Advertisement

Parallel Evolution in Fish Hearing Organs

  • Friedrich Ladich
  • Arthur N. Popper
Chapter
Part of the Springer Handbook of Auditory Research book series (SHAR, volume 22)

Abstract

Fishes, as broadly defined to include agnathans (jawless fishes), cartilaginous fishes, and bony fishes, are the earliest vertebrates (Fig. 4.1). Because an inner ear is found in the fossil record of the most primitive jawless vertebrates (Forey and Janvier (1994), it is reasonable to assume that the ear, and possibly hearing, arose quite early in this group or was present in their ancestral chordates. Although there has been some suggestion that vertebrate inner-ear sensory hair cells may be derived from a statocyst-like system invertebrate mechanoreceptive cell, this is very much open to question (reviewed in Coffin et al., Chapter 3). More importantly for this chapter, it is highly likely that the vertebrate ear arose de novo in this group or perhaps in craniate ancestors (see van Bergeijk 1967 and Wever 1974 for a discussion of the origin of the vertebrate ear and Lewis and Fay, Chapter 2, for a discussion of the origin of hearing).

Keywords

Semicircular Canal Bony Fish Sound Production Sensory Epithelium Auditory Sensitivity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexander RMcN (1964) The structure of the Weberian apparatus in the Siluri. Proc Zool Soc Lond 142:419–440.Google Scholar
  2. Amoser S, Ladich F (2003) Diversity in noise-induced temporary hearing loss in otophysine fishes. J Acoust Soc Am 113:2170–2179.PubMedGoogle Scholar
  3. Astrup J (1999) Ultrasound detection in fish—a parallel to the sonar-mediated detection of bats by ultrasound-sensitive insects. Comp Biochem Physiol 124:19–27.Google Scholar
  4. Astrup J, Møhl B (1993) Detection of intense ultrasound by the cod Gadus morhua. J Exp Biol 182:71–80.Google Scholar
  5. Ayers H (1892). Vertebrate cephalogenesis. J Morphol 6:1–360.Google Scholar
  6. Bader R (1937) Bau, Entwicklung und Funktion des akzessorischen Atmungsorgans der Labyrinthfische. Z wiss Zool Leipzig 149:323–401.Google Scholar
  7. Bardack D (1998) Relationships of living and fossil hagfishes. In: Jørgensen JM, Lomholt JP, Weber RE, Malte H (eds) The Biology of Hagfishes. London: Chapman and Hall, pp. 3–14.Google Scholar
  8. Blaxter JH, Denton EJ, Gray JAB (1981) Acousticolateralis system in clupeid fishes. In: Tavolga WN, Popper AN, Fay RR (eds) Hearing and Sound Communication in Fishes. New York: Springer-Verlag, pp. 39–56.Google Scholar
  9. Bleckmann H, Niemann D, Fritzsch B (1991) Peripheral and central aspects of the acoustic and lateral line system of a bottom dwelling catfish, Ancistrus sp. J Comp Neurol 314:462–466.Google Scholar
  10. Bregman AS (1990) Auditory Scene Analysis. The Perceptual Organisation of Sound. Cambridge: MIT Press.Google Scholar
  11. Bridge TW, Haddon AC (1889) Contributions to the anatomy of fishes. I. The airbladder and Weberian ossicles in the Siluridae. Proc R Soc Lond 46:309–328.Google Scholar
  12. Bridge TW, Haddon AC (1892) Contribution s to the anatomy of fishes. II. The airbladder and Weberian ossicles in the Siluridae. Proc R Soc Lond 184:65–324.Google Scholar
  13. Burighel P, Lane NJ, Fabio G, Stefano T, Zaniolo G, Carnevali MDC, Manni L (2003) Novel, secondary sensory cell organ in ascidians: in search of the ancestor of the vertebrate lateral line. J Comp Neurol 461:236–249.PubMedGoogle Scholar
  14. Canfield JG, Eaton RC (1990) Swimbladder acoustic pressure transduction initiates Mauthner-mediated escape. Nature 347:760–762.Google Scholar
  15. Canfield JG, Rose GJ (1996) Hierarchical sensory guidance of Mauthner-mediated escape response in goldfish (Carassius auratus) and cichlids (Haplochromis burtoni). Brain Behav Evol 48:137–156.PubMedGoogle Scholar
  16. Carlström D (1963) A crystallographic study of vertebrate otoliths. Biol Bull 125:441–463.Google Scholar
  17. Chapman CJ, Hawkins AD (1973) A field study of hearing in the cod, Gadus morhua L. J Comp Physiol [A] 85:147–167.Google Scholar
  18. Chardon M (1968) Anatomie comparee de l’appareil de Weber et des structures connexes chez les Siluriformes. Musee Royal de l’afrique Centrale, Tervuren, Belgique. Annales, Serie in 8, Sciences Zoologiques 169:1–273.Google Scholar
  19. Chranilov NS (1927) Beiträge zur Kenntnis des Weber’schen Apparates der Ostariophysi 1. Vergleichend-anatomische Übersicht der Knochenelemente des Weber’schen Apparates bei Cypriniformes. Zool Jb Anat 49:501–597.Google Scholar
  20. Chranilov NS (1929) Beiträge zur Kenntnis des Weber’schen Apparates der Ostariophysi: 2. Der Weber’sche Apparat bei Siluroidea. Zool Jb Anat 51:323–462.Google Scholar
  21. Coburn MM, Grubach PG (1998) Ontogeny of the Weberian apparatus in the armored catfish Corydoras paleatus (Siluriformes: Callichthyidae). Copeia 301–311.Google Scholar
  22. Connaughton MA, Taylor MH (1996) Drumming, courtship, and spawning behavior in captive weakfish, Cynoscion regalis. Copeia 195–199.Google Scholar
  23. Coombs S, Popper AN (1979) Hearing differences among Hawaiian squirrelfish (family Holocentridae) related to differences in the peripheral auditory system. J Comp Physiol 132:203–207.Google Scholar
  24. Corwin JT (1981) Audition in elasmobranchs. In: Tavolga WN, Popper AN, Fay RR (eds) Hearing and Sound Communication in Fishes. New York: Springer-Verlag, pp.81–102.Google Scholar
  25. Corwin JT (1989) Functional anatomy of the auditory system in sharks and rays. J Exp Zool Suppl 2:62–74.Google Scholar
  26. Crawford JD (1993) Central auditory neurophysiology of a sound-producing fish: the mesencephalon of Pollimyrus isidori (Mormyridae). J Comp Physiol [A] 172: 139–152.Google Scholar
  27. Crawford JD, Cook AP, Heberlein AS (1997) Bioacoustic behavior of African fishes (Monnyridae): potential cues for species and individual recognition in Pollimyrus. J Acoust Soc Am 102:1–13.Google Scholar
  28. de Burlet HM (1934) Vergleichende Anatomie des stato-akustischen Organs. a) Die innere Ohrsphare. In: Bolk L, Goppert E, Kallius E, Lubosch W (eds) Handbuch der vergleichenden Anatomie der Wirbeltiere. Berlin: Urban and Schwarzenberg, pp. 1293–1380.Google Scholar
  29. Deng X, Wagner H-J, Popper AN (2002) Messages from the bottom of the Atlantic Ocean: comparative studies of anatomy and ultrastructure of the inner ears of several Gadiform deep-sea fishes. Abst Assoc Res Otolaryngol 25:101.Google Scholar
  30. de Vries HL (1950) The mechanics of the labyrinth otoliths. Acta Oto-Laryngol 38: 262–273.Google Scholar
  31. Fay RR (1974) Masking of tones by noise for the goldfish (Carassius auratus). J Comp Physiol Psychol 87:708–716.PubMedGoogle Scholar
  32. Fay RR (1982) Neural mechanisms of an auditory temporal discrimination by the goldfish. J Comp Physiol [A] 147:201–216.Google Scholar
  33. Fay RR (1985) Temporal processing by the auditory system of fishes. In: Michelsen A (ed) Time Resolution in Auditory Systems. New York: Springer-Verlag, pp. 28–57.Google Scholar
  34. Fay RR (1988) Hearing in Vertebrates: A Psychophysics Databook. Winnetka, IL: HillFay Associates.Google Scholar
  35. Fay RR (1998) Auditory stream segregation in goldfish (Carassius auratus). Hear Res 120:69–76.PubMedGoogle Scholar
  36. Fay RR (2000) Frequency contrasts underlying auditory stream segregation in goldfish. J Assoc Res Otolaryngol 1:120–128.PubMedGoogle Scholar
  37. Fay RR, Popper AN (1974) Acoustic stimulation of the ear of the goldfish (Carassius auratus). J Exp Biol 61:243–260.PubMedGoogle Scholar
  38. Fay RR, Popper AN (1975) Modes of stimulation of the teleost ear. J Exp Biol 62:379–387.PubMedGoogle Scholar
  39. Fay RR, Popper AN (2000) Evolution of hearing in vertebrates: the inner ears and processing. Hear Res 149:1–10.PubMedGoogle Scholar
  40. Fay RR, Kendall JI, Popper AN, Tester AL (1974) Vibration detection by the macula neglecta of sharks. Comp Biochem Physiol 47A:1235–1240.Google Scholar
  41. Fay RR, Ahroon WA, Orawski AA (1978) Auditory masking patterns in the goldfish (Carassius auratus): psychophysical tuning curves. J Exp Biol 74:83–100.PubMedGoogle Scholar
  42. Fay RR, Yost WA, Coombs SL (1983) Psychophysics and neurophysiology of repetition noise processing in a vertebrate auditory system. Hear Res 12:31–55.PubMedGoogle Scholar
  43. Fine ML, Ladich F (2003). Sound production, spine locking, and related adaptations. In: Arratia G, Kapoor BG, Chardon M, Diogo M (eds) Catfishes, vol 1. Enfield, NH: Science Publisher, Inc., pp. 249–290.Google Scholar
  44. Fink SV, Fink WL (1996) Interrelationships of ostariophysan fishes. In: Stiassny MLJ, Pasenti LR, Johnson GO (eds) Interrelationships of Fishes. San Diego, CA: Academic Press, pp. 209–249.Google Scholar
  45. Fish MP, Offutt GC (1972) Hearing threshold from toadfish, Opsanus tau, measured in the laboratory and field. J Acoust Soc Am 51:1318–1321.PubMedGoogle Scholar
  46. Fletcher LB, Crawford JD (2001) Acoustic detection by sound-producing fishes (Mormyridae): the role of gas-filled tympanic bladders. J Exp Biol 204:175–183.PubMedGoogle Scholar
  47. Forey P, Janvier P (1994) Evolution of the early vertebrates. Am Sci 82:554–565.Google Scholar
  48. Fritzsch B (1999) Hearing in two worlds: theoretical and actual adaptive changes of the aquatic and terrestrial ear for sound reception. In: Fay RR, Popper AN (eds) Comparative Hearing: Fish and Amphibians. New York: Springer-Verlag, pp. 15–42.Google Scholar
  49. Fritzsch B, Signore M, Simeone A (2001) Otx1 null mutant mice show partial segregation of sensory epithelia comparable to lamprey ears. Dev Genes Evol 211:388–396.PubMedGoogle Scholar
  50. Gerald JW (1971) Sound production in six species of sunfish (Centrarchidae). Evolution 25:75–87.Google Scholar
  51. Hawkins AD (1993) Underwater sound and fish behaviour. In: Pitcher TJ (ed) Behaviour of Teleost Fishes. London: Chapman and Hall, pp. 129–169.Google Scholar
  52. Hawkins AD, Johnstone ADF (1978) The hearing of the Atlantic Salmon, Salmon salar. J Fish Biol 13:655–673.Google Scholar
  53. Hawkins AD, MacLennan DN (1976) An acoustic tank for hearing studies on fish. In: Schuijf A (ed) Sound Reception in Fish. Amsterdam: Elsevier, pp. 149–169.Google Scholar
  54. Hawkins AD, Myrberg AA (1983) Hearing and sound communication underwater. In: Lewis B (ed) Bioacoustics: A Comparative Approach. London: Academic Press, pp. 347–405.Google Scholar
  55. Hoy RR (1992) The evolution of hearing in insects as an adaptation to predation from bats. In: Webster DB, Fay RR, Popper AN (eds) The Evolutionary Biology of Hearing. New York: Springer-Verlag, pp. 115–129.Google Scholar
  56. Hoy RR (1998) Acute as a bug’s ear: an informal discussion of hearing in insects. In: Hoy RR, Popper AN, Fay RR (eds) Comparative Hearing: Insects. New York: Springer-Verlag, pp. 1–17.Google Scholar
  57. Jacobs DW, Tavolga WN (1967). Acoustic intensity limens in the goldfish. Anim Behav 15:324–335.PubMedGoogle Scholar
  58. Jenkins DB (1977) A light microscopic study of the saccule and lagena in certain catfish. Am J Anat 150:605–630.PubMedGoogle Scholar
  59. Johnston CE, Johnson DL (2000) Sound production in Pimephales notatus (Rafinesque) (Cyprinidae). Copeia 567–571.Google Scholar
  60. Kalmijn AJ (1988) Hydrodynamic and acoustic field detection. In: Atema J, Fay RR, Popper AN, Tavolga WN (eds) Sensory Biology of Aquatic Animals. New York: Springer-Verlag, pp. 83–130.Google Scholar
  61. Karlsen HE (1992a) Infrasound sensitivity in the plaice (Pleuronectes platessa). J Exp Biol 171:173–187.Google Scholar
  62. Karlsen HE (1992b) The inner ear is responsible for detection of infrasound in the perch (Perca fluviatilis). J Exp Zool 171:163–172.Google Scholar
  63. Kleerekoper H, Roggenkamp PA (1959) An experimental study on the effect of the swimbladder on hearing sensitivity in Ameiurus nebulosus (Lesueur). Can J Zool 37: 1–8.Google Scholar
  64. Knudsen FR, Enger PS, Sand O (1992) Awareness reactions and avoidance responses to sound in juvenile Atlantic salmon, Salmo salar L. J Fish Biol 40:523–534.Google Scholar
  65. Konishi M (1970) Comparative neurophysiological studies of hearing and vocalizations in songbirds. Z Vergl Physiol 66:257–272.Google Scholar
  66. Kratochvil H (1985) Beiträge zur Lautbiologie der Anabantoidei-Bau, Funktion und Entwicklung von lauterzeugenden Systemen. Zool Jb Anat 89:203–255.Google Scholar
  67. Ladich F (1988) Sound production by the gudgeon, Gobio gobio L., a common European freshwater fish (Cyprinidae, Teleostei). J Fish Biol 32:707–715.Google Scholar
  68. Ladich F (1999) Did auditory sensitivity and vocalization evolve independently in otophysan fishes? Brain Behav Evol 53:288–304.PubMedGoogle Scholar
  69. Ladich F (2000) Acoustic communication and the evolution of hearing in fishes. Philos Trans R Soc Lond 355:1285–1288.Google Scholar
  70. Ladich F (2001) The sound-generating (and-detecting) motor system in catfishes: design of swimbladder muscles in doradids and pimelodids. Anat Rec 263:297–306.PubMedGoogle Scholar
  71. Ladich F, Bass AH (1998) Sonic/vocal motor pathways in catfishes: comparison with other teleosts. Brain Behav Evol 51:315–330.PubMedGoogle Scholar
  72. Ladich F, Bass AH (2003a) Underwater sound generation and acoustic reception in fishes with some notes on frogs. In: Collin SP, Marshall NJ (eds) Sensory Processing in Aquatic Environments. New York: Springer-Verlag, pp. 173–193.Google Scholar
  73. Ladich F, Bass AH (2003b) Audition. In: Arratia G, Kapoor BG, Chardon M, Diogo R (eds) Catfishes, vol 2. Enfield, NH: Science Publishers, Inc., pp. 701–730.Google Scholar
  74. Ladich F, Fine ML (1994) Localization of swimb1adder and pectoral motoneurons involved in sound production in pimelodid catfish. Brain Behav Evol 44:86–100.PubMedGoogle Scholar
  75. Ladich F, Kratochvil H (1989) Sound production by the marmoreal goby, Protherorhinus marmoratus (Pallas) (Gobiidae, Teleostei). Zool Jb Physiol 93:501–504.Google Scholar
  76. Ladich F, Popper AN (2001) Comparison of the inner ear ultrastructure between teleost fishes using different channels for communication. Hear Res 154:62–72.PubMedGoogle Scholar
  77. Ladich F, Tadler A (1988) Sound production in Polypterus (Osteichthyes: Polypteridae). Copeia 1076–1077.Google Scholar
  78. Ladich F, Wysocki LE (2003) How does tripus extirpation affect auditory sensitivity in goldfish? Hear Res. 182:119–129.PubMedGoogle Scholar
  79. Ladich F, Yan HY (1998) Correlation between auditory sensitivity and vocalization in anabantoid fishes. J Comp Physiol [A] 182:737–746.Google Scholar
  80. Ladich F, Bischof C, Schleinzer G, Fuchs A (1992) Intra-and interspecific differences in agonistic vocalization in croaking gouramis (genus: Trichopsis, Anabantoidei, Teleostei). Bioacoustics 4:131–141.Google Scholar
  81. Laming PR, Morrow G (1981) The contribution of the swimbladder to audition in the roach (Rutilus rutilus). Comp Biochem Physiol [A] 69:537–541.Google Scholar
  82. Lewis ER, Narins P (1999) The acoustic periphery of amphibians: anatomy and physiology. In: Fay RR, Popper AN (eds) Comparative Hearing: Fish and Amphibians. New York: Springer-Verlag, pp. 101–154.Google Scholar
  83. Löwenstein O (1970) The electrophysiological study of the responses of the isolate labyrinth of the lamprey (Lampetra fluviatilis) to angular acceleration, tilting and mechanical vibration. Proc R Soc Lond B 174:419–434.PubMedGoogle Scholar
  84. Löwenstein O, Osborne MP (1964) Ultrastructure of the sensory hair cells in the labyrinth of the ammocete larva of the lamprey, Lampetra fluviatilis. Nature 204:97.Google Scholar
  85. Löwenstein O, Roberts TDM (1950) The equilibrium function of the otolith organs of the thornback ray (Raja clavatra). J Physiol (Lond) 110:392–415.Google Scholar
  86. Löwenstein O, Roberts TDM (1951) The localization and analysis of the responses to vibration from the isolated elasmobranch labyrinth. A contribution to the problem of the evolution of hearing in vertebrates. J Physiol (Lond) 114:471–489.Google Scholar
  87. Löwenstein O, Thornhill RA (1970) The labyrinth of Myxine, anatomy, ultrastructure and electrophysiology. Proc R Soc Lond B 176:21–42.Google Scholar
  88. Lowenstein O, Osborne MP, Thornhill RA (1968) The anatomy and ultrastructure of the labyrinth of the lamprey (Lampetra fluviatilis L.). Proc R Soc Lond B 170:113–134.PubMedGoogle Scholar
  89. Lugli M, Fine ML (2003) Acoustic communication in two freshwater gobies: ambient noise and short-range propagation in shallow waters. J Acoust Soc Am 114:512–521.PubMedGoogle Scholar
  90. Lugli M, Torricelli P, Pavan G, Mainardi D (1997) Sound production during courtship and spawning among freshwater gobiids (Pisces, Gobiidae). Mar Fresh Behav Physiol 29:109–126.Google Scholar
  91. Lychakov DV, Rebane YT (2002) Otoliths and modelling ear function. Bioacoustics 12: 125–128.Google Scholar
  92. Mann DA, Lobel PS (1997) Propagation of damselfish (Pomacentridae) courtship sounds. J Acoust Soc Am 101:3783–3791.Google Scholar
  93. Mann DA, Lu Z, Popper AN (1997) Ultrasound detection by a teleost fish. Nature 389: 341.Google Scholar
  94. Mann DA, Lu Z, Hastings MC, Popper AN (1998) Detection of ultrasonic tones and simulated dolphin echolocation clicks by a teleost fish, the American shad (Alosa sapidissima). J Acoust Soc Am 104:562–568.PubMedGoogle Scholar
  95. Mann DA, Higgs DM, Tavolga WN, Souza MJ, Popper AN (2001) Ultrasound detection by clupeiform fishes. J Acoust Soc Am 109:3048–3054.PubMedGoogle Scholar
  96. Markl H (1971) Schallerzeugung bei Piranhas (Serrasalminae, Characidae). Z Vergl Physiol 74:39–56.Google Scholar
  97. Markl H (1972) Aggression und Beuteverhalten bei Piranhas (Serrasalminae, Characidae). Z Tierpsychol 30: 190–216.PubMedGoogle Scholar
  98. Marshall NB (1967) Sound-producing mechanisms and the biology of deep-sea fishes. In: Tavolga WN (ed) Marine Bio-Acou stics. Oxford, UK: Pergamon Press, pp. 123–133.Google Scholar
  99. Marvit P, Crawford JD (2000) Auditory discrimination in a sound-producing electric fish (Pollimyrus): tone frequency and click rate difference detection. J Acoust Soc Am 108:1819–1825.PubMedGoogle Scholar
  100. McCormick CA, Popper AN (1984) Auditory sensitivity and psychophysical tuning curves in the elephantnose fish, Gnathonemus petersii. J Comp Physiol [A] 155:753–761.Google Scholar
  101. McKibben JR, Bass AH (1998) Behavioral assessment of acoustic parameters relevant to signal recognition and preference in a vocal fish. J Acoust Soc Am 104:3520–3533.PubMedGoogle Scholar
  102. Millot J, Anthony J (1965) Anatomie de Latimeria chalumnae. II. Systeme Nerveux et Organes de Sense. Paris: Centre National de la Recherche Scientifique.Google Scholar
  103. Myrberg AA (1981) Sound communication and interception in fishes. In: Tavolga WN, Popper AN, Fay RR (eds) Hearing and Sound Communication in Fishes. New York: Springer-Verlag, pp. 395–426.Google Scholar
  104. Myrberg AA (2001) The acoustical biology of elasmobranchs. Environ Biol Fishes 60: 31–45.Google Scholar
  105. Myrberg AA, Spires JY (1980) Hearing in damselfishes: an analysis of signal detection among closely related species. J Comp Physiol 140:135–144.Google Scholar
  106. Myrberg AA, Kramer E, Heinecke P (1965) Sound production by cichlid fishes. Science 149:555–558.PubMedGoogle Scholar
  107. Myrberg AA, Ha SJ, Walewski S, Banbury JC (1972) Effectiveness of acoustic signals in attracting epipelagic sharks to an underwater sound source. Bull Mar Sci 22:926–949.Google Scholar
  108. Myberg AA, Spanier E, Ha SJ (1978) Temporal patterning in acoustical communication, In: Reese ES, Lighter FJ (eds) Contrasts in Behavior. New York: Wiley and Sons, pp.137–179.Google Scholar
  109. Myrberg AA, Mohler M, Catala JD (1986) Sound production by males of a coral reef fish (Pomacentrus partitus): its significance to females. Anim Behav 34:913–923.Google Scholar
  110. Nelson DR, Johnson RH (1976) Some recent observations on acoustic attraction of Pacific reef sharks. In: Schuijf A, Hawkins AD (eds) Sound Reception in Fishes. Amsterdam: Elsevier, pp. 229–239.Google Scholar
  111. Nelson JS (1994) Fishes of the World, 3rd ed. New York: John Wiley and Sons.Google Scholar
  112. Pennisi E (2003) Modernizing the tree of life. Science 300:1692–1697.PubMedGoogle Scholar
  113. Plachta DTT, Popper AN (2003) Evasive responses of American shad (Alosa sapidissima) to ultrasonic stimuli. J Assoc Res Otolaryngol 4:25–30.Google Scholar
  114. Platt C, Jørgensen JM, Popper AN (2004) The inner ear of the lungfish Protopterus. J Comp Neurol 471:277–278.PubMedGoogle Scholar
  115. Poggendorf D (1952) Die absolute Hörschwelle des Zwergwelses (Amiurus nebulosus) und Beiträge zur Physik des Weberschen Apparates der Ostariophysen. Z Vergl Physiol 34:222–257.Google Scholar
  116. Popper AN (1970) Auditory capacities of the Mexican blind cave fish (Astyanax jordani) and its eyed ancestor (Astyanax mexicanus). Anim Behav 18:552–562.Google Scholar
  117. Popper AN (1971) The effects of size on auditory capacities of the goldfish. J Aud Res 11:239–247.Google Scholar
  118. Popper AN (1978) Scanning electron microscopic study of the otolithic organs in the bichir (Polypterus bichir) and shovel-nose sturgeon (Scaphirhynchus platorhynchus). J Comp Neurol 181:117–128.PubMedGoogle Scholar
  119. Popper AN (1980) Scanning electron microscopic studies of the sacculus and lagena in several deep-sea fishes. Am J Anat 157:115–136.PubMedGoogle Scholar
  120. Popper AN, Clarke NL (1976) The auditory system of the goldfish (Carassius auratus): effects of intense acoustic stimulation. Comp Biochem Physiol 53A:11–18.Google Scholar
  121. Popper AN, Clarke NL (1979) Non-simultaneous auditory masking in the goldfish, Carassius auratus. J Exp Biol 83:145–158.PubMedGoogle Scholar
  122. Popper AN, Coombs S (1982) The morphology and evolution of the ear in Actinopterygian fishes. Am Zool 22:311–328.Google Scholar
  123. Popper AN, Fay RR (1999) The auditory periphery in fishes. In: Fay RR, Popper AN (eds) Comparative Hearing: Fish and Amphibians. New York: Springer-Verlag, pp.43–100.Google Scholar
  124. Popper AN, Hoxter B (1987) Sensory and nonsensory ciliated cells in the ear of the sea lamprey, Petromyzon marinus. Brain Behav Evol 30:43–61.PubMedGoogle Scholar
  125. Popper AN, Northcutt RG (1983) Structure and innervation of the inner ear of the bowfin, Amia calva. J Comp Neurol 213:279–286.Google Scholar
  126. Popper AN, Tavolga WN (1981) Structure and function of the ear in the marine catfish, Arius felis. J Comp Physiol 144:27–34.Google Scholar
  127. Popper AN, Platt C, Edds PL (1992) Evolution of the vertebrate inner ear: an overview of ideas. In: Webster DB, Fay RR, Popper AN (eds) The Evolutionary Biology of Hearing. New York: Springer-Verlag, pp. 49–57.Google Scholar
  128. Popper AN, Fay RR, Platt C, Sand O (2003) Sound detection mechanisms and capabilities of teleost fishes In: Collin SP, Marshall NJ (eds) Sensory Processing of the Aquatic Environment. New York: Springer-Verlag, pp. 3–38.Google Scholar
  129. Ramacharitar J, Higgs DM, Popper AN (2001) Sciaenid inner ears: a study in diversity. Brain Behav Evol 58:152–162.Google Scholar
  130. Retzius G (1881) Das Gehörorgan der Wirbelthiere. I. Das Gehörorgan der Fische und Amphibien. Stockholm: Samson and Wallin.Google Scholar
  131. Richter HJ (1988) Gouramis and Other Anabantoids. Neptune City, NJ: TFH Publications.Google Scholar
  132. Rogers PH, Cox H (1988) Underwater sound as a biological stimulus. In: Atema J, Fay RR, Popper AN, Tavolga WN (eds) Sensory Biology of Aquatic Animals. New York: Springer-Verlag, pp. 131–149.Google Scholar
  133. Romer AS, Parsons TS (1983) Vergleichende Anatomie der Wirbeltiere. Hamburg: Paul Parey Verlag.Google Scholar
  134. Ross QE, Dunning DJ, Menezes JK Jr, Kenna MJ, Tiller GW (1996) Responses of alewives to high-frequency sound at a power plant intake in Ontario. North Am J Fish Manage 16:548–559.Google Scholar
  135. Sagemehl M (1885) Beiträge zur vergleichenden Anatomie der Fische. III. Das Cranium der Characiniden nebst allgemeinen Bemerkungen über die mit einem Weber’schen Apparat versehenen Physostomen-Familien. Gegenbaur’s Morphol Jahrb 10:1–119.Google Scholar
  136. Sand O, Karlsen HE (1986) Detection of infrasound by the Atlantic cod. J Exp Biol 125:197–204.PubMedGoogle Scholar
  137. Sand O, Karlsen HE (2000) Detection of infrasound and linear acceleration in fishes. Philos Trans R Soc Lond 355:1295–1298.Google Scholar
  138. Schachner G (1977) Mechanismen und biologische Bedeutung der Schallerzeugung und wahrnehmung beim südamerikanischen Antennenwels (Pimelodus sp. Pimelodidae). Doctoral thesis, University of Vienna.Google Scholar
  139. Schaller F (1967) Die Lauterzeugung des Jaraqui, Prochilodus insignis Schomburgh 1841 (Pisces, Characoidei, Anastomidae). Verh Dt Zool Ges 1967:365–370.Google Scholar
  140. Schellart NAM, Popper AN (1992) Functional aspects of the evolution of the auditory system of actinopterygian fish. In: Webster DE, Fay RR, Popper AN (eds) The Evolutionary Biology of Hearing. New York: Springer-Verlag, pp. 295–322.Google Scholar
  141. Schneider H (1941) Die Bedeutung der Atemhöhle der Labyrinthfische für ihr Hörver-mögen. Z Vergl Physiol 29:172–194.Google Scholar
  142. Scholik AR, Yan HY (2000) Effects of underwater noise on auditory sensitivity of cyprinid fish. Hear Res 152:17–24.Google Scholar
  143. Sörensen W (1895) Are the extrinsic muscles of the air-bladder in some Siluroidae and the “elastic spring” apparatus of others subordinate to the voluntary production of sounds? What is, according to our present knowledge, the function of the Weberian ossicles? J Anat Physiol 29:399–423, 205–229, 518–52.PubMedGoogle Scholar
  144. Spanier E (1979) Aspects of species recognition by sound in four species of damselfish, genus Eupomacentrus (Pisces: Pomacentridae). Z Tierpsychol 51:301–316.PubMedGoogle Scholar
  145. Steinberg R (1957) Unterwassergeräusche und Fischerei. Prot Fischereitech 4:216–249.Google Scholar
  146. Stipetić E (1939) Über das Gehörorgan der Mormyriden. Z Vergl Physiol 26:740–752.Google Scholar
  147. Stout JF (1963) The significance of sound production during the reproductive behaviour of Notropis analostanus (Family Cyprinidae). Anim Behav 11:83–92.Google Scholar
  148. Tavolga WN (1956) Visual, chemical and sound stimuli as cues in the sex discriminatory behavior of the gobiid fish, Bathygobius soporator. Zoologica 41:49–64.Google Scholar
  149. Tavolga WN (1958) Underwater sounds produced by males of the bleniid fish, Chas-modes bosquianus. Ecology 39:759–760.Google Scholar
  150. Tavolga WN (1967) Masked auditory thresholds in teleost fishes. In: Tavolga WN (ed) Marine Bio-Acoustics II. Oxford, UK: Pergamon Press, pp. 233–245.Google Scholar
  151. Tavolga WN (1976) Acoustic obstacle detection in the sea catfish (Arius felis). In: Schuijf A, Hawkins AD (eds) Sound Reception in Fish. Amsterdam: Elsevier, pp. 185–204.Google Scholar
  152. Tavolga WN, Wodinsky J (1963) Auditory capacities in fishes. Pure tone thresholds in nine species of marine teleosts. Bull Am Mus Nat Hist 126:177–240.Google Scholar
  153. Tester AL, Kendall JI, Milisen WB (1972) Morphology of the ear of the shark genus Carcharhinus, with particular reference to the macula neglecta. Pac Sci 26:264–274.Google Scholar
  154. Urick RJ (1983) Principles of Underwater Sound, 3rd ed. Los Altos, CA: Peninsula.Google Scholar
  155. van Bergeijk WA (1967) The evolution of vertebrate hearing. In: Neff WD (ed) Contributions to Sensory Physiology. New York: Academic Press, pp. 1–49.Google Scholar
  156. von Frisch K (1936) Über den Gehörsinn der Fische. Biol Rev 11:210–246.Google Scholar
  157. von Frisch K, Stetter H (1932) Untersuchungen tiber den Sitz des Gehörsinnes bei der Elritze. Z Vergl Physiol 17:687–801.Google Scholar
  158. Weber EH (1820) Aure et Auditu Hominis et Animaliurn. Pars I. De Aure Animalium Aquatilium. Leipzig: Gerhard Fleischer.Google Scholar
  159. Weiss BA, Strother WF, Hartig GH (1969) Auditory sensitivity in the bullhead catfish (Ictalurus nebulosusi). Proc Nat Acad Sci USA 64:552–556.PubMedGoogle Scholar
  160. Wever EG (1974) The evolution of vertebrate hearing. In: Keidel WD, Neff WD (eds) Handbook of Sensory Physiology, vol V/1. Auditory System. Berlin: Springer-Verlag, pp. 423–454.Google Scholar
  161. Wilson B, Dill LM (2002) Pacific herring respond to simulated odontocete echolocation sounds. Can J Fish Aquat Sci 59:542–553.Google Scholar
  162. Wolff DL (1966) Akustische Untersuchungen zur Klapperfischerei und verwandter Methoden. Z Fisch Hilfswiss 14:277–315.Google Scholar
  163. Wolff DL (1968) Das Hörvermögen des Kaulbarsches (Acerina cernua L.) und des Zanders (Lucioperca sandra Cuv. und Val.). Z Vergl Physiol 60:14–33.Google Scholar
  164. Wysocki LE, Ladich F (2002) Can fishes resolve temporal characteristics of sounds? New insights using auditory brainstem response. Hear Res 169:36–46.PubMedGoogle Scholar
  165. Yan HY, Fine ML, Horn HS, Colon WE (2000) Variability in the role of the gasbladder in fish audition. J Comp Physiol [A] 186:435–445.Google Scholar
  166. Yost WA (1994) Fundamentals of Hearing, 3rd ed. San Diego: Academic Press.Google Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Friedrich Ladich
  • Arthur N. Popper

There are no affiliations available

Personalised recommendations