Advertisement

Hearing Organ Evolution and Specialization: Archosaurs

  • Otto Gleich
  • Franz Peter Fischer
  • Christine Köppl
  • Geoffrey A. Manley
Chapter
Part of the Springer Handbook of Auditory Research book series (SHAR, volume 22)

Abstract

Among amniotes a group named archosaurs includes the crocodilians, extinct dinosaurs, and birds (see Phylogeny, below). Because of these evolutionary relationships, the archosaurs are considered together in this chapter. The available data on inner-ear structure and function from different archosaur species (various birds and Caiman crocodilus) is combined and reviewed, in an attempt to identify the putative primitive condition and subsequent specializations that occurred during evolution.

Keywords

Hair Cell Zebra Finch Basilar Membrane Innervation Pattern Basilar Papilla 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baird IL (1974) Anatomical features of the inner ear in submammalian vertebrates. In Keidel WD, Neff WD (eds) Handbook of Sensory Physiology, vol V/1. Berlin Heidelberg, New York: Springer, pp. 159–212.Google Scholar
  2. Boles WE (1995) The world’ s oldest songbird. Nature 374:21–22.CrossRefGoogle Scholar
  3. Cao Y, Sorenson MD, Kumazawa Y, Mindell DP, Hasegawa M (2000) Phylogenetic position of turtles among amniotes: evidence from mitochondrial and nuclear genes. Gene 259:139–148.PubMedCrossRefGoogle Scholar
  4. Carroll RL (1988) Vertebrate Palaeontology and Evolution. York: Freeman.Google Scholar
  5. Carroll RL (1997) Patterns and process of vertebrate evolution. York: Cambridge University Press.Google Scholar
  6. Chen L, Salvi R, Shero M (1994) Cochlear frequency-place map in adult chickens: intracellular biocytin labeling. Hear Res 81:130–136.PubMedCrossRefGoogle Scholar
  7. Cotanche DA, Henson MM, Henson OW Jr (1992) Contractile protein s in the hyaline cells of the chicken cochlea. J Comp Neurol 324:353–364.PubMedCrossRefGoogle Scholar
  8. Dannhof BJ, Bruns V (1993) The innervation of the organ of Corti in the rat. Hear Res 66:8–22.PubMedCrossRefGoogle Scholar
  9. Dooling RJ (1982) Auditory perception in birds. In: Kroodsma DE, Miller EH (eds) Acoustic Communication in Birds, vol. I. New York: Academic Press, pp. 95–130.Google Scholar
  10. Dooling RJ (1992) Hearing in birds. In: Fay RR, Popper AN, Webster DB (eds) The Evolutionary Biology of Hearing. Heidelberg, York: Springer-Verlag, pp. 545–559.CrossRefGoogle Scholar
  11. Dooling RJ, Ryals BM (1995) Effects of acoustic overstimulation on four species of birds. In: Manley GA, Klump GM, Köppl C, Fastl H, Oeckinghaus H (eds) Advances in Hearing Research. Singapore: World Scientific, pp. 32–39.Google Scholar
  12. Dooling RJ, Saunders JC (1975) Hearing in the parakeet (Melopsittacus undulatus): absolute thresholds, critical ratios, frequency difference limens, and vocalizations. J Comp Physiol Psych 88:1–20.CrossRefGoogle Scholar
  13. Dooling RJ, Mulligan JA, Miller ID (1971) Auditory sensitivity and song spectrum of the common canary (Serinus canarius). J Acoust Soc Am 50:700–709.PubMedCrossRefGoogle Scholar
  14. Dooling RJ, Okanoya K, Downing J, Hulse S (1986) Hearing in the starling (Sturnus vulgaris): Absolute thresholds and critical ratios. Bull Psychonom Soc 24:462–464.Google Scholar
  15. Durham D, Park DL, Girod DA. (2002) Breed differences in cochlear integrity in adult, commercially raised chickens. Hear Res 166:82–95.PubMedCrossRefGoogle Scholar
  16. Düring M von, Karduck A, Richter H (1974) The fine structure of the inner ear in Caiman crocodylus. Z Anat Entwickl Gesch 145:41–65.CrossRefGoogle Scholar
  17. Düring M von, Andres KH, Simon K (1985) The comparative anatomy of the basilar papillae in birds. Fortschr Zool 30:681–685.Google Scholar
  18. Dyson ML, Klump GM, Gauger B (1998) Absolute hearing thresholds and critical masking ratios in the European barn owl: a comparison with other owls. J Comp Physio [A] 182:695–702.CrossRefGoogle Scholar
  19. Fay RR (1988) Hearing in Vertebrates: A Psychophysics Databook. Winnetka, IL: Hill-Fay Associates.Google Scholar
  20. Feduccia A (1980) The Age of Birds. Cambridge, MA: Harvard University Press.Google Scholar
  21. Feduccia A (1995) Explosive evolution in tertiary birds and mammals. Science 267:637–638.PubMedCrossRefGoogle Scholar
  22. Fennin CD, Cohen GM (1984) Development of the embryonic chick’s statoacoustic ganglion. Acta Otolaryngol (Stockh) 98:42–52.CrossRefGoogle Scholar
  23. Fischer FP (1992) Quantitative analysis of the innervation of the chicken basilar papilla. Hear Res 61:167–178.PubMedCrossRefGoogle Scholar
  24. Fischer FP (1994) Quantitative TEM analysis of the barn owl basilar papilla. Hear Res 73:1–15.PubMedCrossRefGoogle Scholar
  25. Fischer FP (1998) Hair-cell morphology and innervation in the basilar papilla of the emu (Dromaius novaehollandiae). Hear Res 121:112–124.PubMedCrossRefGoogle Scholar
  26. Fischer FP, Junker M (2000) Complex innervation pattern in the basilar papilla of a bird, the Australian emu. 23rd Midwinter Research Meeting of the Association of Research Otolaryngology, abstract, p. 279.Google Scholar
  27. Fischer FP, Köppl C, Manley GA (1988) The basilar papilla of the barn owl Tyto alba: A quantitative morphological SEM analysis. Hear Res 34:87–102.PubMedCrossRefGoogle Scholar
  28. Fischer FP, Brix J, Singer I, Miltz C (1991) Contacts between hair cells in the avian cochlea. Hear Res 53:281–292.PubMedCrossRefGoogle Scholar
  29. Fischer FP, Singer I, Miltz C, Manley GA (1992) Morphological gradients in the starling basilar papilla. J Morphol 213:225–240.CrossRefGoogle Scholar
  30. Fischer FP, Eisensamer B, Manley GA (1994) Cochlear and lagenar ganglia of the chicken. J Morphol 220:71–83.PubMedCrossRefGoogle Scholar
  31. Garrick LD, Lang JW, Herzog HA (1978) Social signals of adult American alligators. Bull Am Mus Nat Hist 160:153–192.Google Scholar
  32. Gleich 0 (1989) Auditory primary afferents in the starling: correlation of function and morphology. Hear Res 37:255–268.PubMedCrossRefGoogle Scholar
  33. Gleich O, Manley GA (1988) Quantitative morphological analysis of the sensory epithelium of the starling and pigeon basilar papilla. Hear Res 34:69–86.PubMedCrossRefGoogle Scholar
  34. Gleich O, Manley GA (2000) The hearing organ of birds and crocodilia. In: Dooling RJ, Fay RR, Popper AN (eds) Comparative Hearing: Birds and Reptile s. York: Springer, pp. 70–138.CrossRefGoogle Scholar
  35. Gleich O, Manley GA, Mandl A, Dooling R (1994) The basilar papilla of the canary and the zebra finch: a quantitative scanning electron microscopic description. J Morphol 221:1–24.CrossRefGoogle Scholar
  36. Gleich O, Dooling RI, Presson JC (1997) Evidence for supporting cell proliferation and hair cell differentiat ion in the basilar papilla of adult Belgian Waterslager canaries (Serinus canarius). J Comp Neurol 377:5–15.PubMedCrossRefGoogle Scholar
  37. Graybeal A, Rosowski JJ, Ketten DR, Crompton AW(1989) Inner-ear structure in Morganucodon, an early jurassic mammal. Zool J Linn Soc 96:107–117.CrossRefGoogle Scholar
  38. Greenwood DD (1990) A cochlear frequency-position function for several species—29 years later. J Acoust Soc Am 87:2592–2605.PubMedCrossRefGoogle Scholar
  39. Gunga H-Chr, Kirsch KA, Baartz F, Röcker L, Heinrich W-D, Lisowski W, Wiedemann A, Albertz J (1995) New data on the dimensions of Brachiosaurus brancai and their physiological implications. Naturwiss 82:190–192.Google Scholar
  40. Hashino E, Okanoya K (1989) Auditory sensitivity of the zebra finch (Poephila guttata castanotis). J Acoust Soc Jpn (E) 10:51–52.CrossRefGoogle Scholar
  41. Jones SM, Jones TA (1995) The tonotopic map in the embryonic chicken cochlea. Hear Res 82:149–157.PubMedCrossRefGoogle Scholar
  42. Knudsen El, Konishi M (1979) Mechanisms of sound localization in the barn owl (Tyto alba). J Comp Physiol [AJ 133:13–21.CrossRefGoogle Scholar
  43. Konishi M (1973) How the owl tracks its prey. Am Sci 61:414–424.Google Scholar
  44. Konishi M (1993) Listening with two ears. Sci Am 268:66–73.PubMedCrossRefGoogle Scholar
  45. Konishi M, Knudsen EI (1979) The oilbird: hearing and echolocation. Science 204:425–427.PubMedCrossRefGoogle Scholar
  46. Köppl C (1993) Hair-cell specializations and the auditory fovea in the barn owl cochlea. In: Duifhuis H, Horst JW, van Dijk P, van Netten SM (eds) Biophysics of Hair Cell Sensory Systems. Singapore: World Scientific Publishing, pp. 216–222.Google Scholar
  47. Köppl C (1997) Number and axon calibres of cochlear afferents in the barn owl. Auditory Neurosci 3:313–334.Google Scholar
  48. Köppl C (2001) Efferent axons in the avian auditory nerve. Eur J Neurosci 13:1889–1901.PubMedCrossRefGoogle Scholar
  49. Köppl C, Manley GA (1997) Frequency representation in the emu basilar papilla. J Acoust Soc Am 101:1574–1584.CrossRefGoogle Scholar
  50. Köppl C, Gleich O, Manley GA (1993) An auditory fovea in the barn owl cochlea. J Comp Physiol [A] 171:695–704.CrossRefGoogle Scholar
  51. Köppl C, Gleich O, Schwabedissen G, Siegl E, Manley GA (1998) Fine structure of the basilar papilla of the emu: implications for the evolution of avian hair-cell types. Hear Res 126:99–112.PubMedCrossRefGoogle Scholar
  52. Köppl C, Wegscheider A, Gleich O, Manley GA (2000) A quantitative study of cochlear afferent axons in birds. Hear Res 139:123–143.PubMedCrossRefGoogle Scholar
  53. Kreithen ML, Quine DB (1979) Infrasound detection by the homing pigeon: a behavioural audiogram. J Comp Physiol [A] 129:1–4.CrossRefGoogle Scholar
  54. Kuhn A, Müller CM, Leppelsack H-J, Schwartzkopff J (1982) Heart rate conditioning used for determination of auditory thresholds in the starling. Naturwiss 69:245–246.PubMedCrossRefGoogle Scholar
  55. Lavigne-Rebillard M, Cousillas H, Pujol R (1985) The very distal part of the basilar papilla in the chicken: a morphological approach. J Comp Neurol 238:340–347.PubMedCrossRefGoogle Scholar
  56. Leake PA (1977) SEM observations of the cochlear duct in Caiman crocodilus. Scan Electron Micosc 2:437–444.Google Scholar
  57. Linzenbold A, Dooling RJ, Ryals BM (1993) A behavioral audibility curve for the Japanese quail (Coturnix coturnix japonica). 16th Midwinter Research Meeting of the Association of Research Otolaryngology, abstract, p. 211.Google Scholar
  58. Mandl A (1992) Eine quantitative, morphologische Untersuchung der Papilla basilaris des Kanarienvogels (Serinus canarius). Diplom-Thesis at the Department of Zoology of the Technical University of Munich.Google Scholar
  59. Manley GA (1990) Peripheral Mechanisms in Reptiles and Birds. Berlin: Springer-Verlag.CrossRefGoogle Scholar
  60. Manley GA, Brix J, Kaiser A (1987) Developmental stability of the tonotopic organization of the chick’s basilar papilla. Science 237:655–656.PubMedCrossRefGoogle Scholar
  61. Manley GA, Schwabedissen G, Gleich O (1993) Morphology of the basilar papilla of the budgerigar Melopsittacus undulatus. J Morphol 218:153–165.Google Scholar
  62. Manley GA, Meyer B, Fischer FP, Schwabedissen G, Gleich O (1996) Surface morphology of the basilar papilla of the tufted duck Aythya fuligula and the domestic chicken Gallus gallus domesticus. J Morphol 227:197–212.PubMedCrossRefGoogle Scholar
  63. Mindell DP, Sorenson MD, Dimcheff DE, Hasegawa M, Ast JC, Yuri T (1999) Interordinal relationships of birds and other reptiles based on whole mitochondrial genomes. Syst Biol 48:138–152.PubMedCrossRefGoogle Scholar
  64. Moiseff A (1989) Binaural disparity cues available to the barn owl for sound localization. J Comp Physiol [A] 164:629–636.CrossRefGoogle Scholar
  65. Niemiec AJ, Raphael Y, Moody DB (1994) Return of auditory function following structural regeneration after acoustic trauma: behavioral measures from quail. Hear Res 79:1–16.PubMedCrossRefGoogle Scholar
  66. Oesterle EC, Cunningham DE, Rubel EW (1992) Ultrastructure of hyaline, border, and vacuole cells in chick inner ear. J Comp Neurol 318:64–82.PubMedCrossRefGoogle Scholar
  67. Okanoya K, Dooling RJ (1985) Colony differences in auditory thresholds in the canary (Serinus canarius). J Acoust Soc Am 78:1170–1176.PubMedCrossRefGoogle Scholar
  68. Okanoya K, Dooling RJ (1987a) Hearing in passerine and psittacine birds: a comparative study of masked and absolute auditory thresholds. J Comp Psychol 101:7–15.PubMedCrossRefGoogle Scholar
  69. Okanoya K, Dooling RJ (1987b) Strain differences in auditory thresholds in the canary (Serinus canarius). J Comp Psychol 101:213–215.PubMedCrossRefGoogle Scholar
  70. Okanoya K, Dooling RJ (1990) Detection of gaps in noise by budgerigars (Melopsittacus undulatus) and zebra finches (Poephila guttata). Hear Res 50:185–192.PubMedCrossRefGoogle Scholar
  71. Olson SL (1985) The fossil record of birds. In: Farner D, King J, Parkes K (eds) Avian Biology, vol 8. York: Academic Press, pp. 79–238.Google Scholar
  72. Payne RS (1971) Acoustic location of prey by barn owls (Tyto alba). J Exp Biol 54:535–573.PubMedGoogle Scholar
  73. Pugliano FA, Wilcox TO, Rossiter J, Saunders, JC (1993) Recovery of auditory structure and function in neonatal chicks exposed to intense sound for 8 days. Neurosci Lett 151:214–218.PubMedCrossRefGoogle Scholar
  74. Rogers SW (1998) Exploring Dinosaur neuropalaeobiology: computed tomography scanning analysis of an Allosaurus fragilis endocasts. Neuron 21:673–679.Google Scholar
  75. Ryals BM, Dooling RJ, Westbrook E, Dent ML, MacKenzie A, Larsen ON (1999) Avian species differences in susceptibility to noise exposure. Hear Res 131:71–88.PubMedCrossRefGoogle Scholar
  76. Saunders J, Dooling RJ (1974) Noise-induced threshold shift in the parakeet (Melopsit-tacus undulatus). Proc Natl Acad Sci USA 71:1962–1965.PubMedCrossRefGoogle Scholar
  77. Saunders J, Pallone R (1980) Frequency selectivity in the parakeet studied by isointensity masking contours. J Exp Biol 87:331–342.Google Scholar
  78. Saunders J, Rintelmann W, Bock G (1979) Frequency selectivity in bird and man: a comparison among critical ratios, critical bands and psychophysical tuning curves. Hear Res 1:303–323.PubMedCrossRefGoogle Scholar
  79. Saunders JC, Duncan RK, Doan DE, Werner YL (2000) The middle ear of reptiles and birds. In: Dooling RJ, Fay RR, Popper AN (eds) Comparative Hearing: Birds and Reptiles. York: Springer, pp. 13–69.CrossRefGoogle Scholar
  80. Saunders SS, Salvi RJ (1993) Psychoacoustics of normal adult chickens: thresholds and temporal integration. J Acoust Soc Am 94:83–90.PubMedCrossRefGoogle Scholar
  81. Schermuly L, Klinke R (1990a) Infrasound sensitive neurones in the pigeon’s cochlear ganglion. J Comp Physiol [A] 166:355–363.Google Scholar
  82. Schermuly L, Klinke R (1990b) Origin of infrasound sensitive neurones in the papilla basilaris of the pigeon: a HRP study. Hear Res 48:69–78.PubMedCrossRefGoogle Scholar
  83. Schwartzkopff J, Winter P (1960) Zur Anatomie der Vogel-Cochlea unter natürlichen Bedingungen. Biol Zentralblatt 79:607–625.Google Scholar
  84. Sibley CG, Ahlquist JE (1990) Phylogeny and Classification of Birds: A Study in Molecular Evolution. Haven, CT: Yale University Press.Google Scholar
  85. Smith CA, Konishi M, Schull N (1985) Structure of the barn owl’s (Tyto alba) inner ear. Hear Res 17:237–247.PubMedCrossRefGoogle Scholar
  86. Smolders JWT (1999) Functional recovery in the avian ear after hair cell regeneration. Audiol Neurootol 4:286–302.PubMedCrossRefGoogle Scholar
  87. Smolders JWT, Klinke R (1986) Synchronized responses of primary auditory fibre populations in Caiman crocodilus (L.) to single tones and clicks. Hear Res 24:89–103.PubMedCrossRefGoogle Scholar
  88. Smolders JWT, Ding-Pfennigdorff D, Klinke R (1995) A functional map of the pigeon basilar papilla: correlation of the properties of single auditory nerve fibres and their peripheral origin. Hear Res 92:151–169.PubMedCrossRefGoogle Scholar
  89. Takasaka T, Smith CA (1971) The structure and innervation of the pigeon’s basilar papilla. J Ultrastruct Res 35:20–65.PubMedCrossRefGoogle Scholar
  90. Tilney LG, Saunders JC (1983) Actin filaments, stereocilia, and hair cells of the bird cochlea. I. Length, number, width, and distribution of stereocilia of each hair cell are related to the position of the hair cell on the cochlea. J Cell Biol 96:807–821.PubMedCrossRefGoogle Scholar
  91. Trainer JE (1946) The Auditory Acuity of Certain Birds. PhD Thesis, Cornell University, Ithaca, NY.Google Scholar
  92. Warchol ME, Dallos P (1989) Neural response to very low-frequency sound in the avian cochlear nucleus. J Comp Physiol [A] 166:83–95.Google Scholar
  93. Wilson JP, Smolders JWT, Klinke R (1985) Mechanics of the basilar membrane in Caiman crocodilus. Hear Res 18:1–24.PubMedCrossRefGoogle Scholar
  94. Zidanic M, Fuchs PA (1996) Synapsin-like immunoreactivity in the chick-cochlea: specific labeling of efferent nerve terminals. Auditory Neurosci 2:347–362.Google Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Otto Gleich
  • Franz Peter Fischer
  • Christine Köppl
  • Geoffrey A. Manley

There are no affiliations available

Personalised recommendations