Essential IVF pp 377-421 | Cite as

The Enigma of Fragmentation in Early Human Embryos: Possible Causes and Clinical Relevance

  • Jonathan Van Blerkom
Chapter

Abstract

Blastomere fragmentation is one of the most enigmatic aspects of early human embryogenesis. Within cohorts of embryos maintained under identical conditions, including those cultured in the same dish, fragmentation affects none, some or all embryos during the early cleavage stages. The importance of fragmentation in clinical IVF is related to several questions: First, is this phenomenon indicative of reduced competence or a premorbid condition that argues against transfer to the patient or cryopreservation for future attempts at pregnancy? Second, is fragmentation a normal process in early human development or an in vitro artifact, perhaps associated with suboptimal culture media and conditions, which have yet to be identified? Three, what is the cellular or molecular basis of fragmentation, and do different patterns and extents of fragmentation have a common or different etiology. Virtually all empirically based systems currently used to assess performance in vitro and select human embryos for transfer include some form of fragmentation characterization. For some schemes, the degree of fragmentation is a subjective estimate based on the relative size of the fragment population observed by light microscopy (slight-to- extensive, e.g. Puissant et al, 1987; Giorgetto et al, 1995; Hoover et al, 1995). Depending upon protocols used in clinical IVF laboratories, numerical (e.g., 1-to-4) or letter grades (e.g., A-to-D) may be assigned to represent the apparent degree of fragmentation, which is often determined at a single inspection during cleavage.

Keywords

Ischemia Respiration Adenosine Electrophoresis Shrinkage 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alikani, M., Cohfen, J., Tomkin, G., et al. (1999). Human embryo fragmentation in vitro and its implications for pregnancy and implantation. Fertil. Steril. 71: 83–842.CrossRefGoogle Scholar
  2. Alikani, M., Calderon, G. Tomkin, G. (2000). Cleavage anomalies in early human embryos and survival after prolonged culture in-vitro. Hum. Reprod. 15: 2635–2643.CrossRefGoogle Scholar
  3. Antczak, M. and Van Blerkom, J. (1997). Oocyte influences on early development: the regulatory proteins leptin and STAT3 are polarized in mouse and human oocytes and differentially distributed within the cells of the preimplantation embryo. Mol. Hum. Reprod. 3: 1067–1086.PubMedCrossRefGoogle Scholar
  4. Antczak, M. and Van Blerkom, J. (1999). Temporal and spatial aspects of fragmentation in early human embryos: possible effects on developmental competence and association with the differential elimination of regulatory proteins from polarized domains. Hum. Reprod. 14: 429–447.PubMedCrossRefGoogle Scholar
  5. Bahl, P., Pugh, N. Chui, D. et al. (1999). The use of transvaginal power Doppler ultrasonography to evaluate the relationship between perifollicular vascularity and outcome in in-vitro fertilization treatment cycles. Hum. Reprod. 14: 939–945.CrossRefGoogle Scholar
  6. Barritt, J., Brenner, C., Cohen, J. and Matt, D. (1999). Mitochondrial DNA rearrangements in human oocytes and embryos. Mol. Hum. Reprod. 5: 927–933.PubMedCrossRefGoogle Scholar
  7. Barrit, J. Brenner, C., Willadsen, S. and Cohen, J. (2000). Spontaneous and artificial changes in human ooplasmic mitochondria. Hum. Reprod. 15(Suppl. 2): 207–217.CrossRefGoogle Scholar
  8. Boiso, I. (2002). Fundamentals of human embryonic growth in vitro and the selection of high quality embryos for transfer. Reprod. Bio.Med. Online 5: 328–350.CrossRefGoogle Scholar
  9. Brenner, C., Exley, G., Alikani, M. et al. (1997). Expression of bax mRNA associated with apoptosis in human embryos and oocytes. In. Proceedings of the 10th World Congress of in Vitro Fertilization and Assisted Reproduction. Monduzzi Editore, 627–632.Google Scholar
  10. Brison, D. and Schultz, R. (1997). Apoptosis during mouse blastocyst formation: evidence for a role for survival factors including transforming growth factor. Biol.Reprod. 56: 1088–1096.PubMedCrossRefGoogle Scholar
  11. Buster, J., Bustillo, M., Rodi, I. et al (1985). Biologic and morphologic development of donated human ova by nonsurgical uterine lavage. Am. J. Obstet. Gynecol. 153: 211–217.PubMedGoogle Scholar
  12. Chen, X., Prosser, R., Simonetti, et al (1995). Rearranged mitochondrial are present in human oocytes, Am. J. Hum. Genet. 57: 239–247.Google Scholar
  13. Chen, E., Fujinaga, M. and Giaccia, A. (1999). Hypoxic microenvironment within an embryo induces apoptosis for proper morphological development. Teratology 60: 215–225.PubMedCrossRefGoogle Scholar
  14. Charriaut-Marlangue, C. and Ben-Ari, Y. (1995). A cautionary note on the use of the TUNEL stain to determine apoptosis. Neuro. Report. 7: 61–64.Google Scholar
  15. Chinnery, P. and Turnbull, D. (1999). Mitochondrial DNA and disease. Lancet 354: l7–21.CrossRefGoogle Scholar
  16. Christodoulou, J. (2000). Genetic defects causing human mitochondrial respiratory chain disorders and disease. Hum. Reprod. 15: Suppl. 2, 28–43.PubMedCrossRefGoogle Scholar
  17. Clouston, H., Fenwick, J., Webb, A. et al. (1997). Detection of mosaic and on mosaic chromosomal abnormalities in 6 to 8 day-old human blastocysts. Hum. Genet. 101: 30–36.PubMedCrossRefGoogle Scholar
  18. Cummins, J. (2002). The role of maternal mitochondria during oogenesis, fertilization and embryogenesis. Reprod. BioMed. Online 4: 176–182.PubMedCrossRefGoogle Scholar
  19. Drury, K., Kovalinskaia, R. and Williams, S. (1998). Polyploidy as a normal function of trophoblastic development in human preimplantation embryos observed by fluorescent in situ hybridization analysis. Fertil. Steril. 69(Suppl).: 10–25.Google Scholar
  20. Edwards, R. and Beard, H. (1997). Oocyte polarity and cell determination in early mammalian embryos. Mol. Hum. Reprod. 3: 863–905.PubMedCrossRefGoogle Scholar
  21. Evsikov, S. and Verlinsky, Y. (1998). Mosaicism in the inner cell mass of human blastocysts. Hum. Reprod. 11: 3151–3155.CrossRefGoogle Scholar
  22. Exley, G., Tang, C., McElhinny, A. and Warner, C. (1999). Expression of caspase and BCL-2 apoptotic family members in mouse preimplantation embryos. Biol. Reprod. 61: 231–239.PubMedCrossRefGoogle Scholar
  23. Floryk, D. and Ucker, D. (2000). Molecular mapping of the physiological cell death process: mitochondrial events may be disordered. Ann. NY Acad. Sci. 926: 142–148.PubMedCrossRefGoogle Scholar
  24. Frankfurt, O., Robb, J., Sugarbaker, E. and Villa, L. (1996). Monoclonal antibody to singlestranded DNA is a specific and sensitive cellular marker of apoptosis. Exp. Cell Res. 226: 387–397.PubMedCrossRefGoogle Scholar
  25. Fujino, Y., Ozaki, K., Yamamusi, S. et al (1996). DNA fragmentation of oocytes in aged mice. Hum. Reprod. 11: 1480–1483.PubMedCrossRefGoogle Scholar
  26. Giorgetto, C., Terrou, P., Auquier, P., Hans, E., Spach, J. et al (1995). Embryo score to predict implantation after in-vitro fertilization: based on 957 single embryo transfers. Hum. Reprod. 10: 2427–2431.Google Scholar
  27. Godard, T., Deslandes, E., Lebailly, P. et al (1999). Early detection of staurosporine-induced apoptosis by comet and annexin V assays. Histochem. Cell Biol. 112: 155–161.PubMedCrossRefGoogle Scholar
  28. Gordo, A., Rodrigues, P. Kurokawa et al. (2002). Intracellular calcium oscillations signal apoptosis rather than activation in in vitro aged mouse eggs. Biol. Reprod. 66: 1828–1837.PubMedCrossRefGoogle Scholar
  29. Grasl-Kraupp, B., Ruttkay-Nedecky, B., Koudelka, H., et al (1995). In situ detection of fragmented DNA (TUNEL Assay). fails to discriminate among apoptosis, necrosis, and autolytic cell death: a cautionary note, Hepatology 21: 1465–1468.PubMedGoogle Scholar
  30. Hardarson, T., Lofman, C., Coul, G. et al (2002). Internalization of cellular fragments in a human embryo: time-lapse recordings. Reprod. BioMed. Online 5: 36–38.PubMedCrossRefGoogle Scholar
  31. Hardy, K. (1999). Apoptosis in the human embryo. Rev. of Reprod. 4: 125–134.CrossRefGoogle Scholar
  32. Hertig, A., Rock, J., Adams, C., and Mulligan, W. (1954). On the preimplantation stages of the human ova: A description of four normal and four abnormal specimens ranging from the second to fifth day of development. Contrib. Embryol. Carneg. Inst. 35: 199–220.Google Scholar
  33. Hertig, A. and Rock, J. (1973). Searching for early fertilized human ova. Gynecol. Investig. 4: 131–139.Google Scholar
  34. Hoover, L., Baker, A., Check, J., Lurie, D. O’Shaughnessy, A. (1995). Evaluation of a new embryo-grading system to predict pregnancy rates following in vitro fertilization. Gynecol. Obstet. Invest. 40: 151–157.PubMedCrossRefGoogle Scholar
  35. Hortelano, S., Dallaporta, B., Zamzami, N et al (1997). Nitric oxide induces apoptosis via triggering mitochondrial permeability transition. FEBS Lett. 410: 373–377.PubMedCrossRefGoogle Scholar
  36. Huey. S., Abuhamad, A., Barroso, G. Hsu, M. et al, (1999). Perifollicular blood flow Doppler indices, but not follicular pO2, pO2, or pH, predict oocyte developmental competence in vitro fertilization. Fertil. Steril. 72: 707–712.PubMedCrossRefGoogle Scholar
  37. Jansen, R. (2000). Germline passage of mitochondria: quantitative considerations and possible embryological sequelae. Hum. Reprod. 15(Suppl 2): 112–128.PubMedCrossRefGoogle Scholar
  38. Jansen, R. and de Boer, K. (1998). The bottleneck: mitochondrial imperatives in oogenesis and ovarian follicular fate. Mol. Cell Endocrinol. 145: 81–88.PubMedCrossRefGoogle Scholar
  39. Jurisicova, A., Varmuza, S. and Casper, R. (1995). Involvement of programmed cell death in preimplantation embryo demise. Hum. Reprod. Update 6: 5558–566.Google Scholar
  40. Jurisicova, A., Varmuza, S., and Casper, R. (1996). Programmed cell death and human embryo fragmentation. Mol. Hum. Reprod. 2: 93–98.PubMedCrossRefGoogle Scholar
  41. Jurisicova, A., Latham, K., Casper, R. and Varmuza, S. (1998). Expression and regulation of genes associated with cell death durng murine preimplantation embryo development. Mol. Reprod. Dev. 51: 243–253.PubMedCrossRefGoogle Scholar
  42. Jurisicova, A., Antenos, M., Varmuza, S. et al (2003). Expression of apoptosis-related genes during human preimplantation embryo development: potential roles for the Harakiri gene product and Caspase-3 in blastomere fragmentation. Mol. Hum. Reprod. 9: 133–141.PubMedCrossRefGoogle Scholar
  43. Kao, S-H., Chao, H-T. and Wei, Y-H. (1998). Multiple deletions of mitochondrial DNA are associated with the decline of motility and fertility of human spermatozoa. Mol. Hum. Reprod. 4: 657–666.PubMedCrossRefGoogle Scholar
  44. Keefe, D., Niven-Fairchild, T., Powell, S. and Buradagunta, S. (1995). Mitochondrial deoxyribonucleic acid deletions in oocytes of reproductively aging women. Fertil. Steril. 64: 577–583.PubMedGoogle Scholar
  45. Koblibianakis, E. and Devroey, P. (2002). Blastocyst culture: fact and fiction. Reprod. Bio.Med. Online. 5: 285–293.CrossRefGoogle Scholar
  46. Kressel, M. and Groscurth, P. (1994). Distinction of apoptotic and necrotic cell death by in situ labelling of fragmented DNA. Cell Tissue Res. 278: 549–556.PubMedCrossRefGoogle Scholar
  47. Kockx, M., Muhring, J., Knaapen, M., and de Meyer, G. (1998). RNA synthesis and splicing interferes with DNA in situ end labeling techniques used to detect apoptosis. Am. J. Pathol. 152: 885–888.PubMedGoogle Scholar
  48. Lazebnik, Y., Takahashi, A. Moir, R. (1995). Studies of the lamin Proteinase reveal multiple parallel biochemical pathways during apoptotic execution. Proc. Natl. Acad. Sci. USA 92: 9042–9046.PubMedCrossRefGoogle Scholar
  49. Leonard, J. and Schapira, A. (2000). Mitochondrial respiratory chain disorders I. Mitochondrial DNA defects. Lancet 355: 299–304.Google Scholar
  50. Leist, M., Single, B. Castoldi, A et al. (1997). Intracellular adenosine triphosphate(ATP) concentration: A switch in the decision between apoptosis and necrosis. J. Exp. Med. 185: 1481–1486.PubMedCrossRefGoogle Scholar
  51. Lestienne, P., Reynier, R., Chretien, M. et al. (1997). Oligoasthenospermiaassociated with multiple mitochondrial DNA rearrangements. Mol. Hum. Reprod. 3: 811–814.PubMedCrossRefGoogle Scholar
  52. Levy, R., Benchaib, M., Cordonier, H. et al. (1998). Annexin V labelling and terminal transferase-mediated DNA end labelling (TUNEL). assay in human arrested embryos. Mol. Hum. Reprod. 4: 775–786.PubMedCrossRefGoogle Scholar
  53. Lelli, J., Becks, L., Dabrowska, M., and Hinshaw, D. (1998). ATP converts necrosis to apoptosis in oxidant-injured endothelial cells. Free Radic. Biol. Med. 25: 694–702PubMedCrossRefGoogle Scholar
  54. Liu, H., Ho, Z., Mele, C., et al. (2000). Expression of apoptosis related genes in human oocytes and embryos. J. Assist. Reprod. Genet. 17: 521–533.PubMedCrossRefGoogle Scholar
  55. Liu, L. and Keefe, D. (2000). Cytoplasm mediates both developmental and oxidation-induced apoptotic cell death in mouse zygotes. Biol. Reprod. 62: 1828–1834.PubMedCrossRefGoogle Scholar
  56. Liu, L. Trimarchi, J. and Keefe, D. (2000). Involvement of mitochondria in oxidative stressinduced cell death in mouse zygotes. Biol. Reprod. 62: 1745–1753.PubMedCrossRefGoogle Scholar
  57. Loew, L., Carrington, W., Tuft, R. and Fay, F. (1994). Physiological cytosolic Ca2+ transients evoke concurrent mitochondrial depolarizations. Proc. Natl. Acad. Sci. (USA). 91: 12579–12583.CrossRefGoogle Scholar
  58. Mangili, F., Cigala, C., and Santambrogio, G. (1999). Staining apoptosis in paraffin sections: Advantages and limits. Anal. Quant. Cytol. Histol. 213: 273–276.Google Scholar
  59. Majno, G. and Joris, I. (1995). Apoptosis, oncosis, and necrosis: An overview of cell death. Am.J. Pathol. 146: 3–15.PubMedGoogle Scholar
  60. Marchetti, P., Susin, S., Decaudin, D., et al. (1996). Apoptosis-associated derangement of mitochondrial function in cell lacking mitochondrial DNA. Cancer Res. 56: 2033–2038.PubMedGoogle Scholar
  61. Martin, S., Reutelingsperger, C., McGahon, A., Rader, J. et al (1995). Early redistribution of plasma membrane phosphatidylserine is a general feature ofapoptosis regardless of the initiating stimulus: Inhibition by overexpression of Bcl-2 and Abl. J. Exp. Med. 182: 1545–1556.PubMedCrossRefGoogle Scholar
  62. Martinez, F., Rienzi, L., Iacobelli, M. et al. (2002). Caspase activity in preimplantation human embryos is not associated with apoptosis. Hum. Reprod. 17: 1584–1590.PubMedCrossRefGoogle Scholar
  63. Martinou, J., Dubios-Dauphin, M., Staple, J. et al (1994). Overexpression of BCL-2 in transgenic mice protects neurons from naturally occurring cell death and experimental ischemia. Neuron 13: 10017–1030.CrossRefGoogle Scholar
  64. Matsuyama, S., Llopis, J., Deveraux, Q., et al. (2000). Changes in intramitochondrial and cytosolic pH: early events that modulate caspase activation during apoptosis. Nat. Cell Biol. 2: 318–325.PubMedCrossRefGoogle Scholar
  65. Morgan, K., Wiemer, K., Steurwald, Net al. (1995). Use of videocinematography to assess morphological qualities of conventionally cultured and cocultured embryos. Hum Reprod. 10: 2371–2376.PubMedGoogle Scholar
  66. Muller-Hocker, J., Schafer, S. Weis, S., et al. (1996). Morphological-cytochemical and molecular genetic analyses of mitochondria in isolated human oocytes in the reproductive age. Mol. Hum. Reprod. 2: 951–958.PubMedCrossRefGoogle Scholar
  67. Naviaux, R. and McGowan, (2000). Organismal effects of mitochondrial dysfunction. Hum. Reprod. 15(Suppl. 2): 44–56.PubMedCrossRefGoogle Scholar
  68. Payne, D., Flaherty, S., Barry, M., and Matthews, C. (1997). Preliminary observations of polar body extrusion and pronuclear formation in human oocytes using time-video cinematography. Hum. Reprod. 12: 532–541.PubMedCrossRefGoogle Scholar
  69. Perez, G., Trbovich, A., Gosden, R. and Tilly, J. (2000). Mitochondria and the death of oocytes. Nature 403: 500–501.PubMedCrossRefGoogle Scholar
  70. Puissant, F., Van Rysselberg, M Barlow, et al. (1987). Embryo scoring as a prognostic tool in IVF treatment. Hum. Reprod. 2: 705–708.PubMedGoogle Scholar
  71. Reynier, P., May-Panloup, P., Chretien, M. et al. (2001). Mitochondrial DNA content affects the fertilizability of human oocytes. Mol. Hum. Reprod. 7: 425–429.PubMedCrossRefGoogle Scholar
  72. Richter, C., Schweizer, M., Cossarizza, A. and Franceschi, C. (1996). Control of apoptosis by the cellular ATP level. FEBS Lett. 378: 107–110.PubMedCrossRefGoogle Scholar
  73. Sandalinas, M., Sadowy, S., Alikani, M. et al. (2001). Developmental ability of chromosomally abnormal human embryos to develop to the blastocyst stage. Hum. Reprod. 16: 1954–1958.PubMedCrossRefGoogle Scholar
  74. Shoubridge, E. (2000). Mitochondrial segregation in the developing embryo. Hum. Reprod. 15 (Suppl. 2): 229–234.PubMedCrossRefGoogle Scholar
  75. Singh, N., McCoy, M., Tice, R., and Schneider, E. (1988). A simple technique for quantitation of low levels of DNA damage in individual cells. Exp. Cell Res. 175: 184–191.PubMedCrossRefGoogle Scholar
  76. Singh, N and Stephens, R. (1997). Microgel electrophoresis: Sensitivity, mechanisms, and DNA electrostretching. Mutat. Res. 383: 167–175.PubMedCrossRefGoogle Scholar
  77. Sousa, M, Barros, A., Silva, J. and Tesarik, J. (1997). Developmental changes in calcium content of ultrastructurally distinct subcellular compartments of pre-implantation human embryos. Mol. Hum. Reprod. 3: 83–90.PubMedCrossRefGoogle Scholar
  78. Steuerwald. N., Barrit, J., Adler, R. et al. (2000). Quantification of mtDNA in single oocytes, polar bodies and subcellular components by real-time rapid cycle fluorescence monitored PCR. Zygote. 9: 209–215.CrossRefGoogle Scholar
  79. Tafani, M., Minchenko, D., Serroni, A. and Farber, L. (2001). Induction of the mitochondrial permeability transition mediates killing of HeLa cells by staurosporine. Cancer Res. 61: 2459–2466.PubMedGoogle Scholar
  80. Tamaok, T. and Nakano, H. (1990). Potent and specific inhibitors of protein kinase C of microbial origin. Biotech. 8: 732–735.CrossRefGoogle Scholar
  81. Trounce, I. (2000). Genetic control of oxidative phosphorylation and experimentalmodels of defects. Hum. Reprod. 15(Suppl. 2): 18–27.PubMedCrossRefGoogle Scholar
  82. Van Blerkom, J. (2002). Follicular influences on oocyte and embryo competence. In Assisted Reproductive Technology: Accomplishments and New Horizons (C. DeJonge and C. Barrat, eds). Cambridge Univ.Press.Google Scholar
  83. Van Blerkom, J. and Davis, P. (1998). DNA strand breaks and phosphatidylserine redistribution in newly ovulated and cultured mouse and human oocytes occurrence and relationship to apoptosis. Hum Reprod. 13: 1317–1324.PubMedCrossRefGoogle Scholar
  84. Van Blerkom, J., Antczak, M. and Schrader, R. (1997). The developmental potential of the human oocyte is related to the dissolved oxygen content of follicular fluid: association with vascular endothelial growth factor levels and perifollicular blood flow characteristics. Hum. Reprod. 12: 1047–1055.Google Scholar
  85. Van Blerkom, J., Davis, P. and Alexander, S. (2000). Differential mitochondrial inheritance between blastomeres in cleavage stage human embryos: Determination at the pronuclear stage and relationship to microtubular organization, ATP content and developmental competence. Hum. Reprod. 15: 2621–2633.PubMedCrossRefGoogle Scholar
  86. Van Blerkom, J., Davis, P. and Alexander, S. (2001). A microscopic and biochemical study of fragmentation in stage-appropriate human embryos. Hum. Reprod. 16: 719–729.PubMedCrossRefGoogle Scholar
  87. Van Blerkom, J., Davis, P., Mathwig, V. and Alexander, S. (2002). Domains of high-polarized and low-polarized mitochondria may occur in mouse and human oocytes and early embryos. Hum. Reprod. 17: 493–406.CrossRefGoogle Scholar
  88. Warner, C., Cao, W., Exley, G. et al. (1998). Genetic regulation of egg and embryo survival. Hum. Reprod. 13(Suppl. 3): 178–190.PubMedCrossRefGoogle Scholar
  89. Weil, M., Jacobson, M., Coles et al. (1996). Constitutive expression of the machinery for programmed cell death. J. Cell Biol. 133: 1053–1059.PubMedCrossRefGoogle Scholar
  90. Yu, S-P., Canzoniero, L., and Choi, D. (2001). Ion homeostasis and apoptosis. Curr. Opin. Cell Biol. 13: 405–411.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Jonathan Van Blerkom
    • 1
    • 2
  1. 1.Department of Molecular, Cellular and Developmental BiologyUniversity of ColoradoBoulderUSA
  2. 2.Colorado Reproductive EndocrinologyRose Medical CenterDenverUSA

Personalised recommendations