leakey and collaborators discovered the Laetoli footprints (Tanzania) in 1978-1979, they exhumed the direct evidence that a species of primate was able to walk bipedally 3.75 Mya. This evidence of an early bipedalism has also been corroborated by contemporary fossil bones, especially those of Australopithecusafarensis. But in what manner did these early hominids walk on two legs? This point remains the subject of discussion. Our purpose is to add pedal architectural data to the debate concerning the locomotor modalities in early hominids, especially in Australopithecus afarensis.

Australopithecine tarsal and metatarsal bones from Hadar are compared to a sample of Proconsul from Rusinga and Songhor (Kenya), other early hominids from Omo (Ethiopia), Olduvai (Tanzania), Koobi Fora, Ileret and Baringo (Kenya) and Kromdraai (South Africa), Neandertals and extant species (43 Homo, 36 Pan et 38 Gorilla). The architecture of the foot is assessed by examining proximodistal relationships, and by measuring angulations taken on the dislocated tarsometatarsal skeleton.

The architectural analysis of the Australopithecus afarensis hallucal tarsometatarsal complex suggests that the hallux was slightly abducted in neutral position and of a different pattern than in African apes. Furthermore, the Australopithecusafarensis foot is flat in neutral position, resembling the extant African apes condition. Although foot remains are too incomplete to propose a complete architectural pattern, architectural data strongly corroborate the uniqueness of the Australopithecus afarensis foot pattern, in which a slightly abducted hallux and no plantar vault in neutral position are associated. Accordingly, if Australopithecus afarensis were the makers of the Laetoli trails, as the Laetoli fossil bones suggest, then their bipedal locomotion would have necessitate a very strong muscular action. These features corroborate the idea of a very distinctive pattern of bipedality in Australopithecus afarensis.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berge, C., 1994, How did the australopithecines walk? A biomechanical study of the hip and thigh of Australopithecus afarensis. Journal of Human Evolution 26:259–273.CrossRefGoogle Scholar
  2. Berilion, G., 1999, Geometric pattern of the hominoid hallucal tarsometatarsal complex. Quantifying the degree of hallux abduction in early hominids. Comptes Rendus de l’Académie des Sciences, Paris Série IIa, 328:627–633.Google Scholar
  3. Berillon, G., 2000, Le pied des hominoïdes miocènes et des hominidés fossiles. Architecture, locomotion, évolution. Cahiers de Paléoanthropologies CNRS Éditions, Paris, 166 p.Google Scholar
  4. Chabeuf, M., and Fontaine, M., 1955, La voûte plantaire des noirs du Soudan. Bulletins de la Société d’Anthropologie de Paris, 10ème série, 6: 174–180.CrossRefGoogle Scholar
  5. Charteris, J., Walls, J.C., and Nottrodt, J.W., 1981, Functional reconstruction of gait from the Pliocene hominid footprints at Laetoli, Northern Kenya. Nature 290: 496–498.CrossRefGoogle Scholar
  6. Charteris, J., Walls, J.C., and Nottrodt, J.W., 1982, Pliocene hominid gait: new interpretations based on available footprint data from Laetoli. American Journal of Physical Anthropology 58: 133–144.CrossRefGoogle Scholar
  7. Clarke, R.J., 1979, Early hominid footprints from Tanzania. South African Journal of Science 75: 148–149.Google Scholar
  8. Clarke, R.J., and Tobias P.V., 1995, Sterkfontein Member 2 foot bones of the oldest south african hominid. Science 269:521–524.CrossRefGoogle Scholar
  9. Crompton, R.H., Yu, L., Weijie, W., Gunther, M., and Savage, R., 1998, The mechanical effectiveness of erect and “bent-hip, bent-knee” bipedal walking in Australopithecus afarensis. Journal of Human Evolution 35: 55–74.CrossRefGoogle Scholar
  10. Dart, R., 1925, Australopithecus africanus, the man-ape of South Africa. Nature 115: 195–199.CrossRefGoogle Scholar
  11. Day, M.H., 1985, Hominid locomotion: from Taung to Laetoli footprints. In Hominid evolution: Past, Present and future, edited by P.V. Tobias, pp. 115–127, Alan R. Liss, New York.Google Scholar
  12. Day, M.H., 1991, Bipedalism and prehistoric footprints. In Origine(s) de la bipédie chez les Hominidés, edited by B. Senut and Y. Coppens, pp. 199–213, Cahiers de Paléoanthropologies CNRS Éditions, Paris.Google Scholar
  13. Day, M.H., and Napier, J.R., 1964, Hominid fossils from Bed I, Olduvai Gorge, Tanganyika. Fossil foot bones. Nature 201: 969–970.CrossRefGoogle Scholar
  14. Day, M.H., and Wood, B.A., 1968, Functional affinities of the Olduvai Hominid 8 talus. Man 3: 440–454.CrossRefGoogle Scholar
  15. Day, M.H., and Wickens, E.H., 1980, Laetoli Pliocene hominid footprints and bipedalism. Nature 286: 385–387.CrossRefGoogle Scholar
  16. Deloison, Y., 1984, Etude comparative de calcaneums de primates et les rapports chimpanzé-australopithèque-homme. Comptes Rendus de l’Académie des Sciences, Paris Série III, 299, 5: 115–118.Google Scholar
  17. Deloison, Y., 1986, Description d’un calcaneum fossile de primate et sa comparaison avec des calcaneums de Pongidés, d’Australopithèques et d’ Homo. Comptes Rendus de l’Académie des Sciences, Paris Série III, 302, 7: 257–262.Google Scholar
  18. Deloison, Y., 1991, Les Australopithèques marchaient-ils comme nous? In Origine(s) de la bipédie chez les Hominidés, edited by B. Senut and Y. Coppens, pp. 177–186, Cahiers de Paléoanthropologies CNRS Éditions, Paris.Google Scholar
  19. Deloison, Y, 1992a, Empreintes de pas de Laetoli (Tanzanie). Leur apport ä une meilleure connaissance de la locomotion des Hominidés fossiles. Comptes Rendus de l’Académie des Sciences, Paris Série III, 315: 103–109.Google Scholar
  20. Deloison, Y, 1992b, Sur les traces de pas de Laetoli en Tanzanie. In Cinq millions d’années, l’aventure humaine, edited by M. Toussaint, pp. 63–72, Liège.Google Scholar
  21. Deloison, Y., 1993, Etude des restes fossiles des pieds des premiers hominidés: Australopithecus et Homo habilis. Essai d’interprétation de leur mode de locomotion. Thèse de Doctorat d’Etat es Sciences, Université René Descartes, Paris, 783 p.Google Scholar
  22. Duncan, A.S., Kapellman, J., and Shapiro, L.J., 1994, Metatarsophalangeal joint function and positional behavior in Australopithecus afarensis. American Journal of Physical Anthropology 93: 67–81.CrossRefGoogle Scholar
  23. Gomberg, D.N., and Latimer, B., 1984, Observations on the transverse tarsal joint of Australopithecus afarensis, and some comments on the interpretation of behaviour from morphology. American Journal of Physical Anthropology 63: 164.Google Scholar
  24. Johanson, D.C., White, T.D., and Coppens, Y., 1978, A new species of the genus Australopithecus (Primates: Hominidae) from the Pliocene of Eastern Africa. Kirtlandia 28: 1–14.Google Scholar
  25. Johanson, D.C., Lovejoy, O.C., Kimbel, W.H., White, T.D.., Ward, S.C., Bush, M.E., Latimer, B.M., and Coppens, Y., 1982, Morphology of the Pliocene partial hominid skeleton (AL 288-1) from the Hadar formation, Ethiopia. American Journal of Physical Anthropology 57: 403–451.CrossRefGoogle Scholar
  26. Jungers, W.L., 1982, Lucy’s limbs, skeletal allometry and locomotion in Australopithecus afarensis. Nature 297: 676–678.CrossRefGoogle Scholar
  27. Kramer, P.A., 1999, Modelling the locomotor energetics of extinct hominids. Journal of Experimental Biology 202:2807–2818.Google Scholar
  28. Kramer, P.A., and Eck, G.G., 1999, Locomotor energetics and leg length in hominid bipedality. Journal of Human Evolution 38: 651–666.CrossRefGoogle Scholar
  29. Lamy, P., 1986, The settlement of the longitudinal plantar arch of some African Plio-Pleistocene Hominids: a morphological study. Journal of Human Evolution 15: 31–46.CrossRefGoogle Scholar
  30. Langdon J.H., 1985, Fossils and the origin of bipedalism. Journal of Human Evolution, 14: 615–635.CrossRefGoogle Scholar
  31. Langdon, J.H., Bruckner, J., and Baker, H.H., 1991, Pedal mechanics and bipedalism in early hominids. In Origine(s) de la bipédie chez les Hominidés, edited by B. Senut and Y. Coppens, pp. 159–167, Cahiers de Paléoanthropologie, CNRS Éditions, Paris.Google Scholar
  32. Latimer, B., 1991, Locomotor adaptations in Australopithecus afarensis: the issue of arboreality. In Origine(s) de la bipédie chez les Hominidés, edited by B. Senut and Y. Coppens, pp. 169–176, Cahiers de Paléoanthropologie, CNRS Éditions, Paris.Google Scholar
  33. Latimer, B., and Lovejoy, O., 1989, The calcaneus of Australopithecus afarensis and its implications for the evolution of bipedality. American Journal of Physical Anthropology 78: 369–386.CrossRefGoogle Scholar
  34. Latimer, B., and Lovejoy, O., 1990a, Hallucal tarsometatarsal joint in Australopithecus afarensis. American Journal of Physical Anthropology 82: 125–133.CrossRefGoogle Scholar
  35. Latimer, B., and Lovejoy, O., 1990b, Metatarsophalangeal joints of Australopithecus afarensis. American Journal of Physical Anthropology 83: 13–23.CrossRefGoogle Scholar
  36. Latimer, B., Lovejoy, O., Johanson, D.C., and Coppens, Y., 1982, Hominid tarsal, metatarsal and phalangeal bones recovered from the Hadar formation: 1974-1977 collections. American Journal of Physical Anthropology 57:701–719.CrossRefGoogle Scholar
  37. Latimer, B., Ohman, J.C., and Lovejoy, O., 1987, Talocrural joint in African hominoids: implications for Australopithecus afarensis. American Journal of Physical Anthropology 74: 155–175.CrossRefGoogle Scholar
  38. Leakey, M.D., and Hay, R.L., 1979, Pliocene footprints in the Laetoli beds at Laetoli, Northern Tanzania. Nature 278:317–323.CrossRefGoogle Scholar
  39. Lewis, O.J., 1980, The joint of the evolving foot. Part III. The fossil evidence. Journal of Anatomy 131: 275–298.Google Scholar
  40. Oxnard, C.E., 1979, Convention and controversy in human evolution. Homo 30: 225–246.Google Scholar
  41. Oxnard, C.E., and Lisowski, F.P., 1980, Functional articulation of some hominoid foot bones: implications for the Olduvai (Hominid 8) foot. American Journal of Physical Anthropology 52: 107–117.CrossRefGoogle Scholar
  42. Robbins, L.M., 1987, Hominid footprints from site G. In Laetoli, a Pliocene site in Northern Tanzania, edited by M.D. Leakey and J.M. Harris, pp. 497–502, Oxford University Press, Oxford.Google Scholar
  43. Sarmiento, E.E., 1994, Terrestrial traits in the hands and feet of Gorillas. American Museum Novitates 3091, 56 p.Google Scholar
  44. Schultz, A.H., 1930, The skeleton of the trunk and limbs of Higher Primates. Human Biology 2: 303–409.Google Scholar
  45. Senut, B., 1981, L’humerus et ses articulations chez les Hominidés Plio-Pleistocenes. Cahiers de Paleoanthropologies CNRS Éditions, Paris, 141 p.Google Scholar
  46. Senut, B., and Tardieu, C., 1985, Functional aspects of Plio-Pleistocene hominid limb bones: implications for taxonomy and phylogeny. In Ancestors: the hard evidence, edited by E. Delson, pp. 193–201, Alan R. Liss, New York.Google Scholar
  47. Stern, J.T., and Susman, R.L., 1983, The locomotor anatomy of Australopithecus afarensis. American Journal of Physical Anthropology 60: 279–318.CrossRefGoogle Scholar
  48. Susman, R.L., Stern, J.T., and Jungers, W.L., 1984, Arboreality and bipedality in the Hadar hominids. Folia Primatologia 43: 113–156.CrossRefGoogle Scholar
  49. Susman, R.L., Stern, J.T., and Jungers, W.L., 1985, Locomotor adaptations in the Hadar Hominids. In Ancestors: the hard evidence, edited by E. Delson, pp. 184–192, Alan R. Liss, New York.Google Scholar
  50. Susman, R.L., and Stern, J.T., 1991, Locomotor behavior of early hominids: epistemology and fossil evidence. In Origine(s) de la bipédie chez les Hominidés, edited by B. Senut and Y. Coppens, pp. 121–131, Cahiers de Paléoanthropologie, CNRS Editions, Paris.Google Scholar
  51. Tardieu, C., 1983, L’articulation du genou. Analyse morphofonctionnelle chez les Primates et les Hommes fossiles. Cahiers de Paléoanthropologie, CNRS Editions, Paris, 108 p.Google Scholar
  52. Tuttle, R.H., 1985, Ape footprints and Laetoli impressions: a response to the suny claims In Hominid evolution: Past, Present and future, edited by P.V. Tobias, pp. 129–133, Alan R. Liss, New York.Google Scholar
  53. Tuttle, R.H., 1987, Kinesiological inferences and evolutionary implications from Laetoli bipedal trails G-l, G-2/3, and A. In Laetoli, a Pliocene site in Northern Tanzania, edited by M.D. Leakey and J.M. Harris, pp. 503–523, Oxford University Press, Oxford.Google Scholar
  54. Tuttle, R.H., 1996, The Laetoli Hominid G footprints, where do they stand today? Darmsädter Berträge zur Naturgeschichte 6: 97–102.Google Scholar
  55. Tuttle, R.H., Webb, D.M., and Tuttle, N.I., 1991, Laetoli footprints and the evolution of hominid bipedalism. In Origine(s) de la bipédie chez les Hominidés, edited by B. Senut and Y. Coppens, pp. 187–198, Cahiers de Paléoanthropologie, CNRS Éditions, Paris.Google Scholar
  56. Tuttle, R.H., Webb, D.M., Tuttle, N.I., and Baksh, M., 1992, Footprints and gaits of bipedal apes, bears, and barefoot people: Perspective on Pliocene tracks. In Topics in primatology, Vol 3, Evolutionary biology, reproductive endocrinology and virology, edited by S. Matano, R.H. Tuttle, H. Ishida and M. Goodman, pp. 221–242, University of Tokyo Press, Tokyo.Google Scholar
  57. Wangermez, J., and Courouge, F., 1972, Etude radiologique de la platypodie chez les Vili et Lari du Congo. Bulletin de la Société Anthropologique du Sud-Ouest, 8(2): 16–23.Google Scholar
  58. White, T.D., 1980, Evolutionary implications of Pliocene hominid footprints. Science 208: 175–176.CrossRefGoogle Scholar
  59. White, T.D., and Suwa, G., 1987, Hominid footprints at Laetoli: facts and interpretations. American Journal of Physical Anthropology 72: 485–514.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Gilles Berillon

There are no affiliations available

Personalised recommendations