Hearing Organ Evolution and Specialization: Early and Later Mammals

  • Marianne Vater
  • Jin Meng
  • Richard C. Fox
Part of the Springer Handbook of Auditory Research book series (SHAR, volume 22)


An enormous amount of data is available on the structure and function of the mammalian cochlea and mammalian hearing characteristics. Most of this knowledge is derived from studies of placental mammals, which is only one of the three groups of mammals that exist today. There are only a few studies on the ears and hearing characteristics of the other two living mammalian groups, the monotremes and the marsupials, and only recently have fossil specimens with sufficiently preserved inner ears become available that document important steps in evolution of the mammalian ear from the early Cretaceous up to the present. Mammals are an ancient group among terrestrial vertebrates that arose from mammal-like reptiles probably during the Triassic. The diagnostic features that clearly separate a mammal from its reptilian ancestors and other tetrapods include a property of the hearing apparatus, namely the presence of the three-ossicle middle ear. This key innovation appears to be one prerequisite for the capability of high-frequency hearing that is unique to mammals among tetrapods. The fossil record demonstrates that a middle ear with three ear ossicles precedes the evolution of an elongated and, in the more derived condition, coiled cochlea capable of hearing high frequencies well above 10kHz.


Hair Cell Outer Hair Cell Basilar Membrane Placental Mammal Cochlear Nerve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Aitkin LM (1995) The auditory neurobiology of marsupials: a review. Hear Res 82:257–266.PubMedCrossRefGoogle Scholar
  2. Aitkin LM (1998) Hearing, the Brain and Auditory Communication in Marsupial s. York: Springer-Verlag.CrossRefGoogle Scholar
  3. Aitkin LM, Johnstone BM (1972) Middle-ear function in a monotreme: the echidna (Tachyglossus aculeatus). J Exp Zool 180:245–250.PubMedCrossRefGoogle Scholar
  4. Aitkin LM, Nelson GE, Shepherd RK (1994) Hearing, vocalization and the external ear of a marsupial, the northern quoll, Dasyurus hallucatus. J Comp Neurol 349:377–388.PubMedCrossRefGoogle Scholar
  5. Alexander G (1904) Entwicklung und Bau des inneren Gehörorgans von Echidna aculeata. Semonds Zoologische Forschungsreisen in Australien 3:1–118.Google Scholar
  6. Allen JB, Fahey PF (1993) A second cochlear frequency map that correlates distortion product and neural tuning measurements. J Acoust Soc Am 94:809–816.PubMedCrossRefGoogle Scholar
  7. Allin EF (1986) Auditory apparatus of advanced mammal-like reptiles and early mammals. In: Hotton N, MacLean PD, Roth JJ, Roth EC (eds) The Ecology and Biology of Mammal-Like Reptiles. York and London: Smithsonian Press, pp. 283–294.Google Scholar
  8. Allin EF, Hopson JA (1992) Evolution of the auditory system in Synapsida (“mammal-like reptiles” and primitive mammals) as seen in the fossil record. In: Webster DB, Fay RR, Popper AN (eds) The Evolutionary Biology of Hearing. York: Springer-Verlag, pp. 587–614.CrossRefGoogle Scholar
  9. Archer M, Flannery TF, Ritchie A, Molnar R (1985) First Mesozoic mammal from Australia-an Early Cretaceous monotreme. Nature 318:363–366.CrossRefGoogle Scholar
  10. Archer M, Murray P, Hand SJ, Godthelp H (1993) Reconsideration of monotreme relationships based on the skull and dentition of the Miocene Obdurodon dicksoni. In: Szalay FS, Novacek MJ, McKenna MC (eds) Mammal Phylogeny: Mesozoic Differentiation, Multituberculates, Monotremes, early Therians, and Marsupials. York: Springer-Verlag, pp. 75–94.Google Scholar
  11. Archer M, Arena R, Bassarova M, Black K, Brammall J, Cooke B, Creaser P, Crosby K, Gillespie A, Godthelp H, Gott M, Hand SJ, Kear B, Krikmann A, Mackness B, Muirhear J, Musser A, Myers T, Pledge N, Wang Y, Wroe S (1999) The evolutionary history and diversity of Australian mammals. Australian Mammalogy 21:1–45.Google Scholar
  12. Ashmore F, Geleoc GSG, Harbott L (2000). Molecular mechanisms of sound amplification in the mammalian cochlea. Proc Natl Acad Sci USA 97:11759–11764.PubMedCrossRefGoogle Scholar
  13. Bekesy G von (1960) Experiments in Hearing. York: McGraw-Hill.Google Scholar
  14. Brown AM, Kemp DT (1984) Suppressibility of the 2fl–f2 stimulated acoustic emission in gerbil and man. Hear Res 42:143–156.CrossRefGoogle Scholar
  15. Brown AM, Gaskill SA, Williams DM (1992) Mechanical filtering of sound in the inner ear. Proc R Soc B 250:29–34.PubMedCrossRefGoogle Scholar
  16. Brownell WE, Bader CR, Bertrand D, de Ribeaupierre Y (1985) Evoked mechanical responses of isolated cochlear outer hair cells. Science 227:194–196.PubMedCrossRefGoogle Scholar
  17. Bruns V (1980) Basilar membrane and its anchoring system in the cochlea of the greater horseshoe bat. Anat Embryol 161:29–50.PubMedCrossRefGoogle Scholar
  18. Burda H, Bruns V, Nevo E (1989) Middle ear and cochlear receptors in the subterranean mole-rat, Spalax ehrenbergi. Hear Res 39:225–230.PubMedCrossRefGoogle Scholar
  19. Chen CS, Anderson LM (1985) The inner ear structures of the echidna—an SEM study. Experientia 41:1324–1326.CrossRefGoogle Scholar
  20. Cifelli RL (2001) Early mammalian radiations. J Paleontol 75:1214–1226.CrossRefGoogle Scholar
  21. Cifelli RL, de Muizon C (1997). Dentition and jaw of Kokopellia juddi, a primitive marsupial or near marsupial from the medial Cretaceous of Utah. J Mammalian Evol 4:241–258.CrossRefGoogle Scholar
  22. Cone-Wesson BK, Hill KG, Liu G-B (1997) Auditory brainstem response in tammar wallaby (Macropus eugenii). Hear Res 105:119–129.PubMedCrossRefGoogle Scholar
  23. Crompton AW(1995) Masticatory function in nonmammalian cynodonts and early mammals. In: Thomason JJ (ed) Functional Morphology in Vertebrate Paleontology. Cambridge: Cambridge University Press, pp. 55–75.Google Scholar
  24. Crompton AW, Jenkins FA Jr (1979) Origin of mammals. In: Lillegraven JA, Kielan-Jaworowska Z, Clemens WA (eds) Mesozoic Mammals-The First Two-Thirds of Mammalian History. Berkeley: University of California Press, pp. 59–73.Google Scholar
  25. Denker A (1901) Zur Anatomie des Gehörorganes der Monotremata. Denkschriften der Medizinisch-Naturwissenschaftlichen Gesellschaft zu Jena 6:635–662.Google Scholar
  26. Echteler SM, Fay RR, Popper AN (1994) Structure of the mammalian cochlea. In: Fay RR, Popper AN (eds) Comparative Hearing, Mammals. Springer Handbook of Auditory Research, vol 4. York: Springer-Verlag, pp. 134–172.Google Scholar
  27. Faulstich M, Kössl M, Reimer K (1996) Analysis of non-linear cochlear mechanics in the marsupial Monodelphis domestica: ancestral and modern mammalian features. Hear Res 94:47–53.PubMedCrossRefGoogle Scholar
  28. Fay RR (1988) Hearing in Vertebrates: A Psychophysics Data Book. Winnetka, IL: Hill-Fay Associates.Google Scholar
  29. Fekete DM (1999) Development of the vertebrate ear: insights from knockouts and mutants. TINS 22:263–269.PubMedGoogle Scholar
  30. Fernandez C, Schmidt RS (1963) The opossum ear and evolution of the coiled cochlea. J Comp Neurol 121:151–159.PubMedCrossRefGoogle Scholar
  31. Fischer FP, Miltz C, Singer I, Manley GA (1992) Morphological gradients in the starling basilar papilla. J Morphol 213:225–240.CrossRefGoogle Scholar
  32. Flynn JJ Parrish M, Rakotosamimanana B, Simpson WF, Wyss AR (1999) A middle Jurassic mammals from Madagascar. Nature 401:57–60.CrossRefGoogle Scholar
  33. Fox RC, Meng J (1997) An X-radiographic and SEM study of the osseous inner ear of multituberculates and monotremes (Mammalia): implications for mammalian phylogeny and evolution of hearing. Zool J Linnean Soc 121:249–291.CrossRefGoogle Scholar
  34. Frank G, Hemmert W, Gummer AW (1999) Limiting dynamics of high-frequency electromechanical transduction of outer hair cells. Proc Natl Acad Sci USA 96:4420–4425.PubMedCrossRefGoogle Scholar
  35. Frost SB, Masterton BR (1994) Hearing in primitive mammals: Monodelphis domestica and Marmosa elegans. Hear Res 76:67–72.PubMedCrossRefGoogle Scholar
  36. Gates GR, Aitkin LM (1982) Auditory cortex in the marsupial opossum Trichosurus vulpecula. Hear Res 7: 1–11.PubMedCrossRefGoogle Scholar
  37. Gates GR, Saunders J, Bock GR (1974) Peripheral auditory function in the platypus, Ornithorhynchus anatinus. J Acoust Soc Am 56:152–156.PubMedCrossRefGoogle Scholar
  38. Gray AA (l908a) An investigation on the anatomical structure and relationships of the labyrinth in the reptile, the bird, and the mammal. Proc R Soc B 80:507–528.Google Scholar
  39. Gray AA (1908b) The Labyrinth of Animals, vol 2. London: J. & A. Churchill.Google Scholar
  40. Graybeal A, Rosowski J, Ketten DR, Crompton AW (1989) Inner ear structure in Morganucodon, an early Jurassic mammal. Zool J Linnean Soc 96:107–117.CrossRefGoogle Scholar
  41. Gregory WK (1947) The monotremes and the palimpsest theory. Bull American Museum of Natural History 88:1–52.Google Scholar
  42. Griffiths M (1968) Echidnas. Oxford: Pergamon Press.Google Scholar
  43. Griffiths M (1978) The Biology of the Monotremes. York: Academic Press.Google Scholar
  44. Heffner HE, Masterton B (1980) Hearing in Glires: domestic rabbits, cotton rat, feral house mouse, and kangaroo rat. J Audit Res 9:12–18.Google Scholar
  45. Heffner RS, Heffner HE (1992) Evolution of sound localization in mammals. In: Webster DB, Fay RR, Popper AN (eds) The Evolutionary Biology of Hearing. York: Springer-Verlag, pp. 691–711.CrossRefGoogle Scholar
  46. Holley M (1996) Outer hair cell motility. In: Dallos P, Popper AN, Fay RR (eds) The Cochlea. Springer Handbook of Auditory Research, vol 8. York: Springer-Verlag, pp. 386–435.Google Scholar
  47. Hopson JA (1994) Synapsid evolution and the radiation of non-eutherian mammals. In: Spencer RS (ed) Major Features of Vertebrate Evolution. Knoxville: Paleontological Society, pp. 190–219.Google Scholar
  48. Hu Y-M, Krebs B (1999) Discovery of the Henkelotherium petrosal and its implication for the evolution of mammalian hearing. J Vertebrate Paleontol 19(3 suppl):53A.Google Scholar
  49. Hu Y-M, Wang Y-Q, Luo Z-X, Li C-K (1997) A new symmetrodont mammal from China and its implications for mammalian evolution. Nature 390:137–142.PubMedCrossRefGoogle Scholar
  50. Hurum JH (1998) The inner ear of two late Cretaceous multituberculate mammals, and its implications for multituberculate hearing. J Mammal Evol 5:65–94.CrossRefGoogle Scholar
  51. Janke A, Xu X, Amason U (1997) The complete mitochondrial genome of the wallaroo (Macropus robustus) and the phylogenetic relationship among Monotremata, Marsupialia, and Eutheria. Proc Natl Acad Sci USA 94:276–281.CrossRefGoogle Scholar
  52. Kalinec F, Holley MC, Iwasa KH, Lim DJ, Kachar B (1992) A membrane based force generation mechanism in auditory sensory cells. Proc Natl Acad Sci USA 89:8671–8675.PubMedCrossRefGoogle Scholar
  53. Kelley M, Xu X-M, Wagner MA, Warchol ME, Corwin CT (1993) The developing organ of Corti contains retinoic acid and forms supemumery hair cells in response to exogenous retinoic acid in culture. Development 119:1041–1053.PubMedGoogle Scholar
  54. Kermack KA (1963) The cranial structure of the triconodonts. Philos Trans R Soc Lond [B] 246:83–103CrossRefGoogle Scholar
  55. Kermack KA, Mussett F (1983) The ear in mammal-like reptiles and early mammals. Acta Palaeontol Polonica 28:147–158.Google Scholar
  56. Kermack K, Mussett AF, Rigney HW (1973) The lower jaw of Morganucodon. Zool J Linnean Soc 53:87–175.CrossRefGoogle Scholar
  57. Kermack KA, Mussett F, Rigney HW (1981) The skull of Morganucodon. Zool J Lin-nean Soc 71:1–158.CrossRefGoogle Scholar
  58. Ketten DR (2000) Cetacean ears. In: Au WL, Popper AN, Fay RR et al. (eds) Hearing by Whales and Dolphins. Springer Handbook of Auditory Research, vol 12. York: Springer-Verlag, pp. 43–109.Google Scholar
  59. Kielan-Jaworowska Z, Qi T (1990) Fossorial adaptations of a taeniolabidoid multi-tuberculate mammal from the Eocene of China. Vertebrata PalAsiatica 28:81–94.Google Scholar
  60. Kielan-Jaworowska Z, Presley R, Poplin C (1986) The cranial vascular system in taeniolabidoid multituberculate mammals. Philos Trans R Soc Lond [B] 313:525–602.CrossRefGoogle Scholar
  61. Kielan-Jaworowska Z, Cifelli RL, Luo Z-X (1998) Alleged cretaceous placentals from down under. Lethaia 31:267–268.CrossRefGoogle Scholar
  62. Konishi M (1973) How the owl tracks its prey. Am Sci 61:414–424.Google Scholar
  63. Kössl M (1997). Sound emission from cochlear filters and foveae—Does the auditory sense organ make sense? Naturwissenschaften 84:9–16.PubMedCrossRefGoogle Scholar
  64. Kössl M, Vater M (1995) Cochlear structure and function in bats. In: Popper AN, Fay RR (eds) Hearing by Bats. Springer Handbook of Auditory Research, vol 5. York: Springer-Verlag, pp. 191–235.Google Scholar
  65. Krubitzer L (1998) What can monotremes tell us about brain evolution? Philos Trans R Soc Lond [B] 353:1127–1146.CrossRefGoogle Scholar
  66. Kühne QG (1973) The systematic position of monotremes reconsidered. Z Morpho Tiere 75:59–64.CrossRefGoogle Scholar
  67. Ladhams A, Pickles JO (1996) Morphology of the monotreme organ of Corti and macula lagena. J Comp Neurol 366:335–347.PubMedCrossRefGoogle Scholar
  68. Lewis ER, Leverenz EL, Bialek WS (1985) The Vertebrate Inner Ear. Boca Raton, FL: CRC Press.Google Scholar
  69. Lillegraven JA, Hahn G (1993) Evolutionary analysis of the middle and inner ear of late Jurassic multituberculates. J Mammal Evol 1:47–74.CrossRefGoogle Scholar
  70. Lim DJ (1986) Functional structure of the organ of Corti. A review. Hear Res 22:117–146.PubMedCrossRefGoogle Scholar
  71. Löwenheim H, Furness DN, Kil J, Zinn C, Gültig K, Fero ML, Frost D, Gummer AW, Roberts JM, Rubel EW, Hackney CM, Zenner HP (1999) Gen disruption of p27Kip1 allows cell proliferation in the postnatal and adult organ of Corti. Proc Natl Acad Sci USA 96:4084–4088.PubMedCrossRefGoogle Scholar
  72. Luo Z (1989) Structure of the petrosal of Multituberculata (Mammalia) and the morphology of the molars of early arctocyonids. PhD thesis, University of California at Berkeley.Google Scholar
  73. Luo Z-X (2001) Inner ear and its bony housing in tritylodonts and implications for evolution of mammalian ear. Bull Museum Comparative Zool 155:621–637.Google Scholar
  74. Luo Z, Ketten DR (1991) CT scanning and computerized reconstructions of the inner ear of multituberculate mammals. J Vertebrate Paleontol 11:220–228.CrossRefGoogle Scholar
  75. Luo Z-X, Crompton AW, Sun A-1 (2001) A new mammaliaform from early Jurassic and evolution of mammalian characteristics. Science 292:1535–1540.PubMedCrossRefGoogle Scholar
  76. MacIntyre GT (1972) The trisulcate petrosal pattern of mammals. In: Dobzhansky T, Hecht MK, Steere WC (eds) Evolutionary Biology, vol 6. York: Appleton-Century-Crofts, pp. 275–302.Google Scholar
  77. Manley GA (1971) Some aspects of the evolution of hearing in vertebrates. Nature 230: 506–509.PubMedCrossRefGoogle Scholar
  78. Manley GA (1972) Frequency response of the middle ear of geckos. J Comp Physio [A] 81:251–258CrossRefGoogle Scholar
  79. Manley GA (1973) A review of some current concepts of the functional evolution of the ear in terrestrial vertebrates. Evolution 26:608–621.CrossRefGoogle Scholar
  80. Manley GA (1990) Peripheral Hearing Mechanisms in Reptiles and Birds. York: Springer-Verlag.CrossRefGoogle Scholar
  81. Manley GA (2000) Cochlear mechanisms from a phylogenetic viewpoint. Proc Natl Acad Sci USA 97:11736–11743.PubMedCrossRefGoogle Scholar
  82. Manley GA, Köppl C (1998) Phylogenetic development of the cochlea and its innervation. Curr Opinion Neurobiol 8:468–474.CrossRefGoogle Scholar
  83. Manley GA, Kirk DL, Köppl C, Yates GK (2001) In vivo evidence for a cochlear amplifier in the hair-cell bundle of lizards, Proc Natl Acad Sci USA 98:2826–2831.PubMedCrossRefGoogle Scholar
  84. Masterton RB, Heffner H, Ravizza R (1969) The evolution of human hearing. J Acoust Soc Am 45:966–985.PubMedCrossRefGoogle Scholar
  85. McKenna MC, Bell SK (1997) Classification of Mammals Above the Species Level. New York: Columbia University Press.Google Scholar
  86. Meng J, Fox RC (1993) Inner ear structures from late Cretaceous mammals and their systematic and functional implications. J Vertebrate Paleontol 13(Suppl 3):50A.Google Scholar
  87. Meng J, Fox RC (l995a) Theri an petrosals from the Oldman and Milk River format ions (Late Cretaceous), Alberta, Canada. J Vertebrate Paleontol 15:122–130.Google Scholar
  88. Meng J, Fox RC (l995b) Osseous inner ear structures and hearing in early marsupials and placentals. Zool J Linn Soc 115:47–71.Google Scholar
  89. Meng J, Wyss AR (1995) Monotreme affinities and low-frequency hearing suggested by multituberculate ear. Nature 377:141–144.CrossRefGoogle Scholar
  90. Meyer M (1907) An introduction to the mechanics of the inner ear. In: Brown WG (ed) Science Series, University Missouri Studies, vol 2. Columbia, MI: EW Stephens, pp. 1–140.Google Scholar
  91. Miao D (1988) Skull morphology of Lambdopsalis bulla (Mammalia, Multituberculata) and its implication s to mammalian evolution. Contributions to Geology, University of Wyoming, Special Paper 4:1–104.Google Scholar
  92. Miao D, Lillegraven JA (1986) Discovery of three ear ossicles in a multituberculate mammal. National Geographic Res 2:500–507.Google Scholar
  93. Mills DM, Shepherd RK (2001) Distortion product otoacoustic emission and auditory brainstem responses in the echidna (Tachyglossus aculeatus). J Assoc Res Otolaryngol 2:130–146.PubMedCrossRefGoogle Scholar
  94. Müller M, Wess FP, Bruns V (1993) Cochlear place-frequency map in the marsupial Monodelphis domestica. Hear Res 67:198–202.PubMedCrossRefGoogle Scholar
  95. Nadol JB (1988) Comparative anatomy of the cochlea and the auditory nerve in mammals. Hear Res 34:253–266.PubMedCrossRefGoogle Scholar
  96. Novacek MJ (1992 ) Mammalian phylogeny: shaking the tree. Nature 356:121–125.PubMedCrossRefGoogle Scholar
  97. Nowak RM (1995 ) Walker’s Mammal s of the world. Baltimore and London: Johns Hopkins University Press.Google Scholar
  98. Olson EC (1959 ) The evolution of mammalian characters. Evolution 13:344–353.CrossRefGoogle Scholar
  99. Pettigrew JD, Manger PR, Fine SLB (1998) The sensory world of the platypus. Philos Trans R Soc Lond [B] 353:1199–1210.CrossRefGoogle Scholar
  100. Pickles JO (1992) Scanning electron microscopy of the echidna: morphology of a primitive mammalian cochlea. In: Cazals Y, Demany L, Homer K (eds) Auditory Physiology and Perception. Oxford: Pergamon, pp. 101–107.Google Scholar
  101. Pritchard U (1881) The cochlea of the Omithorhynchus platypus compared with that of ordinary mammals and birds. Philos Trans R Soc Lond 172:267–282.CrossRefGoogle Scholar
  102. Proske U, Gregory JE, Iggo A (1998) Sensory receptors in monotremes. Philos Trans R Soc Lond [B] 353:1187–1198.CrossRefGoogle Scholar
  103. Pujol R, Lenoir M, Ladrech S, Tribillac F, Rebillard G (1992) Correlation between the length of outer hair cells and the frequency coding of the cochlea. In: Cazals Y, Demany L, Homer K (eds) Auditory Physiology and Perception, Advances in Biosciences. New York: Pergamon Press, pp. 45–52.Google Scholar
  104. Ravizza RJ, Heffner HE, Masterton B (1969) Hearing in primitive mammals. I. Opossum (Didelphis virginiana). J Audiol Res 9:1–7.Google Scholar
  105. Reimer K (1996) Ontogeny of hearing in the marsupial, Monodelphis domestica, as revealed by brainstem auditory evoked potentials. Hear Res 92:143–150.CrossRefGoogle Scholar
  106. Rich TH, Vickers-Rich P, Constantine A, Flannery TF, Kool L, van Klaveren N (1997) A tribosphenic mammal from the Mesozoic of Australia. Science 278:1431–1438.CrossRefGoogle Scholar
  107. Rich TH, Flannery TF, Trusler P, Kool AL, van Klaveren N, Vickers-Rich P (2001) Early Cretaceous mammals from Flat Rocks, Victoria, Australia. Records of Queen Victoria Museum 106:1–30.Google Scholar
  108. Robles L, Ruggero MA (2001) Mechanics of the mammalian cochlea. Physiol Rev 81:1306–1352.Google Scholar
  109. Rosowski JJ (1992) Hearing in transitional mammals: predictions from the middle-ear anatomy and hearing capabilities of extant mammals. In: Webster DB, Fay RR, Popper AN (eds) The Evolutionary Biology of Hearing. York: Springer-Verlag, 615–631.CrossRefGoogle Scholar
  110. Rosowski JJ, Graybeal A (1991) What did Morganucodon hear? Zool J Linn Soc 101: 131–168.CrossRefGoogle Scholar
  111. Rougier GW (1990) Primeras evidencias sobre la morfología del oído interno en un terio no tribosfénico. Resumenes VII Jornadas Argentinas de Paleontología de Vertebrados, Ameghiniana 26:249.Google Scholar
  112. Rougier GW, Wible JR, Hopson JA (1992) Reconstruction of the cranial vessels in the Early Cretaceous mammal Vincelestes neuquenianus: implications for the evolution of the mammalian cranial vascular system. J Vertebrate Paleontol 12:188–216.CrossRefGoogle Scholar
  113. Rougier GW, Wible JR, Novacek MJ (1996) Middle-ear ossicles of the multituberculate Kryptobaatar from the Mongolian late Cretaceous: implications for mammaliamorph relationships and the evolution of the auditory apparatus. American Museum Novitates 3187:1–43.Google Scholar
  114. Rougier GW, Wible JR, Novacek MJ (1998) Implications of Deltatheridium specimens for early marsupial history. Nature 396:459–463.PubMedCrossRefGoogle Scholar
  115. Rowe T (1988) Definition, diagnosis, and origin of Mammalia. J Vertebrate Paleontol 8:241–264.CrossRefGoogle Scholar
  116. Ruggero MA, Temchin AN (2002) The roles of external, middle, and inner ears in determining the bandwidth of hearing. Proc Natl Acad Sci USA 99:13206–13210.PubMedCrossRefGoogle Scholar
  117. Runhaar G, Schedler J, Manley GA (1991) The potassium concentration of cochlear fluids of the embryonic and posthatching chick. Hear Res 56:227–238.PubMedCrossRefGoogle Scholar
  118. Saunders JC, Duncan RK, Doan DE, Werner YL (2000) The middle ear of reptiles and birds. In: Dooling RJ, Fay RR, Popper AN (eds) Comparative Hearing: Birds and reptiles. Springer Handbook of Auditory Research, vol 13. York: Springer-Verlag, pp. 13–69.Google Scholar
  119. Schmidt RS, Fernandez C (1962) Labyrinthine DC potentials in representative vertebrates. J Cell Comp Physiol 59:311–322.PubMedCrossRefGoogle Scholar
  120. Schmidt S, Türke B, Vogler B (1984) Behavioural audiogram from the bat, Megaderma lyra (Geoffroy, 1810; Microchiroptera). Myotis 22:62–69.Google Scholar
  121. Simmons NB (1993) Phylogeny of Multituberculata. In: Szalay FS, Novacek MJ, Mc-Kenna MC (eds) Mammal Phylogeny, vol 1: Mesozoic Differentiation, Multituberculates, Monotremes, Early Therians, and Marsupials. York: Springer-Verlag, pp. 146–164.Google Scholar
  122. Simpson GG (1937) Skull structure of the Multituberculata. Bull American Museum of Natural History 73:727–763.Google Scholar
  123. Simpson GG (1938) Osteography of the ear region in monotremes. American Museum Novitates 978:1–15.Google Scholar
  124. Simpson GG (1945) The principles of classification and a classification of mammals. Bull American Museum of Natural History 85:1–350.Google Scholar
  125. Simpson GG (1960) Diagnosis of the classes Reptilia and Mammalia. Evolution 14:388–391.CrossRefGoogle Scholar
  126. Slepecky NB (1996) Structure of the mammalian cochlea. In: Dallos P, Popper AN, Fay RR (eds) The Cochlea. Springer Handbook of Auditory Research, vol 8. York: Springer-Verlag, pp. 44–130.Google Scholar
  127. Sloan RE (1979) Multituberculata. In: Fairbridge RW, Jablonski D (eds) The Encyclopedia of Paleontology. Stroudsberg: Dowden, Hutchinson & Ross, pp. 492–498.Google Scholar
  128. Smith CA, Takasaka T (1971) Auditory receptor organs of reptiles, birds and mammals. Contrib Sens Physiol 5:129–178.PubMedGoogle Scholar
  129. Vater M, Lenoir M (1992) Ultrastructure of the horseshoe bat’s organ of Corti. I. Scanning electron microscopy. J Comp Neurol 318:367–379.PubMedCrossRefGoogle Scholar
  130. Vater M, Siefer W (1995) The cochlea of Tadarida brasiliensis: specialized functional organization in a generalized bat. Hear Res 91:178–195.PubMedCrossRefGoogle Scholar
  131. Wang Y, Hu Y, Meng J, Li C (2001) An ossified Meckel’s cartilage in two Cretaceous mammals and origin of the mammalian middle ear. Science 296:357–361.CrossRefGoogle Scholar
  132. West CD (1985) The relationships of the spiral turns of the cochlea and the length of the basilar membrane to the range of audible frequencies in ground dwelling mammals. J Acoust Soc Am 77:1091–1101.PubMedCrossRefGoogle Scholar
  133. Wever EG (1974) The evolution of vertebrate hearing. In: Keidel WD, Neff WD (eds) Handbook of Sensory Physiology, vol V-1: Auditory System, Anatomy, Physiology (Ear). York: Springer-Verlag, pp. 423–454.Google Scholar
  134. Wible Jr (1990) Petrosals of late Cretaceous marsupials from North America, and a cladistic analysis of the petrosal in therian mammals. J Vertebrate Paleontol 10:183–205.CrossRefGoogle Scholar
  135. Wible JR, Hopson JA (1993) Basicranial evidence for early mammal phylogeny. In: Szalay FS, Novacek MJ, McKenna MC (eds) Mammal Phylogeny—Mesozoic Differentiation, Multituberculates, Monotremes, Early Therians, and Marsupials. York: Springer-Verlag, pp. 45–62.Google Scholar
  136. Wible JR, Rougier GW, Novacek MJ, McKenna MC, Dashzeveg D (1995) A mammalian petrosal from the early Cretaceous of Mongolia: implications for the evolution of the ear region and mammaliamorph interrelationships. American Museum Novitates 3149:1–19.Google Scholar
  137. Zeller U (1989) Die Entwicklung und Morphologie des Schädels von Omithorhynchus anatinus (Mammalia: Prototheri a: Monotremata). Abhandlungen der Senckenbergischen Naturforschenden Gesellschaft 545:1–188.Google Scholar
  138. Zeller U (1993) Ontogenetic evidence for cranial homologies in monotremes and therians, with special reference to Ornithorhynchus. In: Szalay FS, Novacek MJ, McKenna MC (eds) Mammal Phylogeny, vol 1: Mesozoic Differentiation, Multituberculates, Mono-tremes, Early Therians, and Marsupials. York: Springer-Verlag, pp. 95–107.Google Scholar
  139. Zheng J, Shen W, He DZ, Long KB, Madison LD, Dallos P (2000a) Prestin is the motor molecule of cochlear outer hair cells. Nature 405:149–155.PubMedCrossRefGoogle Scholar
  140. Zheng JL, Shou J, Guillemot F, Kageyama R, Gao W-Q (2000b) Hesl is a negative regulator of inner ear hair cell differentiation. Development 127:4551–4560.PubMedGoogle Scholar
  141. Zheng J, Madison LD, Oliver D, Fakler B, Dallos P (2002) Prestin, the motor protein of outer hair cells. Audiol Neuro-Otol 7:9–12.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Marianne Vater
  • Jin Meng
  • Richard C. Fox

There are no affiliations available

Personalised recommendations