Evolution of Sensory Hair Cells

  • Allison Coffin
  • Matthew Kelley
  • Geoffrey A. Manley
  • Arthur N. Popper
Part of the Springer Handbook of Auditory Research book series (SHAR, volume 22)


The ears of all vertebrate species use sensory hair cells (Fig. 3.1) to convert mechanical energy to electrical signals compatible with the nervous system. However, although the basic structure of hair cells is ubiquitous among the vertebrates and hair cells are also found in the lateral line of fishes and aquatic amphibians, a growing body of literature has demonstrated considerable heterogeneity in morphology and physiology in different taxa and even within different end organs of the same species. Although far less is known about the functional diversity that accompanies the differences in structure and physiology, it is increasingly likely that these differences reflect the ability to respond to different types of signals and/or to process signals in different ways before a neurotransmitter is released and a signal is sent to the brain.


Hair Cell Outer Hair Cell Hair Bundle Cochlear Hair Cell Basilar Papilla 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ades HW, Engström H (1974) Anatomy of the inner ear. In: Keidel WD, Neff WD (eds) Handbook of Sensory Physiology: Auditory System: Anatomy Physiology (Ear). Berlin: Springer-Verlag, pp. 125–158.Google Scholar
  2. Aitkin LM (1995) The auditory neurobiology of marsupials: a review. Hear Res 82:257–266.PubMedCrossRefGoogle Scholar
  3. Art JJ, Goodman MB (1996) Ionic conductances and hair cell tuning in the turtle cochlea. Ann NY Acad Sci 781:103–122.PubMedCrossRefGoogle Scholar
  4. Artavanis-Tsakonas S, Muskavitch MA, Yedvobnick B (1983) Molecular cloning of Notch, a locus affecting neurogenesis in Drosophila melanogaster. Proc Natl Acad Sci USA 80:1977–1981.PubMedCrossRefGoogle Scholar
  5. Ashmore JF (1987) A fast motile response in guinea-pig outer hair cells: the cellular basis of the cochlear amplifier. J Physiol 388:323–347.PubMedGoogle Scholar
  6. Baatrup E (1981) Primary sensory cells in the skin of amphioxus (Branchiostoma lanceolatum (P)). Acta Zool 62:147–157.CrossRefGoogle Scholar
  7. Bardack D (1998) Relationships of living and fossil hagfishes. In: Jørgensen JM, Lomholt JP, Weber RE, Malte H (eds) The Biology of Hagfishes. London: Chapman and Hall, pp. 3–14.CrossRefGoogle Scholar
  8. Baron M, Aslam H, Flasza M, Fostier M, Higgs JE, Mazaleyrat SL, Wilkin MB (2002) Multiple levels of Notch signal regulation (review). Mol Membr Biol 19:27–38.PubMedCrossRefGoogle Scholar
  9. Ben-Arie N, Bellen HJ, Armstrong OL, McCall AE, Gordadze PR, Guo Q, Matzuk MM, Zoghbi HY (1997) Math 1 is essential for genesis of cerebellar granule neurons. Nature 390:169–172.PubMedCrossRefGoogle Scholar
  10. Bermingham NA, Hassan BA, Wang VY, Fernandez M, Banfi S, Bellen HJ, Fritzsch B, Zoghbi HY (2001) Proprioceptor pathway development is dependent on Math l. Neuron 30:411–422.PubMedCrossRefGoogle Scholar
  11. Bone Q, Ryan KP (1978) Cupular sense organs in Ciona (Tunicata: Ascidiacea). J Zool Lond 186:417–429.CrossRefGoogle Scholar
  12. Braun CB (1996) The sensory biology of the living jawless fishes: a phylogenetic assessment. Brain Behav Evol 48:262–276.PubMedCrossRefGoogle Scholar
  13. Braun CB, Northcutt RG (1997) The lateral line system of hagfishes (Craniata: Myxinoida). Acta Zool 78:247–268.CrossRefGoogle Scholar
  14. Brichta AM, Goldberg JM (1996) Afferent and efferent responses from morphological fiber classes in the turtle posterior crista. Ann NY Acad Sci 781:183–195.PubMedCrossRefGoogle Scholar
  15. Brownell WE, Bader CR, Bertrand D, de Ribaupierre Y (1985) Evoked mechanical responses of isolated cochlear outer hair cells. Science 227:194–196.PubMedCrossRefGoogle Scholar
  16. Bruns V, Schmieszek E (1980) Cochlear innervation in the greater horseshoe bat: demonstration of an acoustic fovea. Hear Res 3:27–43.PubMedCrossRefGoogle Scholar
  17. Budelmann BU (1988) Morphological diversity of equilibrium receptor systems in aquatic vertebrates. In: Atema J, Fay RR, Popper AN, Tavolga WN (eds) Sensory Biology of Aquatic Animals. New York: Springer-Verlag, pp. 757–782.CrossRefGoogle Scholar
  18. Budelmann BU (1992a) Hearing in crustaceans. In: Webster, DB, Fay RR, Popper AN (eds) The Evolutionary Biology of Hearing. New York: Springer-Verlag, pp. 131–139.CrossRefGoogle Scholar
  19. Budelmann BU (1992b) Hearing in nonarthropod invertebrates. In: Webster DB, Fay RR, Popper AN (eds) The Evolutionary Biology of Hearing. New York: Springer-Verlag, pp. 141–155.CrossRefGoogle Scholar
  20. Budelmann BU, Thies G (1977) Secondary sensory cells in the gravity receptor system of the statocysts of Octopus vulgaris. Cell Tissue Res 182:93–98.PubMedCrossRefGoogle Scholar
  21. Budelmann BU, Williamson R (1994) Directional sensitivity of hair cell afferents in the Octopus statocysts. J Exp Biol 187:245–259.PubMedGoogle Scholar
  22. Budelmann BU, Sachse M, Staudigl M (1987) The angular acceleration receptor system of Octopus vulgaris, Sepia officinalis, and Loligo vulgaris. Brain Res 56:25–41.CrossRefGoogle Scholar
  23. Burighel P, Lane NJ, Fabio G, Stefano T, Zaniolo G, Camevali MDC, Manni L (2003) Novel, secondary sensory cell organ in ascidians: in search of the ancestor of the vertebrate lateral line. J Comp Neurol 461:236–249.PubMedCrossRefGoogle Scholar
  24. Caldwell JC, Eberl DF (2002) Towards a molecular understanding of Drosophila hearing. J Neurobiol 53:172–189.PubMedCrossRefGoogle Scholar
  25. Carroll RL (1988) Vertebrate Paleontology and Evolution. New York: Freeman.Google Scholar
  26. Chandler JP (1984) Light and electron microscopic studies of the basilar papilla in the duck, Anas platyrhynchos. I. The hatchling. J Comp Neurol 222:506–522.PubMedCrossRefGoogle Scholar
  27. Chang JSY, Popper AN, Saidel WM (1992) Heterogeneity of sensory hair cells in a fish ear. J Comp Neurol 324:621–640.PubMedCrossRefGoogle Scholar
  28. Cochran SL, Correia MJ (1995) Functional support of glutamate as a vestibular hair cell transmitter in an amniote. Brain Res 670:321–325.PubMedCrossRefGoogle Scholar
  29. Conway Morris S (2000) The Cambrian “explosion”: slow-fuse or megatonnage? Proc Natl Acad Sci USA 97:4426–4429.CrossRefGoogle Scholar
  30. Correia MJ, Lang DG (1990) An electrophysiological comparison of solitary type I and type II vestibular hair cells. Neurosci Lett 116:106–111.PubMedCrossRefGoogle Scholar
  31. Correia MJ, Ricci AJ, Rennie KJ (1996) Filtering properties of vestibular hair cells: an update. Ann NY Acad Sci 781:138–149.PubMedCrossRefGoogle Scholar
  32. Correia MJ, Rennie KJ, Koo P (2001) Return of potassium ion channels in regenerated hair cells: possible pathways and the role of intracellular calcium signaling. Ann NY Acad Sci 942:228–240.PubMedCrossRefGoogle Scholar
  33. Cortopassi KA, Lewis ER (1998) A comparison of the linear tuning properties of two classes of axons in the bullfrog lagena. Brain Behav Evol 51:331–348.PubMedCrossRefGoogle Scholar
  34. Corwin JT (1977) Morphology of the macular neglecta in sharks of the genus Carcharhinus. J Morphol 152:341–362.PubMedCrossRefGoogle Scholar
  35. Dallos P (1996) Overview: cochlear neurobiology. In: Dallos P, Popper AN, Fay RR (eds) The Cochlea. New York: Springer-Verlag, pp. 1–43.CrossRefGoogle Scholar
  36. Dallos P, Evans BN, Hallworth R (1991) Nature of the motor element in electrokinetic shape changes of cochlear outer hair cells. Nature 350:155–157.PubMedCrossRefGoogle Scholar
  37. Dallos P, He DZZ, Lin X, Sziklai I, Mehta S, Evans BN (1997) Acetylcholine, outer hair cell electromotility, and the cochlear amplifier. J Neurosci 17:2212–2226.PubMedGoogle Scholar
  38. Devau G (2000) Glycine induced calcium concentration changes in vestibular type I sensory cells. Hear Res 140:126–136.PubMedCrossRefGoogle Scholar
  39. Devau G, Lehouelleur J, Sans A (1993) Glutamate receptors on type I vestibular hair cells of guinea pig. Eur J Neurosci 5:1210–1217.PubMedCrossRefGoogle Scholar
  40. Duggan A, García-Añoveros J, Corey DP (2000) Insect mechanoreception: what a long, strange TRP it’s been. Curr Biol 10:R384–R387.PubMedCrossRefGoogle Scholar
  41. Eberl DF (1999) Feeling the vibes: chordotonal mechanisms in insect hearing. Curr Opin Neurobiol 9:389–393.PubMedCrossRefGoogle Scholar
  42. Eddison M, Le Roux I, Lewis J (2000) Notch signaling in the development of the inner ear: lessons from Drosophila. Proc Natl Acad Sci USA 97:11692–11699.PubMedCrossRefGoogle Scholar
  43. Ekström von Lubitz DKJ (1981) Ultrastructure of the lateral-line sense organs of the ratfish, Chimaera monstrosa. Cell Tissue Res 215:651–665.Google Scholar
  44. Engström H, Wersäll J (1958) The ultrastructural organization of the organ of Corti and of the vestibular sensory epithelia. Exp Cell Res Suppl 5:460–492.Google Scholar
  45. Erostegui C, Norris CH, Bobbin RP (1994) In vitro pharmacologic characterization of a cholinergic receptor on outer hair cells. Hear Res 74:135–147.PubMedCrossRefGoogle Scholar
  46. Fain GL, Matthews HR, Cornwall MC, Koutalos Y (2001) Adaptation in vertebrate photoreceptors. Physiol Rev 81:117–151.PubMedGoogle Scholar
  47. Fernald RD (2000) Evolution of eyes. Curr Opin Neurobiol 10:444–450.PubMedCrossRefGoogle Scholar
  48. Fettiplace R (1987) Electrical tuning of hair cells in the inner ear. Trends Neurosci 10: 421–425.CrossRefGoogle Scholar
  49. Firbas W, Müller G (1983) The efferent innervation of the avian cochlea. Hear Res 10: 109–116.PubMedCrossRefGoogle Scholar
  50. Fischer FP (1992) Quantitative analysis of the innervation of the chicken basilar papilla. Hear Res 61:167–178.PubMedCrossRefGoogle Scholar
  51. Fischer FP (1994a) General pattern and morphological specializations of the avian cochlea. Scan Microsc 8:351–364.Google Scholar
  52. Fischer FP (1994b) Quantitative TEM analysis of the barn owl basilar papilla. Hear Res 73:1–15.PubMedCrossRefGoogle Scholar
  53. Fischer FP (1998) Hair cell morphology and innervation in the basilar papilla of the emu (Dromaius novaehollandiae). Hear Res 121:112–124.PubMedCrossRefGoogle Scholar
  54. Flock Å (1964) Structure of the macula utriculi with special reference to directional interplay of sensory responses as revealed by morphological polarization. J Cell Biol 22:413–431.PubMedCrossRefGoogle Scholar
  55. Forey P, Janvier P (1993) Agnathans and the origin of jawed vertebrates. Nature 361: 129–134.CrossRefGoogle Scholar
  56. Forge A (1991) Structural features of the lateral walls in mammalian cochlear outer hair cells. Cell Tissue Res 265:473–483.PubMedCrossRefGoogle Scholar
  57. Forge A, Davies S, Zajic G (1991) Assessment of ultrastructure in isolated cochlear hair cells using a procedure for rapid freezing before freeze-fracture and deep-etching. J Neurocytol 20:471–484.PubMedCrossRefGoogle Scholar
  58. Fritzsch B (1987) Inner ear of the coelacanth fish Latimeria has tetrapod affinities. Nature 327:153–154.PubMedCrossRefGoogle Scholar
  59. Fritzsch B, Beisel KW (2001) Evolution and development of the vertebrate ear. Brain Res Bull 55:711–721.PubMedCrossRefGoogle Scholar
  60. Fritzsch B, Wahnschaffe U (1987) Electron microscopical evidence for common inner ear and lateral line efferents in urodeles. Neurosci Lett 81:48–52.PubMedCrossRefGoogle Scholar
  61. Fuchs PA, Murrow BW (1992a) Cholinergic inhibition of short (outer) hair cells of the chick’s cochlea. J Neurosci 12:800–809.PubMedGoogle Scholar
  62. Fuchs PA, Murrow BW (1992b) A novel cholinergic receptor mediates inhibition of chick cochlear hair cells. Proc R Soc Lond B 248:35–40.CrossRefGoogle Scholar
  63. Furukawa T, Ishii Y (1967) Neurophysiological studies on hearing in goldfish. J Neurophysiol 30: 1377–1403.PubMedGoogle Scholar
  64. Garcífa-Añoveros J, Corey DP (1997) The molecules of mechanosensation. Annu Rev Neurosci 20:567–594.CrossRefGoogle Scholar
  65. Gehring WJ, Ikeo K (1999) Pax 6: mastering eye morphogenesis and eye evolution. Trends Genet 15:371–377.PubMedCrossRefGoogle Scholar
  66. Gillespie PG, Corey DP (1997) Myosin and adaptation by hair cells. Neuron 19:955–958.PubMedCrossRefGoogle Scholar
  67. Gillespie PG, Walker RG (2001) Molecular basis of mechanosensory transduction. Nature 413:194–202.PubMedCrossRefGoogle Scholar
  68. Gleich O, Manley GA (2000) The hearing organ of birds and Crocodilia. In: Dooling RE, Fay RR, Popper AN (eds) Comparative Hearing: Birds and Reptiles. New York: Springer-Verlag, pp. 70–138.CrossRefGoogle Scholar
  69. Goodman MB, Art JJ (1996) Variations in the ensemble of potassium currents underlying resonance in turtle hair cells. J Physiol 497:395–412.PubMedGoogle Scholar
  70. Göpfert MC, Robert D (2003) Motion generation by Drosophila mechanosensory neurons. Proc Natl Acad Sci USA 100:5514–5519.PubMedCrossRefGoogle Scholar
  71. Goulding SE, zur Lage P, Jarman AP (2000) amos, a proneural gene for Drosophila olfactory sense organs that is regulated by lozenge. Neuron 25:69–78.PubMedCrossRefGoogle Scholar
  72. Hackney CM, Fettiplace R, Furness DN (1993) The functional morphology of stereo-ciliary bundles on turtle cochlear hair cells. Hear Res 69:163–175.PubMedCrossRefGoogle Scholar
  73. Hartline PH (1971a) Physiological basis for detection of sound and vibration in snakes. J Exp Biol 54:349–371.PubMedGoogle Scholar
  74. Hartline PH (1971b) Mid-brain responses of the auditory and somatic vibration systems in snakes. J Exp Biol 54:373–390.PubMedGoogle Scholar
  75. Hartline PH, Campbell HW (1969) Auditory and vibratory responses in the midbrains of snakes. Science 163:1221–1223.PubMedCrossRefGoogle Scholar
  76. Hillman DE (1976) Morphology of the peripheral and central vestibular systems. In: Llinas R, Precht W (eds) Frog Neurobiology. Berlin: Springer-Verlag, pp. 452–480.CrossRefGoogle Scholar
  77. Holland ND, Yu J-K (2002) Epidermal receptor development and sensory pathways in vitally stained amphioxus (Branchiostoma floridae). Acta Zool 83:309–319.CrossRefGoogle Scholar
  78. Holt JR, Eatock RA (1995) Inwardly rectifying currents of saccular hair cells from the leopard frog. J Neurophysiol 73:1484–1502.PubMedGoogle Scholar
  79. Hoshino T (1975) An electron microscopic study of the otolithic maculae of the lamprey (Entosphenus japonicus). Acta Otolaryngol 80:43–53.PubMedCrossRefGoogle Scholar
  80. Hudspeth AJ (1985) The cellular basis of hearing: the biophysics of hair cells. Science 230:745–752.PubMedCrossRefGoogle Scholar
  81. Hudspeth AJ (1989) How the ear’s works work. Nature 341:397–404.PubMedCrossRefGoogle Scholar
  82. Hudspeth AJ, Choe Y, Mehta AD, Martin P (2000) Putting ion channels to work: mechanoelectrical transduction, adaptation, and amplification by hair cells. Proc Natl Acad Sci USA 97:11765–11772.PubMedCrossRefGoogle Scholar
  83. Jarman AP (2002) Studies of mechanosensation using the fly. Hum Mol Genet 11:1215–1218.PubMedCrossRefGoogle Scholar
  84. Jarman AP, Grau Y, Jan LY, Jan YN (1993) atonal is a proneural gene that directs chordotonal organ formation in the Drosophila peripheral nervous system. Cell 73:1307–1321.PubMedCrossRefGoogle Scholar
  85. Jarman AP, Grell EH, Ackerman L, Jan LY, Jan YN (1994) atonal is the proneural gene for Drosophila photoreceptors. Nature 369:398–400.PubMedCrossRefGoogle Scholar
  86. Jarvik E (1980) Basic Structure and Evolution of Vertebrates, vol 1. London: Academic Press.Google Scholar
  87. Jones EMC, Gray-Keller M, Fettiplace R (1999) The role of Ca2+-activated K+ channel spliced variants in the tonotopic organization of the turtle cochlea. J Physiol 518:653–665.PubMedCrossRefGoogle Scholar
  88. Jørgensen JM (1989) Evolution of octavolateralis sensory cells. In: Coombs S, Gömer P, Münz H (eds) The Mechanosensory Lateral Line. New York: Springer-Verlag, pp. 115–146.CrossRefGoogle Scholar
  89. Jørgensen JM, Shichiri M, Geneser FA (1998) Morphology of the hagfish inner ear. Acta Zool 79:251–256.CrossRefGoogle Scholar
  90. Keil TA (1997) Functional morphology of insect mechanoreceptors. Microsc Res Tech 39:506–531.PubMedCrossRefGoogle Scholar
  91. Klinke R (1981) Neurotransmitters in the cochlea and the cochlear nucleus. Acta OtolaryngoI 91: 541–554.CrossRefGoogle Scholar
  92. Köppl C, Gleich O, Schwabedissen G, Siegl E, Manley GA (1998) Fine structure of the basilar papilla of the emu: implications for the evolution of hair-cell types. Hear Res 126:99–112.PubMedCrossRefGoogle Scholar
  93. Köppl C, Wegscheider A, Gleich O, Manley GA (2000) A quantitative study of cochlear afferent axons in birds. Hear Res 139:123–143.PubMedCrossRefGoogle Scholar
  94. Kros CJ, Marcotti W, van Netten SM, Self TJ, Libby RT, Brown SD, Richardson GP, Steel KP (2002) Reduced climbing and increased slipping adaptation in cochlear hair cells of mice with Myo7a mutations. Nat Neurosci 5:41–47.PubMedCrossRefGoogle Scholar
  95. Lacalli TC, Hou S (1999) A reexamination of the epithelial sensory cells of amphioxus (Branchiostoma). Acta Zool 80: 125–134.CrossRefGoogle Scholar
  96. Ladhams A, Pickles JO (1996) Morphology of the monotreme organ of Corti and macula lagena. J Comp Neurol 366:335–347.PubMedCrossRefGoogle Scholar
  97. Lanford PJ, Popper AN (1996) Novel afferent terminal structure in the crista ampullaris of the goldfish, Carassius auratus. J Comp Neurol 366:572–579.PubMedCrossRefGoogle Scholar
  98. Lanford PJ, Platt C, Popper AN (2000) Structure and function in the saccule of the goldfish (Carassius auratus): a model of diversity in the non-amniote ear. Hear Res 143:1–13.PubMedCrossRefGoogle Scholar
  99. Leake PA (1977) SEM observations of the cochlear duct in Caiman crocodilus. Scan Electron Microsc II:437–444.Google Scholar
  100. Lewis ER (1981) Evolution of inner-ear auditory apparatus in the frog. Brain Res 219: 149–155.PubMedCrossRefGoogle Scholar
  101. Lewis ER, Li CW (1973) Evidence concerning the morphogenesis of saccular receptors in the bullfrog (Rana catesbeina). J Morphol 139:351–362.PubMedCrossRefGoogle Scholar
  102. Lewis ER, Li CW (1975) Hair cell types and distributions in the otolithic and auditory organs of the bullfrog. Brain Res 83:35–50.CrossRefGoogle Scholar
  103. Liberman MC, Dodds LW, Pierce S (1990) Afferent and efferent innervation of the cat cochlea: quantitative analysis with light and electron microscopy. J Comp Neurol 301: 443–460.PubMedCrossRefGoogle Scholar
  104. Lindeman HH (1969) Regional differences in sensitivity of the vestibular sensory epithelia to ototoxic antibiotics. Acta Otolaryngol 67:117–189.CrossRefGoogle Scholar
  105. Lowenstein O (1970) The electrophysiological study of the responses of the isolated labyrinth of the lamprey (Lampetra fluviatilis) to angular acceleration, tilting, and mechanical vibration. Proc R Soc Lond B 174:419–434.PubMedCrossRefGoogle Scholar
  106. Löwenstein O (1971) Functional anatomy of the vertebrate gravity receptor system. In: Gordon SA, Cohen MJ (eds) Gravity and the Organism. Chicago: University of Chicago Press, pp. 253–261.Google Scholar
  107. Löwenstein O, Osborne MP (1964) Ultrastructure of the sensory hair cells in the labryinth of the ammocete larva of the lamprey, Lampetra fluviatilis. Nature 204:97.CrossRefGoogle Scholar
  108. Löwenstein O, Thornhill RA (1970) The labyrinth of Myxine, anatomy, ultrastructure and electrophysiology. Proc R Soc Lond B 176:21–42.CrossRefGoogle Scholar
  109. Löwenstein O, Osborne MP, Wersäll J (1964) Structure and innervation of the sensory epithelia of the labyrinth in the thornback ray (Raja clavata). Proc R Soc Lond B 160:1–12.PubMedCrossRefGoogle Scholar
  110. Löwenstein O, Osborne MP, Thornhill RA (1968) The anatomy and ultrastructure of the labyrinth of the lamprey (Lampetra fluviatilis L.). Proc R Soc Lond B 170:113–134.PubMedCrossRefGoogle Scholar
  111. Manley GA (1981) A review of the auditory physiology of the reptiles. Prog Sens Physiol 2:49–134.CrossRefGoogle Scholar
  112. Manley GA (1990) Peripheral Hearing Mechanisms in Reptiles and Birds. Heidelberg, Germany: Springer-Verlag.CrossRefGoogle Scholar
  113. Manley GA (1995) The avian hearing organ: a status report. In: Manley GA, Klump GM, Köppl C, Fastl H, Oeckinghaus H (eds) Advances in Hearing Research. Singapore: World Scientific, pp. 219–229.Google Scholar
  114. Manley GA (2000a) The hearing organs of lizards. In: Dooling RE, Fay RR, Popper AN (eds) Comparative Hearing: Birds and Reptiles. New York: Springer-Verlag, pp. 139–196.CrossRefGoogle Scholar
  115. Manley GA (2000b) Cochlear mechanisms from a phylogenetic viewpoint. Proc Nat Acad Sci USA 97:11736–11743.PubMedCrossRefGoogle Scholar
  116. Manley GA (2001) Evidence for an active process and a cochlear amplifier in nonmammals. J Neurophysiol 86:541–549.PubMedGoogle Scholar
  117. Manley GA, Köppl C (1998) Phylogenetic development of the cochlea and its innervation. Curr Opin Neurobiol 8:468–474.PubMedCrossRefGoogle Scholar
  118. Manley GA, Gleich O, Kaiser A, Brix J (1989) Functional differentiation of sensory cells in the avian auditory periphery. J Comp Physiol A 164:289–296.CrossRefGoogle Scholar
  119. Manley GA, Yates GK, Köppl C, Johnstone BM (1990) Peripheral auditory processing in the bobtail lizard Tiliqua rugosa: IV. Phase locking of auditory-nerve fibres. J Comp Physiol A 167:129–138.CrossRefGoogle Scholar
  120. Manley GA, Kirk D, Köppl C, Yates GK (2001) In vivo evidence for a cochlear amplifier in the hair-cell bundle of lizards. Proc Nat Acad Sci USA 98:2826–2831.PubMedCrossRefGoogle Scholar
  121. Martinez-Dunst C, Michaels RL, Fuchs PA (1997) Release sites and calcium channels in hair cells of the chick’s cochlea. J Neurosci 17:9133–9144.PubMedGoogle Scholar
  122. Martini M, Rossi ML, Rubbini G, Rispoli G (2000) Calcium currents in hair cells isolated from semicircular canals of the frog. Biophys J 78:1240–1254.PubMedCrossRefGoogle Scholar
  123. Masetto S, Correia MJ (1997) Ionic currents in regenerating avian vestibular hair cells. Int J Dev Neurosci 15:387–399.PubMedCrossRefGoogle Scholar
  124. Masetto S, Russo G, Prigioni I (1994) Differential expression of potassium currents by hair cells in thin slices of frog crista ampullaris. J Neurophysiol 72:443–455.PubMedGoogle Scholar
  125. Miller ME, Cross FR (2001) Cyclin specificity: how many wheels do you need on a unicycle? J Cell Sci 114:1811–1820.PubMedGoogle Scholar
  126. Miller MR (1978) Scanning electron microscope studies of the papilla basilaris of some turtles and snakes. Am J Anat 151:409–436.PubMedCrossRefGoogle Scholar
  127. Miller MR (1980) The reptilian cochlear duct. In: Popper AN, Fay RR (eds) Comparative Studies of Hearing in Vertebrates. New York: Springer-Verlag, pp. 169–204.CrossRefGoogle Scholar
  128. Miller MR (1985) Quantitative studies of auditory hair cells and nerves in lizards. J Comp Neurol 232:1–24.PubMedCrossRefGoogle Scholar
  129. Miller MR (1992) The evolutionary implications of the structural variations in the auditory papilla of lizards. In: Webster DB, Fay RR, Popper AN (eds) The Evolutionary Biology of Hearing. New York: Springer-Verlag, pp. 463–488.CrossRefGoogle Scholar
  130. Miller MR, Beck J (1988) Auditory hair cell innervational patterns in lizards. J Comp Neurol 271:604–628.PubMedCrossRefGoogle Scholar
  131. Miller MR, Beck J (1990) Further serial transmission electron microscopy studies of auditory hair cell innervation in lizards and a snake. Am J Anat 188:175–184.PubMedCrossRefGoogle Scholar
  132. Minke B, Cook B (2002) TRP channel proteins and signal transduction. Physiol Rev 82:429–472.PubMedGoogle Scholar
  133. Mire P, Watson GM (1997) Mechanotransduction of hair bundles arising from multicellular complexes in anemones. Hear Res 113:224–234.PubMedCrossRefGoogle Scholar
  134. Neumeister H, Budelmann BU (1997) Structure and function of the Nautilus statocysts. Philos Trans R Soc Lond B 352:1565–1588.CrossRefGoogle Scholar
  135. Nolo R, Abbott LA, Bellen HJ (2000) Senseless, a Zn finger transcription factor, is necessary and sufficient for sensory organ development in Drosophila. Cell 102:349–362.PubMedCrossRefGoogle Scholar
  136. Northcutt RG, Gans C (1983) The genesis of neural crest and epidermal placodes: a reinterpretat ion of vertebrate origins. Q Rev Biol 58:1–58.PubMedCrossRefGoogle Scholar
  137. Oliver D, He DZZ, Klöcker N, Ludwig J, Schulte U, Waldegger S, Ruppersberg SP, Dallos P, Fakler B (2001) Intracellular anions as the voltage sensor of prestin, the outer hair cell motor protein. Science 292:2340–2343.PubMedCrossRefGoogle Scholar
  138. Padian K, Chiappe LM (1998) The origin and early evolution of birds. Biol Rev 73: 1–42.CrossRefGoogle Scholar
  139. Perin P, Soto E, Vega R, Botta L, Masetto S, Zucca G, Valli P (2000) Calcium channels functional roles in the frog semicircular canal. Neuroreport 11:417–420.PubMedCrossRefGoogle Scholar
  140. Peterson EH, Cotton JR, Grant JW (1996) Structural variation in ciliary bundles of the posterior semicircular canal. Quantitative anatomy and computational analysis. Ann NY Acad Sci 781:85–102.PubMedCrossRefGoogle Scholar
  141. Phelps SM (2002) Like minds: evolutionary convergence in nervous systems. TREE 17: 158–159.Google Scholar
  142. Pickles JO, Brix J, Comis SD, Gleich O, Köppl C, Manley GA, Osborne MP (1989) The organization of tip links and stereocilia on hair cells of bird and lizards basilar papillae. Hear Res 41:31–41.PubMedCrossRefGoogle Scholar
  143. Platt C, Popper AN (1984) Variation in length of ciliary bundles on hair cells along the macula of the sacculus in two species of teleost fishes. Scan Electron Microsc 4:1915–1924.Google Scholar
  144. Popper AN (1977) A scanning electron microscopic study of the sacculus and lagena in the ears of fifteen species of teleost fishes. J Morphol 153:397–417.CrossRefGoogle Scholar
  145. Popper AN (1981) Comparative scanning electron microscopic investigations of the sensory epithelia in the teleost sacculus and lagena. J Comp Neurol 200:357–374.PubMedCrossRefGoogle Scholar
  146. Popper AN, Hoxter B (1987) Sensory and nonsensory ciliated cells in the ear of the sea lamprey, Petromyzon marinus. Brain Behav Evol 30:43–61.PubMedCrossRefGoogle Scholar
  147. Popper AN, Saidel WM (1990) Variations in receptor cell innervation in the saccule of a teleost fish ear. Hear Res 46:211–228.PubMedCrossRefGoogle Scholar
  148. Portman DS, Emmons SW (2000) The basic helix-loop-helix transcription factors LIN32 and HLH-2 function together in multiple steps of a C. elegans neuronal sublineage. Development 127:5415–5426.PubMedGoogle Scholar
  149. Puschner B, Schacht J (1997) Calmodulin-dependent protein kinases mediate calcium-induced slow motility of mammalian outer hair cells. Hear Res 110:251–258.PubMedCrossRefGoogle Scholar
  150. Ramanathan K, Michael TH, Liang G, Hiel H, Fuchs PA (1999) A molecular mechanism for electrical tuning of cochlear hair cells. Science 283:215–217.PubMedCrossRefGoogle Scholar
  151. Ramanathan K, Michael TH, Fuchs PA (2000) ß subunits modulate alternatively spliced, large conductance, calcium-activated potassium channels of avian hair cells. J Neurosci 20:1675–1684.PubMedGoogle Scholar
  152. Reiter ER, Liberman MC (1995) Efferent mediated protection from acoustic overexposure: relation to “slow” effects of olivocochlear stimulation. J Neurophysiol 73: 506–514.PubMedGoogle Scholar
  153. Rennie KJ, Correia MJ (1994) Potassium currents in mammalian and avian isolated type I semicircular canal hair cells. J Neurophysiol 71:317–329.PubMedGoogle Scholar
  154. Ricci Al, Gray-Keller M, Fettiplace R (2000) Tonotopic variations of calcium signalling in turtle auditory hair cells. J Physiol 524:423–436.PubMedCrossRefGoogle Scholar
  155. Rüsch A, Eatock RA (1996) A delayed rectifier conductance in type I hair cells of the mouse utricle. J Neurophysiol 76:995–1004.PubMedGoogle Scholar
  156. Rüsch A, Lysakowski A, Eatock RA (1998) Postnatal development of type I and type II hair cells in the mouse utricle: acquisition of voltage-gated conductances and differentiated morphology. J Neurosci 18:7487–7501.PubMedGoogle Scholar
  157. Saidel WM, Crowder JA (1997) Expression of cytochrome oxidase in hair cells of the teleost utricle. Hear Res 109:63–77.PubMedCrossRefGoogle Scholar
  158. Saidel WM, Presson JC, Chang IS (1990) S100 immunoreactivity identifies a subset of hair cells in the utricle and saccule of a fish. Hear Res 47:139–146.PubMedCrossRefGoogle Scholar
  159. Saito K (1983) Fine structure of the sensory epithelium of guinea pig organ of Corti: subsurface cisternae and lamellar bodies in the outer hair cells. Cell Tissue Res 229: 457–481.CrossRefGoogle Scholar
  160. Sans A, Scarfone E (1996) Afferent calyces and type I hair cells during development. A new morphofunctional hypothesis. Ann NY Acad Sci 781:1–12.PubMedCrossRefGoogle Scholar
  161. Schrott-Fischer, A, Kammen-Jolly K, Scholtz AW, Gluckert R, Eybalin M (2002) Patterns of GABA-like immunoreactivity in efferent fibers of the human cochlea. Hear Res 174:75–85.PubMedCrossRefGoogle Scholar
  162. Schulte E, Riehl R (1977) Elektronrnikroskopische Untersuchungen an der Oralcirren und der Haut von Branchiostoma lanceolatum. Helgoländer wissenschaftliche Meeresuntersuchungen 29:337–357.CrossRefGoogle Scholar
  163. Slepecky NB (1996) Structure of the mammalian cochlea. In: Dallos P, Popper AN, Fay RR (eds) The Cochlea. New York: Springer-Verlag, pp. 44–129.CrossRefGoogle Scholar
  164. Smotherman MS, Narins PM (1999a) The electrical properties of auditory hair cells in the frog amphibian papilla. J Neurosci 19:5275–5292.PubMedGoogle Scholar
  165. Smotherman MS, Narins PM (1999b) Potassium currents in auditory hair cells of the frog basilar papilla. Hear Res 132:117–130.PubMedCrossRefGoogle Scholar
  166. Smotherman MS, Narins PM (2000) Hair cells, hearing, and hopping: a field guide to hair cell physiology in the frog. J Exp Biol 203:2237–2246.PubMedGoogle Scholar
  167. Sneary MG (1988a) Auditory receptor of the red-eared turtle: I. Afferent and efferent synapses and innervation patterns. J Comp Neurol 276:588–606.PubMedCrossRefGoogle Scholar
  168. Sneary MG (1988b) Auditory receptor of the red-eared turtle: II. General ultrastructure. J Comp Neurol 276:573–587.PubMedCrossRefGoogle Scholar
  169. Song J, Yan HY, Popper AN (1995) Damage and recovery of hair cells in fish canal (but not superficial) neuromasts after gentamicin exposure. Hear Res 91:63–71.PubMedCrossRefGoogle Scholar
  170. Sridhar T, Liberman MC, Brown MC, Sewell WF (1995) A novel cholinergic “slow effect” of efferent stimulation on cochlear potentials in the guinea pig. J Neurosci 15: 3667–3678.PubMedGoogle Scholar
  171. Steinacker A, Monterrubio J, Perez R, Mensinger AF, Marin A (1997) Electrophysiology and pharmacology of outward potassium currents in semicircular canal hair cells of toadfish, Opsanus tau. Hear Res 109:11–20.PubMedCrossRefGoogle Scholar
  172. Stokes MD, Holland ND (1995) Embryos and larvae of a lancelet, Branchiostoma floridae, from hatching through metamorphosis: growth in the laboratory and external morphology. Acta Zool 76:89–176.CrossRefGoogle Scholar
  173. Strassmaier M, Gillespie PG (2002) The hair cell’s transduction channel. Curr Opin Neurobiol 12:380–386.PubMedCrossRefGoogle Scholar
  174. Sugihara I (2001) Efferent innervation in the goldfish saccule examined by acetylcholinesterase histochemistry. Hear Res 153:91–99.PubMedCrossRefGoogle Scholar
  175. Sugihara I, Furukawa T (1989) Morphological and functional aspects of two different types of hair cells in the goldfish sacculus. J Neurophysiol 62:1330–1343.PubMedGoogle Scholar
  176. Swiatek PJ, Lindsell CE, del Amo FF, Weinmaster G, Gridley T (1994) Notchl is essential for postimplantation development in mice. Genes Dev 8:707–719.PubMedCrossRefGoogle Scholar
  177. Szönyi M, He DZZ, Ribäri O, Sziklai I, Dallos P (2001) Intracellular calcium and outer hair cell electromotility. Brain Res 922:65–70.PubMedCrossRefGoogle Scholar
  178. Takasaka T, Smith CA (1971) The structure and innervation of the pigeon’s basilar papilla. J Ultrastruct Res 34:20–65.CrossRefGoogle Scholar
  179. Tanaka K, Smith CA (1978) Structure of the chicken’s inner ear: SEM and TEM study. Am J Anat 153:251–272.PubMedCrossRefGoogle Scholar
  180. Walker RG, Willingham AT, Zuker CS (2000) A Drosophila mechanosensory transduction channel. Science 287:2229–2234.PubMedCrossRefGoogle Scholar
  181. Wallis D, Hamblen M, Zhou Y, Venken KJ, Schumacher A, Grimes HL, Zoghbi HY, Orkin SH, Bellen HJ (2003) The zinc finger transcription factor Gfi 1, implicated in lymphomagenesis, is required for inner ear hair cell differentiation and survival. Development 130:221–232.PubMedCrossRefGoogle Scholar
  182. Weisleder P, Tsue TT, Rubel EW (1995) Hair cell replacement in avian vestibular epithelium: supporting cell to type I hair cell. Hear Res 82:125–133.PubMedCrossRefGoogle Scholar
  183. Wersall J (1956) Studies on the structures and innervation of the sensory epithelium of the cristae ampullares in the guinea pig. Acta Otolaryngol Stockh Suppl 126: 1–85.Google Scholar
  184. Wersäll J (1960) Vestibular receptor cells in fish and mammals. Acta Otolaryngol Stockh Suppl 163:25–29.Google Scholar
  185. Wersäll J, Bagger-Sjöbäck D (1974) Morphology of the vestibular sense organs. In: Komhuber HH (ed) Handbook of Sensory Physiology: Vestibular System, Part 1. Berlin: Springier-Verlag, pp. 123–170.Google Scholar
  186. Wever EG (1975) The caecilian ear. J Exp Zool 191:63–72.PubMedCrossRefGoogle Scholar
  187. Wever EG (1978) The Reptile Ear. Princeton, NJ: Princeton University Press.Google Scholar
  188. Wever EG (1985) The Amphibian Ear. Princeton, NJ: Princeton University Press.Google Scholar
  189. Wever EG, McCormick JG, Palin J, Ridgway SH (1971) The cochlea of the dolphin, Tursiops truncatus: hair cells and ganglion cells. Proc Natl Acad Sci USA 68:2908–2912.PubMedCrossRefGoogle Scholar
  190. Yan HY, Saidel WM, Chang JS, Presson JC, Popper AN (1991) Sensory hair cells of a fish ear: evidence of multiple cell types based on ototoxic sensitivity. Proc R Soc Lond B 245:133–138.CrossRefGoogle Scholar
  191. Zheng J, Shen W, He DZZ, Long KB, Madison LD, Dallos P (2000) Prestin is the motor protein of cochlear outer hair cells. Nature 405:149–155.PubMedCrossRefGoogle Scholar
  192. Zufall F, Leinders-Zufall T (2000) The cellular and molecular basis of odor adaptation. Chem Senses 25:473–481.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Allison Coffin
  • Matthew Kelley
  • Geoffrey A. Manley
  • Arthur N. Popper

There are no affiliations available

Personalised recommendations