Skip to main content

An Outline of the Evolution of Vertebrate Hearing Organs

  • Chapter
Evolution of the Vertebrate Auditory System

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 22))

Abstract

The aim of this introductory chapter is twofold. First, we provide a phylogenetic framework to enable the reader to place each animal group being discussed in the correct historical context. Second, some major background themes concerning the evolution of the structure and the function of vertebrate hearing organs are briefly introduced. With this background information, the reader should be better able to fit the themes being discussed into their relevant place in the context of vertebrates as a whole.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Benser ME, Marquis RE, Hudspeth AJ (1996) Rapid, active hair-bundle movements in hair cells from the bullfrog’s sacculus. J Neurosci 16:5629–5643.

    PubMed  CAS  Google Scholar 

  • Carroll RL (1987) Vertebrate Paleontology and Evolution. New York: W.H. Freeman.

    Google Scholar 

  • Choe Y, Magnasco MO, Hudspeth AJ (1998) A model for amplification of hair-bundle motion by cyclical binding of Ca2+ to mechanoelectrical-transduction channels. Proc Natl Acad Sci USA 95:15321–15326.

    Article  PubMed  CAS  Google Scholar 

  • Dallos P, Evans B (1995) High-frequency motility of outer hair cells and the cochlear amplifier. Science 267:2006–2009.

    Article  PubMed  CAS  Google Scholar 

  • Fischer FP (1994) General pattern and morphological specializations of the avian cochlea. Scanning Microscopy 8:351–364.

    PubMed  CAS  Google Scholar 

  • Fritzsch B (1987) Inner ear of the coelacanth fish Latimeria has tetrapod affinities. Nature 327:153–154.

    Article  PubMed  CAS  Google Scholar 

  • Gleich O, Manley GA (2000) The hearing organ of birds and Crocodilia. In: Dooling R, Popper AN, Fay RR (eds) Comparative Hearing: Birds and Reptiles. New York: Springer-Verlag, pp. 70–138.

    Chapter  Google Scholar 

  • Hedges SB, Poling L (1999) A molecular phylogeny of reptiles. Science 283:898–901.

    Article  Google Scholar 

  • Heffner RS, Koay G, Heffner HE (2001) Audiograms of five species of rodents: implications for the evolution of hearing and the perception of pitch. Hear Res 157: 138–152.

    Article  PubMed  CAS  Google Scholar 

  • Hennig W (1983) Stammesgeschichte der Chordaten. Hamburg: Verlag Paul Parey.

    Google Scholar 

  • Hudspeth AJ (1997) Mechanical amplification of stimuli by hair cells. Curr Opin Neurobiol 7: 480–486.

    Article  PubMed  CAS  Google Scholar 

  • Hudspeth AJ, Gillespie PG (1994) Pulling springs to tune transduction: adaptation by hair cells. Neuron 12:1–9.

    Article  PubMed  CAS  Google Scholar 

  • Janvier P (1996) Early Vertebrates. Oxford: Clarendon Press.

    Google Scholar 

  • Kennedy HJ, Evans MG, Crawford AC, Fettiplace R (2003) Fast adaptation of mechanoelectrical transducer channels in mammalian cochlear hair cells. Nat Neurosci 6: 832–836.

    Article  PubMed  CAS  Google Scholar 

  • Kitching IJ, Forey PL, Humphries CJ, Williams DM (1998) Cladistics, the Theory and Practice of Parsimony Analysis, 2nd ed. Systematics Association publication II. Oxford: Oxford University Press.

    Google Scholar 

  • Köppl C (1995) Otoacoustic emissions as indicators of active cochlear mechanics: a primitive property of vertebrate auditory organs. In: Manley GA, Klump GM, Köppl C, Fastl H, Oeckinghaus H (eds) Advances in Hearing Research. New Jersey, London, Hong Kong: World Scientific, pp. 200–209.

    Google Scholar 

  • Köppl C, Manley GA (1992) Functional consequences of morphological trends in the evolution of lizard hearing organs. In: Webster DB, Fay RR, Popper AN (eds) The Evolutionary Biology of Hearing. New York: Springer-Verlag, pp. 489–509.

    Google Scholar 

  • Köppl C, Klump GM, Taschenberger G, Dyson M, Manley GA (1998) The auditory fovea of the barn owl—no correlation with enhanced frequency resolution. In: Palmer A, Rees A, Summerfield AQ, Meddis R (eds) Psychological and Physiological Advances in Hearing. London: Whurr, pp. 153–159.

    Google Scholar 

  • Liberman MC, Oliver ME (1984) Morphometry of intracellularly labeled neurons of the auditory nerve: correlations with functional properties. J Comp Neurol 223:163–176.

    Article  PubMed  CAS  Google Scholar 

  • Manley GA (1973) A review of some current concepts of the functional evolution of the ear in terrestrial vertebrates. Evolution 26:608–621.

    Article  Google Scholar 

  • Manley GA (1990) Peripheral Hearing Mechanisms in Reptiles and Birds. Heidelberg: Springer-Verlag.

    Google Scholar 

  • Manley GA (2000a) The hearing organs of lizards. In: Dooling R, Popper AN, Fay RR (eds) Comparative Hearing: Birds and Reptiles. New York: Springer-Verlag, pp. 139–196.

    Chapter  Google Scholar 

  • Manley GA (2000b) Cochlear mechanisms from a phylogenetic viewpoint. Proc Natl Acad Sci USA 97:11736–11743.

    Article  PubMed  CAS  Google Scholar 

  • Manley GA (2000c) Design plasticity in the evolution of the amniote hearing organ. In: Manley GA, Fastl H, Kössl M, Oeckinghaus H, Klump GM (eds) Auditory Worlds: Sensory Analysis and Perception in Animals and Man. Weinheim: Wiley-VCH, pp.7–17.

    Chapter  Google Scholar 

  • Manley GA (2001) Evidence for an active process and a cochlear amplifier in nonmammals. J Neurophysiol 86:541–549.

    PubMed  CAS  Google Scholar 

  • Manley GA, Gallo L (1997) Otoacoustic emissions, hair cells and myosin motors. J Acoust Soc Am 102:1049–1055.

    Article  PubMed  CAS  Google Scholar 

  • Manley GA, Köppl C (1998) Phylogenetic development of the cochlea and its innervation. Curr Opin Neurobiol 8:468–474.

    Article  PubMed  CAS  Google Scholar 

  • Manley GA, Brix J, Gleich O, Kaiser A, Köppl C, Yates G (1988) New aspects of comparative peripheral auditory physiology. In: Syka J, Masterton RB (eds) Auditory Pathway-Structure and Function. London: Plenum Press, pp. 3–12.

    Chapter  Google Scholar 

  • Manley GA, Gleich O, Kaiser A, Brix J (1989) Functional differentiation of sensory cells in the avian auditory periphery. J Comp Physiol [A] 164:289–296.

    Article  Google Scholar 

  • Martin P, Hudspeth AJ (1999) Active bundle movements can amplify a hair cell’s response to oscillatory mechanical stimuli. Proc Natl Acad Sci USA 96:14306–14311.

    Article  PubMed  CAS  Google Scholar 

  • Miller MR (1980) The reptilian cochlear duct. In: Popper AN, Fay RR (eds) Comparative Studies of Hearing in Vertebrates. New York: Springer-Verlag, pp. 169–204.

    Chapter  Google Scholar 

  • Miller MR (1992) The evolutionary implications of the structural variations in the auditory papilla of lizards. In: Webster DB, Fay RR, Popper AN (eds) The Evolutionary Biology of Hearing. New York: Springer-Verlag, pp. 463–487.

    Chapter  Google Scholar 

  • Miller MR, Beck J (1988) Auditory hair cell innervational patterns in lizards. J Comp Neurol 271:604–628.

    Article  PubMed  CAS  Google Scholar 

  • Pickles JO (1992) Scanning electron microscopy of the Echidna: morphology of a primitive mammalian cochlea. In: Cazals Y, Demany L, Homer K (eds) Auditory Physiology and Perception. Oxford: Pergamon Press, pp. 101–107.

    Google Scholar 

  • Pough FW, Janis CM, Heiser JB (2002) Vertebrate Life, 6th ed. Upper Saddle River, NJ: Prentice Hall.

    Google Scholar 

  • Sneary, MG (1988) Auditory receptor of the red-eared turtle: I. General ultrastructure. J Comp Neurol 276:573–587.

    Article  PubMed  CAS  Google Scholar 

  • Wever EG (1978) The Reptile Ear. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Wu Y-C, Art JJ, Goodman MB, Fettiplace R (1995) A kinetic description of the calciumactivated potassium channel and its application to electrical tuning of hair cells. Prog Biophys Mol Biol 63:131–158.

    Article  PubMed  CAS  Google Scholar 

  • Yates GK, Manley GA, Köppl C (2000) Rate-intensity functions in the emu auditory nerve. J Acoust Soc Am 107:2143–2154.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Manley, G.A., Clack, J.A. (2004). An Outline of the Evolution of Vertebrate Hearing Organs. In: Manley, G.A., Fay, R.R., Popper, A.N. (eds) Evolution of the Vertebrate Auditory System. Springer Handbook of Auditory Research, vol 22. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-8957-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8957-4_1

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-21093-3

  • Online ISBN: 978-1-4419-8957-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics