Skip to main content

Hearing Organ Evolution and Specialization: Early and Later Mammals

  • Chapter
Book cover Evolution of the Vertebrate Auditory System

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 22))

Abstract

An enormous amount of data is available on the structure and function of the mammalian cochlea and mammalian hearing characteristics. Most of this knowledge is derived from studies of placental mammals, which is only one of the three groups of mammals that exist today. There are only a few studies on the ears and hearing characteristics of the other two living mammalian groups, the monotremes and the marsupials, and only recently have fossil specimens with sufficiently preserved inner ears become available that document important steps in evolution of the mammalian ear from the early Cretaceous up to the present. Mammals are an ancient group among terrestrial vertebrates that arose from mammal-like reptiles probably during the Triassic. The diagnostic features that clearly separate a mammal from its reptilian ancestors and other tetrapods include a property of the hearing apparatus, namely the presence of the three-ossicle middle ear. This key innovation appears to be one prerequisite for the capability of high-frequency hearing that is unique to mammals among tetrapods. The fossil record demonstrates that a middle ear with three ear ossicles precedes the evolution of an elongated and, in the more derived condition, coiled cochlea capable of hearing high frequencies well above 10kHz.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aitkin LM (1995) The auditory neurobiology of marsupials: a review. Hear Res 82:257–266.

    Article  PubMed  CAS  Google Scholar 

  • Aitkin LM (1998) Hearing, the Brain and Auditory Communication in Marsupial s. York: Springer-Verlag.

    Book  Google Scholar 

  • Aitkin LM, Johnstone BM (1972) Middle-ear function in a monotreme: the echidna (Tachyglossus aculeatus). J Exp Zool 180:245–250.

    Article  PubMed  CAS  Google Scholar 

  • Aitkin LM, Nelson GE, Shepherd RK (1994) Hearing, vocalization and the external ear of a marsupial, the northern quoll, Dasyurus hallucatus. J Comp Neurol 349:377–388.

    Article  PubMed  CAS  Google Scholar 

  • Alexander G (1904) Entwicklung und Bau des inneren Gehörorgans von Echidna aculeata. Semonds Zoologische Forschungsreisen in Australien 3:1–118.

    Google Scholar 

  • Allen JB, Fahey PF (1993) A second cochlear frequency map that correlates distortion product and neural tuning measurements. J Acoust Soc Am 94:809–816.

    Article  PubMed  CAS  Google Scholar 

  • Allin EF (1986) Auditory apparatus of advanced mammal-like reptiles and early mammals. In: Hotton N, MacLean PD, Roth JJ, Roth EC (eds) The Ecology and Biology of Mammal-Like Reptiles. York and London: Smithsonian Press, pp. 283–294.

    Google Scholar 

  • Allin EF, Hopson JA (1992) Evolution of the auditory system in Synapsida (“mammal-like reptiles” and primitive mammals) as seen in the fossil record. In: Webster DB, Fay RR, Popper AN (eds) The Evolutionary Biology of Hearing. York: Springer-Verlag, pp. 587–614.

    Chapter  Google Scholar 

  • Archer M, Flannery TF, Ritchie A, Molnar R (1985) First Mesozoic mammal from Australia-an Early Cretaceous monotreme. Nature 318:363–366.

    Article  Google Scholar 

  • Archer M, Murray P, Hand SJ, Godthelp H (1993) Reconsideration of monotreme relationships based on the skull and dentition of the Miocene Obdurodon dicksoni. In: Szalay FS, Novacek MJ, McKenna MC (eds) Mammal Phylogeny: Mesozoic Differentiation, Multituberculates, Monotremes, early Therians, and Marsupials. York: Springer-Verlag, pp. 75–94.

    Google Scholar 

  • Archer M, Arena R, Bassarova M, Black K, Brammall J, Cooke B, Creaser P, Crosby K, Gillespie A, Godthelp H, Gott M, Hand SJ, Kear B, Krikmann A, Mackness B, Muirhear J, Musser A, Myers T, Pledge N, Wang Y, Wroe S (1999) The evolutionary history and diversity of Australian mammals. Australian Mammalogy 21:1–45.

    Google Scholar 

  • Ashmore F, Geleoc GSG, Harbott L (2000). Molecular mechanisms of sound amplification in the mammalian cochlea. Proc Natl Acad Sci USA 97:11759–11764.

    Article  PubMed  CAS  Google Scholar 

  • Bekesy G von (1960) Experiments in Hearing. York: McGraw-Hill.

    Google Scholar 

  • Brown AM, Kemp DT (1984) Suppressibility of the 2fl–f2 stimulated acoustic emission in gerbil and man. Hear Res 42:143–156.

    Article  Google Scholar 

  • Brown AM, Gaskill SA, Williams DM (1992) Mechanical filtering of sound in the inner ear. Proc R Soc B 250:29–34.

    Article  PubMed  CAS  Google Scholar 

  • Brownell WE, Bader CR, Bertrand D, de Ribeaupierre Y (1985) Evoked mechanical responses of isolated cochlear outer hair cells. Science 227:194–196.

    Article  PubMed  CAS  Google Scholar 

  • Bruns V (1980) Basilar membrane and its anchoring system in the cochlea of the greater horseshoe bat. Anat Embryol 161:29–50.

    Article  PubMed  CAS  Google Scholar 

  • Burda H, Bruns V, Nevo E (1989) Middle ear and cochlear receptors in the subterranean mole-rat, Spalax ehrenbergi. Hear Res 39:225–230.

    Article  PubMed  CAS  Google Scholar 

  • Chen CS, Anderson LM (1985) The inner ear structures of the echidna—an SEM study. Experientia 41:1324–1326.

    Article  Google Scholar 

  • Cifelli RL (2001) Early mammalian radiations. J Paleontol 75:1214–1226.

    Article  Google Scholar 

  • Cifelli RL, de Muizon C (1997). Dentition and jaw of Kokopellia juddi, a primitive marsupial or near marsupial from the medial Cretaceous of Utah. J Mammalian Evol 4:241–258.

    Article  Google Scholar 

  • Cone-Wesson BK, Hill KG, Liu G-B (1997) Auditory brainstem response in tammar wallaby (Macropus eugenii). Hear Res 105:119–129.

    Article  PubMed  CAS  Google Scholar 

  • Crompton AW(1995) Masticatory function in nonmammalian cynodonts and early mammals. In: Thomason JJ (ed) Functional Morphology in Vertebrate Paleontology. Cambridge: Cambridge University Press, pp. 55–75.

    Google Scholar 

  • Crompton AW, Jenkins FA Jr (1979) Origin of mammals. In: Lillegraven JA, Kielan-Jaworowska Z, Clemens WA (eds) Mesozoic Mammals-The First Two-Thirds of Mammalian History. Berkeley: University of California Press, pp. 59–73.

    Google Scholar 

  • Denker A (1901) Zur Anatomie des Gehörorganes der Monotremata. Denkschriften der Medizinisch-Naturwissenschaftlichen Gesellschaft zu Jena 6:635–662.

    Google Scholar 

  • Echteler SM, Fay RR, Popper AN (1994) Structure of the mammalian cochlea. In: Fay RR, Popper AN (eds) Comparative Hearing, Mammals. Springer Handbook of Auditory Research, vol 4. York: Springer-Verlag, pp. 134–172.

    Google Scholar 

  • Faulstich M, Kössl M, Reimer K (1996) Analysis of non-linear cochlear mechanics in the marsupial Monodelphis domestica: ancestral and modern mammalian features. Hear Res 94:47–53.

    Article  PubMed  CAS  Google Scholar 

  • Fay RR (1988) Hearing in Vertebrates: A Psychophysics Data Book. Winnetka, IL: Hill-Fay Associates.

    Google Scholar 

  • Fekete DM (1999) Development of the vertebrate ear: insights from knockouts and mutants. TINS 22:263–269.

    PubMed  CAS  Google Scholar 

  • Fernandez C, Schmidt RS (1963) The opossum ear and evolution of the coiled cochlea. J Comp Neurol 121:151–159.

    Article  PubMed  CAS  Google Scholar 

  • Fischer FP, Miltz C, Singer I, Manley GA (1992) Morphological gradients in the starling basilar papilla. J Morphol 213:225–240.

    Article  Google Scholar 

  • Flynn JJ Parrish M, Rakotosamimanana B, Simpson WF, Wyss AR (1999) A middle Jurassic mammals from Madagascar. Nature 401:57–60.

    Article  CAS  Google Scholar 

  • Fox RC, Meng J (1997) An X-radiographic and SEM study of the osseous inner ear of multituberculates and monotremes (Mammalia): implications for mammalian phylogeny and evolution of hearing. Zool J Linnean Soc 121:249–291.

    Article  Google Scholar 

  • Frank G, Hemmert W, Gummer AW (1999) Limiting dynamics of high-frequency electromechanical transduction of outer hair cells. Proc Natl Acad Sci USA 96:4420–4425.

    Article  PubMed  CAS  Google Scholar 

  • Frost SB, Masterton BR (1994) Hearing in primitive mammals: Monodelphis domestica and Marmosa elegans. Hear Res 76:67–72.

    Article  PubMed  CAS  Google Scholar 

  • Gates GR, Aitkin LM (1982) Auditory cortex in the marsupial opossum Trichosurus vulpecula. Hear Res 7: 1–11.

    Article  PubMed  CAS  Google Scholar 

  • Gates GR, Saunders J, Bock GR (1974) Peripheral auditory function in the platypus, Ornithorhynchus anatinus. J Acoust Soc Am 56:152–156.

    Article  PubMed  CAS  Google Scholar 

  • Gray AA (l908a) An investigation on the anatomical structure and relationships of the labyrinth in the reptile, the bird, and the mammal. Proc R Soc B 80:507–528.

    Google Scholar 

  • Gray AA (1908b) The Labyrinth of Animals, vol 2. London: J. & A. Churchill.

    Google Scholar 

  • Graybeal A, Rosowski J, Ketten DR, Crompton AW (1989) Inner ear structure in Morganucodon, an early Jurassic mammal. Zool J Linnean Soc 96:107–117.

    Article  Google Scholar 

  • Gregory WK (1947) The monotremes and the palimpsest theory. Bull American Museum of Natural History 88:1–52.

    Google Scholar 

  • Griffiths M (1968) Echidnas. Oxford: Pergamon Press.

    Google Scholar 

  • Griffiths M (1978) The Biology of the Monotremes. York: Academic Press.

    Google Scholar 

  • Heffner HE, Masterton B (1980) Hearing in Glires: domestic rabbits, cotton rat, feral house mouse, and kangaroo rat. J Audit Res 9:12–18.

    Google Scholar 

  • Heffner RS, Heffner HE (1992) Evolution of sound localization in mammals. In: Webster DB, Fay RR, Popper AN (eds) The Evolutionary Biology of Hearing. York: Springer-Verlag, pp. 691–711.

    Chapter  Google Scholar 

  • Holley M (1996) Outer hair cell motility. In: Dallos P, Popper AN, Fay RR (eds) The Cochlea. Springer Handbook of Auditory Research, vol 8. York: Springer-Verlag, pp. 386–435.

    Google Scholar 

  • Hopson JA (1994) Synapsid evolution and the radiation of non-eutherian mammals. In: Spencer RS (ed) Major Features of Vertebrate Evolution. Knoxville: Paleontological Society, pp. 190–219.

    Google Scholar 

  • Hu Y-M, Krebs B (1999) Discovery of the Henkelotherium petrosal and its implication for the evolution of mammalian hearing. J Vertebrate Paleontol 19(3 suppl):53A.

    Google Scholar 

  • Hu Y-M, Wang Y-Q, Luo Z-X, Li C-K (1997) A new symmetrodont mammal from China and its implications for mammalian evolution. Nature 390:137–142.

    Article  PubMed  CAS  Google Scholar 

  • Hurum JH (1998) The inner ear of two late Cretaceous multituberculate mammals, and its implications for multituberculate hearing. J Mammal Evol 5:65–94.

    Article  Google Scholar 

  • Janke A, Xu X, Amason U (1997) The complete mitochondrial genome of the wallaroo (Macropus robustus) and the phylogenetic relationship among Monotremata, Marsupialia, and Eutheria. Proc Natl Acad Sci USA 94:276–281.

    Article  Google Scholar 

  • Kalinec F, Holley MC, Iwasa KH, Lim DJ, Kachar B (1992) A membrane based force generation mechanism in auditory sensory cells. Proc Natl Acad Sci USA 89:8671–8675.

    Article  PubMed  CAS  Google Scholar 

  • Kelley M, Xu X-M, Wagner MA, Warchol ME, Corwin CT (1993) The developing organ of Corti contains retinoic acid and forms supemumery hair cells in response to exogenous retinoic acid in culture. Development 119:1041–1053.

    PubMed  CAS  Google Scholar 

  • Kermack KA (1963) The cranial structure of the triconodonts. Philos Trans R Soc Lond [B] 246:83–103

    Article  Google Scholar 

  • Kermack KA, Mussett F (1983) The ear in mammal-like reptiles and early mammals. Acta Palaeontol Polonica 28:147–158.

    Google Scholar 

  • Kermack K, Mussett AF, Rigney HW (1973) The lower jaw of Morganucodon. Zool J Linnean Soc 53:87–175.

    Article  Google Scholar 

  • Kermack KA, Mussett F, Rigney HW (1981) The skull of Morganucodon. Zool J Lin-nean Soc 71:1–158.

    Article  Google Scholar 

  • Ketten DR (2000) Cetacean ears. In: Au WL, Popper AN, Fay RR et al. (eds) Hearing by Whales and Dolphins. Springer Handbook of Auditory Research, vol 12. York: Springer-Verlag, pp. 43–109.

    Google Scholar 

  • Kielan-Jaworowska Z, Qi T (1990) Fossorial adaptations of a taeniolabidoid multi-tuberculate mammal from the Eocene of China. Vertebrata PalAsiatica 28:81–94.

    Google Scholar 

  • Kielan-Jaworowska Z, Presley R, Poplin C (1986) The cranial vascular system in taeniolabidoid multituberculate mammals. Philos Trans R Soc Lond [B] 313:525–602.

    Article  Google Scholar 

  • Kielan-Jaworowska Z, Cifelli RL, Luo Z-X (1998) Alleged cretaceous placentals from down under. Lethaia 31:267–268.

    Article  Google Scholar 

  • Konishi M (1973) How the owl tracks its prey. Am Sci 61:414–424.

    Google Scholar 

  • Kössl M (1997). Sound emission from cochlear filters and foveae—Does the auditory sense organ make sense? Naturwissenschaften 84:9–16.

    Article  PubMed  Google Scholar 

  • Kössl M, Vater M (1995) Cochlear structure and function in bats. In: Popper AN, Fay RR (eds) Hearing by Bats. Springer Handbook of Auditory Research, vol 5. York: Springer-Verlag, pp. 191–235.

    Google Scholar 

  • Krubitzer L (1998) What can monotremes tell us about brain evolution? Philos Trans R Soc Lond [B] 353:1127–1146.

    Article  CAS  Google Scholar 

  • Kühne QG (1973) The systematic position of monotremes reconsidered. Z Morpho Tiere 75:59–64.

    Article  Google Scholar 

  • Ladhams A, Pickles JO (1996) Morphology of the monotreme organ of Corti and macula lagena. J Comp Neurol 366:335–347.

    Article  PubMed  CAS  Google Scholar 

  • Lewis ER, Leverenz EL, Bialek WS (1985) The Vertebrate Inner Ear. Boca Raton, FL: CRC Press.

    Google Scholar 

  • Lillegraven JA, Hahn G (1993) Evolutionary analysis of the middle and inner ear of late Jurassic multituberculates. J Mammal Evol 1:47–74.

    Article  Google Scholar 

  • Lim DJ (1986) Functional structure of the organ of Corti. A review. Hear Res 22:117–146.

    Article  PubMed  CAS  Google Scholar 

  • Löwenheim H, Furness DN, Kil J, Zinn C, Gültig K, Fero ML, Frost D, Gummer AW, Roberts JM, Rubel EW, Hackney CM, Zenner HP (1999) Gen disruption of p27Kip1 allows cell proliferation in the postnatal and adult organ of Corti. Proc Natl Acad Sci USA 96:4084–4088.

    Article  PubMed  Google Scholar 

  • Luo Z (1989) Structure of the petrosal of Multituberculata (Mammalia) and the morphology of the molars of early arctocyonids. PhD thesis, University of California at Berkeley.

    Google Scholar 

  • Luo Z-X (2001) Inner ear and its bony housing in tritylodonts and implications for evolution of mammalian ear. Bull Museum Comparative Zool 155:621–637.

    Google Scholar 

  • Luo Z, Ketten DR (1991) CT scanning and computerized reconstructions of the inner ear of multituberculate mammals. J Vertebrate Paleontol 11:220–228.

    Article  Google Scholar 

  • Luo Z-X, Crompton AW, Sun A-1 (2001) A new mammaliaform from early Jurassic and evolution of mammalian characteristics. Science 292:1535–1540.

    Article  PubMed  CAS  Google Scholar 

  • MacIntyre GT (1972) The trisulcate petrosal pattern of mammals. In: Dobzhansky T, Hecht MK, Steere WC (eds) Evolutionary Biology, vol 6. York: Appleton-Century-Crofts, pp. 275–302.

    Google Scholar 

  • Manley GA (1971) Some aspects of the evolution of hearing in vertebrates. Nature 230: 506–509.

    Article  PubMed  CAS  Google Scholar 

  • Manley GA (1972) Frequency response of the middle ear of geckos. J Comp Physio [A] 81:251–258

    Article  Google Scholar 

  • Manley GA (1973) A review of some current concepts of the functional evolution of the ear in terrestrial vertebrates. Evolution 26:608–621.

    Article  Google Scholar 

  • Manley GA (1990) Peripheral Hearing Mechanisms in Reptiles and Birds. York: Springer-Verlag.

    Book  Google Scholar 

  • Manley GA (2000) Cochlear mechanisms from a phylogenetic viewpoint. Proc Natl Acad Sci USA 97:11736–11743.

    Article  PubMed  CAS  Google Scholar 

  • Manley GA, Köppl C (1998) Phylogenetic development of the cochlea and its innervation. Curr Opinion Neurobiol 8:468–474.

    Article  CAS  Google Scholar 

  • Manley GA, Kirk DL, Köppl C, Yates GK (2001) In vivo evidence for a cochlear amplifier in the hair-cell bundle of lizards, Proc Natl Acad Sci USA 98:2826–2831.

    Article  PubMed  CAS  Google Scholar 

  • Masterton RB, Heffner H, Ravizza R (1969) The evolution of human hearing. J Acoust Soc Am 45:966–985.

    Article  PubMed  CAS  Google Scholar 

  • McKenna MC, Bell SK (1997) Classification of Mammals Above the Species Level. New York: Columbia University Press.

    Google Scholar 

  • Meng J, Fox RC (1993) Inner ear structures from late Cretaceous mammals and their systematic and functional implications. J Vertebrate Paleontol 13(Suppl 3):50A.

    Google Scholar 

  • Meng J, Fox RC (l995a) Theri an petrosals from the Oldman and Milk River format ions (Late Cretaceous), Alberta, Canada. J Vertebrate Paleontol 15:122–130.

    Google Scholar 

  • Meng J, Fox RC (l995b) Osseous inner ear structures and hearing in early marsupials and placentals. Zool J Linn Soc 115:47–71.

    Google Scholar 

  • Meng J, Wyss AR (1995) Monotreme affinities and low-frequency hearing suggested by multituberculate ear. Nature 377:141–144.

    Article  CAS  Google Scholar 

  • Meyer M (1907) An introduction to the mechanics of the inner ear. In: Brown WG (ed) Science Series, University Missouri Studies, vol 2. Columbia, MI: EW Stephens, pp. 1–140.

    Google Scholar 

  • Miao D (1988) Skull morphology of Lambdopsalis bulla (Mammalia, Multituberculata) and its implication s to mammalian evolution. Contributions to Geology, University of Wyoming, Special Paper 4:1–104.

    Google Scholar 

  • Miao D, Lillegraven JA (1986) Discovery of three ear ossicles in a multituberculate mammal. National Geographic Res 2:500–507.

    Google Scholar 

  • Mills DM, Shepherd RK (2001) Distortion product otoacoustic emission and auditory brainstem responses in the echidna (Tachyglossus aculeatus). J Assoc Res Otolaryngol 2:130–146.

    Article  PubMed  CAS  Google Scholar 

  • Müller M, Wess FP, Bruns V (1993) Cochlear place-frequency map in the marsupial Monodelphis domestica. Hear Res 67:198–202.

    Article  PubMed  Google Scholar 

  • Nadol JB (1988) Comparative anatomy of the cochlea and the auditory nerve in mammals. Hear Res 34:253–266.

    Article  PubMed  Google Scholar 

  • Novacek MJ (1992 ) Mammalian phylogeny: shaking the tree. Nature 356:121–125.

    Article  PubMed  CAS  Google Scholar 

  • Nowak RM (1995 ) Walker’s Mammal s of the world. Baltimore and London: Johns Hopkins University Press.

    Google Scholar 

  • Olson EC (1959 ) The evolution of mammalian characters. Evolution 13:344–353.

    Article  Google Scholar 

  • Pettigrew JD, Manger PR, Fine SLB (1998) The sensory world of the platypus. Philos Trans R Soc Lond [B] 353:1199–1210.

    Article  CAS  Google Scholar 

  • Pickles JO (1992) Scanning electron microscopy of the echidna: morphology of a primitive mammalian cochlea. In: Cazals Y, Demany L, Homer K (eds) Auditory Physiology and Perception. Oxford: Pergamon, pp. 101–107.

    Google Scholar 

  • Pritchard U (1881) The cochlea of the Omithorhynchus platypus compared with that of ordinary mammals and birds. Philos Trans R Soc Lond 172:267–282.

    Article  Google Scholar 

  • Proske U, Gregory JE, Iggo A (1998) Sensory receptors in monotremes. Philos Trans R Soc Lond [B] 353:1187–1198.

    Article  CAS  Google Scholar 

  • Pujol R, Lenoir M, Ladrech S, Tribillac F, Rebillard G (1992) Correlation between the length of outer hair cells and the frequency coding of the cochlea. In: Cazals Y, Demany L, Homer K (eds) Auditory Physiology and Perception, Advances in Biosciences. New York: Pergamon Press, pp. 45–52.

    Google Scholar 

  • Ravizza RJ, Heffner HE, Masterton B (1969) Hearing in primitive mammals. I. Opossum (Didelphis virginiana). J Audiol Res 9:1–7.

    Google Scholar 

  • Reimer K (1996) Ontogeny of hearing in the marsupial, Monodelphis domestica, as revealed by brainstem auditory evoked potentials. Hear Res 92:143–150.

    Article  Google Scholar 

  • Rich TH, Vickers-Rich P, Constantine A, Flannery TF, Kool L, van Klaveren N (1997) A tribosphenic mammal from the Mesozoic of Australia. Science 278:1431–1438.

    Article  Google Scholar 

  • Rich TH, Flannery TF, Trusler P, Kool AL, van Klaveren N, Vickers-Rich P (2001) Early Cretaceous mammals from Flat Rocks, Victoria, Australia. Records of Queen Victoria Museum 106:1–30.

    Google Scholar 

  • Robles L, Ruggero MA (2001) Mechanics of the mammalian cochlea. Physiol Rev 81:1306–1352.

    Google Scholar 

  • Rosowski JJ (1992) Hearing in transitional mammals: predictions from the middle-ear anatomy and hearing capabilities of extant mammals. In: Webster DB, Fay RR, Popper AN (eds) The Evolutionary Biology of Hearing. York: Springer-Verlag, 615–631.

    Chapter  Google Scholar 

  • Rosowski JJ, Graybeal A (1991) What did Morganucodon hear? Zool J Linn Soc 101: 131–168.

    Article  Google Scholar 

  • Rougier GW (1990) Primeras evidencias sobre la morfología del oído interno en un terio no tribosfénico. Resumenes VII Jornadas Argentinas de Paleontología de Vertebrados, Ameghiniana 26:249.

    Google Scholar 

  • Rougier GW, Wible JR, Hopson JA (1992) Reconstruction of the cranial vessels in the Early Cretaceous mammal Vincelestes neuquenianus: implications for the evolution of the mammalian cranial vascular system. J Vertebrate Paleontol 12:188–216.

    Article  Google Scholar 

  • Rougier GW, Wible JR, Novacek MJ (1996) Middle-ear ossicles of the multituberculate Kryptobaatar from the Mongolian late Cretaceous: implications for mammaliamorph relationships and the evolution of the auditory apparatus. American Museum Novitates 3187:1–43.

    Google Scholar 

  • Rougier GW, Wible JR, Novacek MJ (1998) Implications of Deltatheridium specimens for early marsupial history. Nature 396:459–463.

    Article  PubMed  CAS  Google Scholar 

  • Rowe T (1988) Definition, diagnosis, and origin of Mammalia. J Vertebrate Paleontol 8:241–264.

    Article  Google Scholar 

  • Ruggero MA, Temchin AN (2002) The roles of external, middle, and inner ears in determining the bandwidth of hearing. Proc Natl Acad Sci USA 99:13206–13210.

    Article  PubMed  CAS  Google Scholar 

  • Runhaar G, Schedler J, Manley GA (1991) The potassium concentration of cochlear fluids of the embryonic and posthatching chick. Hear Res 56:227–238.

    Article  PubMed  CAS  Google Scholar 

  • Saunders JC, Duncan RK, Doan DE, Werner YL (2000) The middle ear of reptiles and birds. In: Dooling RJ, Fay RR, Popper AN (eds) Comparative Hearing: Birds and reptiles. Springer Handbook of Auditory Research, vol 13. York: Springer-Verlag, pp. 13–69.

    Google Scholar 

  • Schmidt RS, Fernandez C (1962) Labyrinthine DC potentials in representative vertebrates. J Cell Comp Physiol 59:311–322.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt S, Türke B, Vogler B (1984) Behavioural audiogram from the bat, Megaderma lyra (Geoffroy, 1810; Microchiroptera). Myotis 22:62–69.

    Google Scholar 

  • Simmons NB (1993) Phylogeny of Multituberculata. In: Szalay FS, Novacek MJ, Mc-Kenna MC (eds) Mammal Phylogeny, vol 1: Mesozoic Differentiation, Multituberculates, Monotremes, Early Therians, and Marsupials. York: Springer-Verlag, pp. 146–164.

    Google Scholar 

  • Simpson GG (1937) Skull structure of the Multituberculata. Bull American Museum of Natural History 73:727–763.

    Google Scholar 

  • Simpson GG (1938) Osteography of the ear region in monotremes. American Museum Novitates 978:1–15.

    Google Scholar 

  • Simpson GG (1945) The principles of classification and a classification of mammals. Bull American Museum of Natural History 85:1–350.

    Google Scholar 

  • Simpson GG (1960) Diagnosis of the classes Reptilia and Mammalia. Evolution 14:388–391.

    Article  Google Scholar 

  • Slepecky NB (1996) Structure of the mammalian cochlea. In: Dallos P, Popper AN, Fay RR (eds) The Cochlea. Springer Handbook of Auditory Research, vol 8. York: Springer-Verlag, pp. 44–130.

    Google Scholar 

  • Sloan RE (1979) Multituberculata. In: Fairbridge RW, Jablonski D (eds) The Encyclopedia of Paleontology. Stroudsberg: Dowden, Hutchinson & Ross, pp. 492–498.

    Google Scholar 

  • Smith CA, Takasaka T (1971) Auditory receptor organs of reptiles, birds and mammals. Contrib Sens Physiol 5:129–178.

    PubMed  CAS  Google Scholar 

  • Vater M, Lenoir M (1992) Ultrastructure of the horseshoe bat’s organ of Corti. I. Scanning electron microscopy. J Comp Neurol 318:367–379.

    Article  PubMed  CAS  Google Scholar 

  • Vater M, Siefer W (1995) The cochlea of Tadarida brasiliensis: specialized functional organization in a generalized bat. Hear Res 91:178–195.

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Hu Y, Meng J, Li C (2001) An ossified Meckel’s cartilage in two Cretaceous mammals and origin of the mammalian middle ear. Science 296:357–361.

    Article  Google Scholar 

  • West CD (1985) The relationships of the spiral turns of the cochlea and the length of the basilar membrane to the range of audible frequencies in ground dwelling mammals. J Acoust Soc Am 77:1091–1101.

    Article  PubMed  CAS  Google Scholar 

  • Wever EG (1974) The evolution of vertebrate hearing. In: Keidel WD, Neff WD (eds) Handbook of Sensory Physiology, vol V-1: Auditory System, Anatomy, Physiology (Ear). York: Springer-Verlag, pp. 423–454.

    Google Scholar 

  • Wible Jr (1990) Petrosals of late Cretaceous marsupials from North America, and a cladistic analysis of the petrosal in therian mammals. J Vertebrate Paleontol 10:183–205.

    Article  Google Scholar 

  • Wible JR, Hopson JA (1993) Basicranial evidence for early mammal phylogeny. In: Szalay FS, Novacek MJ, McKenna MC (eds) Mammal Phylogeny—Mesozoic Differentiation, Multituberculates, Monotremes, Early Therians, and Marsupials. York: Springer-Verlag, pp. 45–62.

    Google Scholar 

  • Wible JR, Rougier GW, Novacek MJ, McKenna MC, Dashzeveg D (1995) A mammalian petrosal from the early Cretaceous of Mongolia: implications for the evolution of the ear region and mammaliamorph interrelationships. American Museum Novitates 3149:1–19.

    Google Scholar 

  • Zeller U (1989) Die Entwicklung und Morphologie des Schädels von Omithorhynchus anatinus (Mammalia: Prototheri a: Monotremata). Abhandlungen der Senckenbergischen Naturforschenden Gesellschaft 545:1–188.

    Google Scholar 

  • Zeller U (1993) Ontogenetic evidence for cranial homologies in monotremes and therians, with special reference to Ornithorhynchus. In: Szalay FS, Novacek MJ, McKenna MC (eds) Mammal Phylogeny, vol 1: Mesozoic Differentiation, Multituberculates, Mono-tremes, Early Therians, and Marsupials. York: Springer-Verlag, pp. 95–107.

    Google Scholar 

  • Zheng J, Shen W, He DZ, Long KB, Madison LD, Dallos P (2000a) Prestin is the motor molecule of cochlear outer hair cells. Nature 405:149–155.

    Article  PubMed  CAS  Google Scholar 

  • Zheng JL, Shou J, Guillemot F, Kageyama R, Gao W-Q (2000b) Hesl is a negative regulator of inner ear hair cell differentiation. Development 127:4551–4560.

    PubMed  CAS  Google Scholar 

  • Zheng J, Madison LD, Oliver D, Fakler B, Dallos P (2002) Prestin, the motor protein of outer hair cells. Audiol Neuro-Otol 7:9–12.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Vater, M., Meng, J., Fox, R.C. (2004). Hearing Organ Evolution and Specialization: Early and Later Mammals. In: Manley, G.A., Fay, R.R., Popper, A.N. (eds) Evolution of the Vertebrate Auditory System. Springer Handbook of Auditory Research, vol 22. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-8957-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8957-4_9

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-21093-3

  • Online ISBN: 978-1-4419-8957-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics