Skip to main content

Fundamentals of the Design of Culture Media that Support Human Preimplantation Development

  • Chapter

Abstract

Human preimplantation embryos were first cultured from the zygote to the sixteen cell stage by Edwards et al. (1970). Later, human zygotes were cultured in vitro to the blastocyst stage (Steptoe et al., 1971). This pioneering work enabled Steptoe and Edwards (1978) to produce the first test-tube baby (Edwards, 1981). Edwards et al. (1981) summarized the media used in this early work as follows:

“Our experiences with human ova indicate that they tolerate a wide variety of culture media. The most suitable and simple medium for fertilization in vitro is, perhaps, Earle’s solution with the addition of pyruvate (1.1 mg/ml) and inactivated human serum (between 5% and 10%, v/v). The same medium can be used for cleavage, with higher concentrations of serum (15%, v/v), and embryos grown under these conditions will develop to term in the mother (Edwards et al, 1980). Ham’s F10 is unnecessary, although it will similarly sustain the growth of embryos capable of development to term.”

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ali, J., Shahata, M., Al-Natsha, S. (2000). Formulation of a protein-free medium for human assisted reproduction. Hum. Reprod. 15: 145–156.

    PubMed  CAS  Google Scholar 

  • Austin, C., Lovelock, J. (1958). Permeability of rabbit, rat and hamster egg membranes. Exp. Cell Res. 15: 260–261.

    PubMed  CAS  Google Scholar 

  • Baltz, J. (2001). Osmoregulation and cell volume regulation in the preimplantation embryo. Curr. Top. Dev.Biol. 52: 55–106.

    PubMed  CAS  Google Scholar 

  • Barak, Y., Goldman, S., Gonen, Y., et al (1998). Does glucose affect fertilization, development and pregnancy rates of human in-vitro fertilized oocytes? Hum. Reprod. 13(Suppl. 4): 203–211.

    PubMed  CAS  Google Scholar 

  • Barnes, F., Crombie, A., Gardner, D., Kausche, A., et al. (1995). Blastocyst development and birth after in vitro maturation of human primary oocytes, intracytoplasmic sperm injection and assisted hatching. Hum. Reprod. 10: 3243–3247.

    PubMed  CAS  Google Scholar 

  • Bavister, B. (1995). Culture of preimplantation embryos: facts and artifacts. Hum. Reprod Update 1: 91–148.

    PubMed  CAS  Google Scholar 

  • Bavister, B. (1999). Glucose and the culture of human embryos. Fertil. Steril. 72: 233–234.

    PubMed  CAS  Google Scholar 

  • Biggers, J. (1987). Pioneering mammalian embryo culture. In The Mammalian Preimplantation Embryo. B. Bavister, ed. New York: Plenum. Pp. 1–22.

    Google Scholar 

  • Biggers, J. (1993). The culture of the preimplantation mammalian embryo. In Gianaroli, L., Campana, A. Trounson, A.O. eds. Implantation in Mammals. New York: Raven Press, pp. 123–136.

    Google Scholar 

  • Biggers, J. (1998). Reflections on the culture of the preimplantation embryo. Int. J. Dev. Biol, 42: 879–884.

    PubMed  CAS  Google Scholar 

  • Biggers, J. (2000). Ethical issues and the commercialization of embryo culture media. Reprod. BioMed. Online 1: 74–76.

    PubMed  CAS  Google Scholar 

  • Biggers, J. (2002). Thoughts on embryo culture conditions. Reprod. BioMed. Online 4(Suppl. 1): 30–38.

    PubMed  CAS  Google Scholar 

  • Biggers, J. and Brinster, R. (1965). Biometrical problems in the study of early mammalian embryos in vitro. J. Exp. Zool. 158: 39–47.

    PubMed  CAS  Google Scholar 

  • Biggers, J. and McGinnis, L. (2001). Evidence that glucose is not always an inhibitor of mouse preimplantation development in vitro. Hum. Reprod. 16: 153–163.

    PubMed  CAS  Google Scholar 

  • Biggers, J. and Racowsky, C. (2002). The development of fertilized human ova to the blastocyst stage in medium KSOMAA: Is a two-step protocol necessary? Reprod. BioMed Online. 5: 133–140.

    PubMed  Google Scholar 

  • Biggers, J., Baltz, J. and Lechene, C. (1991). Ions and preimplantation development. In: Animal Applications of Research in Mammalian Development. Cold Spring Harbor Laboratory Press, pp 121–146.

    Google Scholar 

  • Biggers, J., Lawitts, J., and Lechene, C. (1993). The protective action of betaine on the deleterious effects of NaCl on preimplantation mouse embryos in vitro. Mol. Reprod. Devel. 34: 380–390.

    PubMed  CAS  Google Scholar 

  • Biggers, J. McGinnis, L. and Raffin, M. (2000). Amino acids and preimplantation development of the mouse in protein-free potassium simplex optimized medium. Biol. Reprod. 63: 281–293.

    PubMed  CAS  Google Scholar 

  • Biggers, J. Rinaldini, L., and Webb, M. (1957). The study of growth factors in tissue culture. Symp. Soc. Exp. Biol. 11: 264–297.

    PubMed  CAS  Google Scholar 

  • Biggers, J., Summers, M., McGinnis, L. (1997). Polyvinyl alcohol and amino acids as Substitutes for bovine serum albumin in mouse preimplantation embryo culture media. Hum. Reprod. Update 3: 125–135.

    PubMed  CAS  Google Scholar 

  • Biggers, J., Whitten, W. and Whittingham, D. (1971). The culture of mouse embryos in vitro. In: Methods in Mammalian Embryology. San Francisco: Freeman. Pp. 86–116.

    Google Scholar 

  • Biggers, J., Whittingham, D. and Donahue, R. (1967). The pattern of energy metabolism in the mouse oocyte and zygote. Proc. Natl. Acad. Sci., USA 58: 560–567.

    PubMed  CAS  Google Scholar 

  • Bolton, V. and Braude, P. (1987). Development of the human preimplantation embryo in vitro. Curr. Top. Dev. Biol. 23: 93–113.

    PubMed  CAS  Google Scholar 

  • Borland, R, Hazra, S., Biggers, J. and Lechene, C. (1977). The elemental composition of the environments of the gametes and preimplantation embryo during the initiation of pregnancy. Biol. Reprod. 16: 147–157.

    PubMed  CAS  Google Scholar 

  • Borland, R. Biggers, J., Lechene, C., and Taymor, M (1980). Elemental composition of fluid in the human Fallopian tube. J. Reprod. Fertil. 58: 479–482.

    PubMed  CAS  Google Scholar 

  • Box, G. (1957). Evolutionary operation: a method for increasing industrial productivity. Applied Statistics 6: 3–22.

    Google Scholar 

  • Brinster, R. (1963). A method for in vitro cultivation of mouse ova from two-cell to blastocyst. Exp. Cell Res. 32: 205–207.

    PubMed  CAS  Google Scholar 

  • Brinster, R. (1965a). Studies on the development of mouse embryos in vitro. III. Effect of fixed nitrogen source. J. Exp. Zool. 158: 69–78.

    CAS  Google Scholar 

  • Brinster, R. (1965b). Studies on the development of mouse embryos in vitro. I. The effect of osmolarity and hydrogen ion concentration. J. Exp. Zool. 158: 49–58.

    CAS  Google Scholar 

  • Buhi, W., Alvarez, I., and Kouba, A. (2000). Secreted proteins of the oviduct. Cells Tissues Organs 166: 165–179.

    PubMed  CAS  Google Scholar 

  • Cadenas, E. and Davies, K. (2000). Mitochondrial free radical generation, oxidative stress, and aging. Free Radic. Biol. Med. 29: 222–230.

    PubMed  CAS  Google Scholar 

  • Casslén, B. and Nilsson, B. (1984). Human uterine fluid, examined in undiluted samples for osmolarity and the concentrations of inorganic ions, albumin, glucose and urea. Am. J. Obstet. Gynecol. 50: 877–881.

    Google Scholar 

  • Chang, R. (2000). Physical Chemistry for the Chemical and Biological Sciences. Sausalito, CA: University Science Books, p. 426.

    Google Scholar 

  • Chatot, C., Ziomek, C., Bavister, B. et al (1989). An improved culture medium supports development of random-bred 1-cell mouse embryos in vitro. J. Reprod. Fertil. 86: 679–688.

    PubMed  CAS  Google Scholar 

  • Cholewa, J. and Whitten, W. (1970). Development of two-cell mouse embryos in the absence of a fixed-nitrogen source. J. Reprod. Fertil. 22: 553–555.

    PubMed  CAS  Google Scholar 

  • Christians, E., Campion, E., Thompson, E., and Renard, J. (1995). Expression of the HSP 70.1 gene, a landmark of early zygotic activity in the mouse embryo, is restricted to the first burst of transcription. Development 121: 113–122.

    PubMed  CAS  Google Scholar 

  • Coates, A., Rutheford, A. Hunter, H. and Leese, H. (1999). Glucose-free medium in human in vitro fertilization and embryo transfer: a large-scale, prospective, randomized clinical trial. Fertil. Steril. 72: 229–232.

    PubMed  CAS  Google Scholar 

  • Collins, J. and Baltz, J. (1999). Estimates of mouse oviductal fluid tonicity based on osmotic responses of embryos. Biol. Reprod. 60: 1188–1193.

    PubMed  CAS  Google Scholar 

  • Conaghan, J., Handyside, A., Winston, R., and Leese, H. (1993). Effects of pyruvate and glucose on the development of the human preimplantation embryo. J. Reprod. Fertil. 99: 87–95.

    PubMed  CAS  Google Scholar 

  • D’Estaing, S., Lornage, J., Hadj, S., et al (2001). Comparison of two blastocyst culture systems: coculture on Vero cells and sequential media. Fertil. Steril. 76: 1032–1035.

    PubMed  Google Scholar 

  • David, A., Serr, D., Czernobilsky, B. (1973). Chemical composition of human oviduct fluid. Fertil. Steril. 24: 435–439.

    PubMed  CAS  Google Scholar 

  • Dawson, K. and Baltz, J. (1997). Organic osmolytes and embryos: substrates of the Gly and ß transport systems protect mouse zygotes against the effects of raised osmolarity. Biol. Reprod. 56: 1550–1558.

    PubMed  CAS  Google Scholar 

  • Devreker, F. Van den Bergh, M, Biramane, J., et al (1999). Effects of taurine on human embryo development in vitro. Hum. Reprod. 14: 2350–2356.

    PubMed  CAS  Google Scholar 

  • Devreker, F., Hardy, K., Van den Bergh, M., et al. (2001). Amino acids promote human blastocyst development. Hum. Reprod. 16: 749–756.

    PubMed  CAS  Google Scholar 

  • Devreker, F., Winston, R., and Hardy, K. (1998). Glutamine improves human preimplantation development in vitro. Fertil. Steril. 69: 293–299.

    PubMed  CAS  Google Scholar 

  • Dix, D., Garges, J., and Hong, R (1998). Inhibition of hsp70-l and hsp70-3 expression disrupts preimplantation embryogenesis and heightens embryo sensitivity to arsenic. Mol. Reprod. Dev. 51: 373–380.

    PubMed  CAS  Google Scholar 

  • Doherty, A., Mann, M., Tremblay, K. et al (2000). Differential effects of culture on imprinted HI9 expression in the preimplantation mouse embryo. Biol. Reprod. 62: 1526–1535.

    PubMed  CAS  Google Scholar 

  • Dumoulin, J., Meijers, C., Bras, M., et al. (1999). Effect of oxygen concentration on human in vitro fertilization and embryo culture. Hum. Reprod. 14: 465–469.

    PubMed  CAS  Google Scholar 

  • Dumoulin, J., Vanvuchelen, R. Land, J., et al. (1995). Effect of oxygen concentration on in vitro fertilization and embryo culture in the human and the mouse. Fertil. Steril. 63: 115–119.

    PubMed  CAS  Google Scholar 

  • Eagle, H. (1959). Amino acid metabolism in mammalian cell cultures. Science 130: 432–437.

    PubMed  CAS  Google Scholar 

  • Earle, W (1943). Production of malignancy in vitro. IV. The mouse fibroblast cultures and changes in living cells. J. Natl. Cancer Inst 4: 165–212.

    CAS  Google Scholar 

  • Edwards, R. (1981). Test tube babies. Nature 293: 253–256.

    PubMed  CAS  Google Scholar 

  • Edwards, R., Purdy, J. Steptoe, P., Walters, D. (1981). The growth of human preimplantation embryos in vitro. Am. J. Obstet. Gynecol. 141, 408–416.

    PubMed  CAS  Google Scholar 

  • Edwards, R.G., Steptoe, P.C., Purdy, J.M. 1970 Fertilization and cleavage in vitro of preovulatory human oocytes. Nature 227: 1307–1309.

    Google Scholar 

  • Edwards, R., Steptoe, P.C. and Purdy, J.M. (1980). Establishing full-term pregnancies using embryos grown in vitro. Br. J. Obstet. Gynaecol. 87: 737–756.

    PubMed  CAS  Google Scholar 

  • Erbach, G., Lawitts, J., Papaioannou, V. and Biggers, J. (1994). Differential growth of the mouse preimplantation embryo in chemically defined media. Biol. Reprod. 50: 1027–1033.

    PubMed  CAS  Google Scholar 

  • Everitt, B. (1987). Introduction to Optimization Methods and Their Application in Statistics. London: Chapman and Hall.

    Google Scholar 

  • Fischer, A. (1947) Biology of Tissue Cells. Cambridge University Press.

    Google Scholar 

  • Fischer, B. and Bavister, B. (1993). Oxygen tension in the oviduct and uterus of rhesus monkeys, hamsters and rabbits. J. Reprod. Fertil. 99: 673–679.

    PubMed  CAS  Google Scholar 

  • Fleming, J., Fontanier, N., Harries, D. and Rees, W. (1997). The growth arrest genes gas5, gas6, and CHOP-10 (gadd 153) are expressed in the mouse preimplantation embryo. Mol. Reprod. Dev. 48: 310–316.

    PubMed  CAS  Google Scholar 

  • Fontanier-Razzaq, N., McEvoy, T., Robinson, J. and Rees, W. (2001). DNA damaging agents increase gadd 153 (CHOP-10) messenger RNA levels in bovine preimplantation embryos cultured in vitro. Biol. Reprod. 64: 1386–1391.

    PubMed  CAS  Google Scholar 

  • Fontanier-Razzaq, N., Hay, S. and Rees, W. (1999). Upregulation of CHOP-10 (gaddl53) expression in the mouse blastocyst in response to stress. Mol. Reprod. Dev. 54: 326–332.

    PubMed  CAS  Google Scholar 

  • Gardner, D. (1994). Mammalian embryo culture in the absence of serum or somatic cell support. Cell Biol. Int. 18: 1163–1179.

    PubMed  CAS  Google Scholar 

  • Gardner, D. (1998). Development of serum-free media for the culture and transfer of human blastocysts. Hum. Reprod. 13(Suppl. 4) 218–225.

    PubMed  Google Scholar 

  • Gardner, D. and Lane, M. (1993). Amino acids and ammonium production regulate mouse embryo development in culture. Biol. Reprod. 48: 377–385.

    PubMed  CAS  Google Scholar 

  • Gardner, D. and Lane, M. (1997). Culture and selection of viable human blastocysts: a feasible proposition for human IVF. Hum. Reprod. Update 3: 367–382.

    PubMed  CAS  Google Scholar 

  • Gardner, D. and Lane, M. 1999. Embryo culture systems. In Handbook of In Vitro Fertilization. 2nd ed. Eds. Trounson, A.O., Gardner, D.K., Boca Raton, CRC Press, pp. 205–264.

    Google Scholar 

  • Gardner, D. and Leese, H. (1990). Concentrations of nutrients in mouse oviduct fluid and their effects on embryo development and metabolism in vitro. J. Reprod. Fertil. 88: 361–368.

    PubMed  CAS  Google Scholar 

  • Gardner, D., Lane, M., Calderon, I. and Leeton, J. (1996). Environment of the preimplantation human embryo in vivo: metabolite analysis of oviduct and uterine fluids and metabolism of cumulus cells. Fertil. Steril. 65: 349–353.

    PubMed  CAS  Google Scholar 

  • Gardner, D., Pool. T and, Lane, M. (2000). Embryo nutrition and energy metabolism and its relationship to embryo growth, differentiation, and viability. Semin. Reprod. Med 18: 205–218.

    PubMed  CAS  Google Scholar 

  • Ghafourifar, P. and Richter, C. (1997). Nitric oxide synthase activity in mitochondria. FEBS Letters 418: 291–296.

    PubMed  CAS  Google Scholar 

  • Gwatkin, R. (1963). Effect of viruses on early mammalian development. I. Action of Mengo encephalitis virus on mouse ova cultivated in vitro. Proc. Natl. Acad. Sci., U.S.A. 50: 576–581.

    CAS  Google Scholar 

  • Ham, R.G. (1963). An improved nutrient solution for diploid Chinese hamster and human cell lines. Exp. Cell Res. 29: 515–526.

    PubMed  CAS  Google Scholar 

  • Hammer, M., Kolajova, M., Léveillé, M-C. et al (2000). Glycine transport by single human and mouse embryos. Hum. Reprod. 15: 419–426.

    PubMed  CAS  Google Scholar 

  • Hammond, J. Jr. (1949). Recovery and culture of tubal mouse ova. Nature 163: 28–29.

    PubMed  Google Scholar 

  • Hannun, Y. and Luberto, C. (2000). Ceramide in the eukaryotic stress response. Trends Cell Biol. 10: 73–80.

    PubMed  CAS  Google Scholar 

  • Hardy, K. (1994). Effects of culture conditions on early embryonic development (abstract). Hum. Reprod. 9(Suppl. 4), 95.

    Google Scholar 

  • Hardy, K., Spanos, S., Becker, D., Iannelli, P. et al (2001). From cell death to embryo arrest: mathematical models of human preimplantation development. Proc. Natl. Acad. Sci., U.S.A. 98: 1655–1660.

    PubMed  CAS  Google Scholar 

  • Hardy, K. and Spanos, S. (2002). Growth factor expression and function in the human and mouse preimplantation embryo. J. Endocrinol. 172: 221–236.

    PubMed  CAS  Google Scholar 

  • Harrison, R. (1907). Observations on the living developing nerve fiber. Proc. Soc. Exp. Biol. Med. 4: 140–143.

    Google Scholar 

  • Ho, Y., Wigglesworth, K., Eppig, J. and Schultz, R. (1995). Preimplantation development of mouse embryos in KSOM: augmentation by amino acids and analysis of gene expression. Mol. Reprod. Dev. 41: 232–238.

    PubMed  CAS  Google Scholar 

  • Holmdahl, T. and Mastroianni, L. Jr. (1965). Continuous collection of rabbit oviduct secretions at low temperature. Fertil. Steril. 16: 587–595.

    PubMed  CAS  Google Scholar 

  • Houghton, F., Hawkhead, J. Humpherson, P., et al. (2002). Non-invasive amino acid turnover predicts human embryo developmental capacity. Hum. Reprod. 17: 999–1005.

    PubMed  CAS  Google Scholar 

  • Johnson, M. and Nasr-Esfahani, M. (1993). Radical solutions and cultural problems: could free oxygen radicals be responsible for the impaired development of preimplantation mammalian embryos in vitro. BioEssays 16: 31–38.

    CAS  Google Scholar 

  • Jones, G. Trounson, A. Gardner, D. et al (1998). Evolution of a culture protocol for successful blastocyst development and pregnancy. Hum. Reprod. 13: 169–177.

    PubMed  CAS  Google Scholar 

  • Kane, M. and Foote, R. (1971). Factors affecting blastocyst expansion of rabbit zygotes and young embryos in defined media. Biol. Reprod. 4: 41–47.

    PubMed  CAS  Google Scholar 

  • Kane, M., Morgan, P. and Coonan, C. (1997). Peptide growth factors and preimplantation development. Hum. Reprod. Update 3: 137–157.

    PubMed  CAS  Google Scholar 

  • Khosla, S., Dean, W., Reik, W. and Feil, R. (2001). Culture of preimplantation embryos and its long-term effects on gene expression and phenotype. Hum. Reprod. Update 7: 419–427.

    PubMed  CAS  Google Scholar 

  • Ko, M., Kitchen, J., Wang, X., Threat, T. et al. (2000). Large scale cDNA analysis reveals phased gene expression during preimplantation mouse development. Development 127: 1737–1749.

    PubMed  Google Scholar 

  • Krebs, H. and Henseleit, K. (1932). Untersuchungen über die Harnstoffbildung im Tierkorper. Z.Phys.Chem. 210: 33–66.

    CAS  Google Scholar 

  • Lane, M. (2001). Mechanisms for managing cellular and homeostatic stress in vitro. Theriogenology 55: 225–236.

    PubMed  CAS  Google Scholar 

  • Lane, M. and Gardner, D. (1997). Differential regulation of mouse embryo development and viability by amino acids. J. Reprod. Fertil. 109: 153–164.

    PubMed  CAS  Google Scholar 

  • Lane, M. and Gardner, D. (2000). Regulation of ionic homeostasis by mammalian embryos. Semin. Reprod. Med. 18: 195–204.

    PubMed  CAS  Google Scholar 

  • Lane, M., Hooper, K. and Gardner, D (2001). Effect of essential amino acids on mouse embryo viability and ammonium production. J. Assist. Reprod. Genet. 18: 519–525.

    PubMed  CAS  Google Scholar 

  • Lang, F., Busch, G., Ritter, M., et al. (1998). Functional significance of cell volume regulatory mechanisms. Physiol. Rev. 78: 247–306.

    PubMed  CAS  Google Scholar 

  • Lange, K. (2000). Regulation of cell volume via microvillar ion channels. J. Cell Physiol. 185: 21–35.

    PubMed  CAS  Google Scholar 

  • Langendonckt, A., Demylle, D., Wyns, C. et al. (2001). Comparison of G1.2/G2.2 and Sydney IVF cleavage/blastocyst sequential media for the culture of human embryos: a prospective, randomized, comparitive study. Fertil. Steril. 76: 1023–1031.

    Google Scholar 

  • Latham, K., De La Casa E. and Schultz R. (2000). Analysis of mRNA expression during preimplantation development. In Tuan R.S., Lo, C.W. eds. Developmental Biology Protocols. Vol. II. Totowa, New Jersey, Humana Press, pp. 315–331.

    Google Scholar 

  • Lawitts, J. and Biggers, J. (1991). Optimization of mouse embryo culture media using simplex methods. J. Reprod. Fertil. 91: 543–556.

    PubMed  CAS  Google Scholar 

  • Lawitts, J. and Biggers, J. (1993). Culture of preimplantation embryos. Methods in Enzymology 225: 153–164.

    PubMed  CAS  Google Scholar 

  • Lawitts, J. and Biggers, J. (1992). Joint effects of sodium chloride, glutamine, and glucose in mouse preimplantation culture media. Mol. Reprod. Devel. 31: 189–194.

    PubMed  CAS  Google Scholar 

  • Leese, H. (1987). The formation and function of oviduct fluid. J. Reprod. Fertil. 82: 843–856.

    Google Scholar 

  • Leese, H. (1995). Metabolic control during preimplantation mammalian development. Hum. Reprod. Update 1: 63–72.

    PubMed  CAS  Google Scholar 

  • Leese, H. and Barton, A. (1984). Pyruvate and glucose uptake by mouse ova and preimplantation embryos. J. Reprod. Fertil. 72: 9–13.

    PubMed  CAS  Google Scholar 

  • Leese, H., Biggers, J., Mroz, E., and Lechene, C. (1984). Nucleotides in a single mammalian ovum or preimplantation embryo. Anal. Biochem. 140: 443–448.

    PubMed  CAS  Google Scholar 

  • Leese, H., Conaghan, J., Martin, K. and Hardy, K. (1993). Early human embryo metabolism. BioEssays 15: 259–264.

    PubMed  CAS  Google Scholar 

  • Leese, H., Tay, J., Reischl, J. and Downing, S. (2001). Formation of Fallopian tube fluid: role of a neglected epithelium. Reproduction 121: 339–346.

    PubMed  CAS  Google Scholar 

  • Lewis, M. and Lewis, W. (1911a) The cultivation of tissues from chick embryos in solutions of NaCl, CaCl2, KCL and NaHCO3. Anat. Rec. 5: 277–293.

    Google Scholar 

  • Lewis, M. and Lewis, W. (1911b). On the growth of embryonic chick tissues in artificial media, nutrient agar and bouillon. Bull. Johns Hopkins Hosp. 22: 126–127.

    Google Scholar 

  • Lewis, W and Lewis, M. (1912). The cultivation of chick tissues in media of known chemical composition. Anat. Rec. 6: 207–211.

    Google Scholar 

  • Lippes, J., Enders, R., Pragay, D. and Bartholomew, W. (1972). The collection and analysis of human fallopian tubal fluid. Contraception 5: 85–103.

    PubMed  CAS  Google Scholar 

  • Lopata, A., Patullo, M., Chang, A. and James, B. (1976). A method for collecting motile spermatozoa from human semen. Fertil. Steril. 27: 677–684.

    PubMed  CAS  Google Scholar 

  • Loutradis, D., Drakakis, P. Kallianidis, K., et al. (2000). Biological factors in culture media affecting in vitro fertilization, preimplantation embryo development, and implantation. Ann. N.Y. Acad. Sci. 900: 325–335.

    PubMed  CAS  Google Scholar 

  • Luft, J. and Dix, D. (1999). Hsp 70 expression and function during embryogenesis. Cell Stress Chaperones 4: 162–170.

    PubMed  CAS  Google Scholar 

  • Macklon, N., Pieters, M., Hassan, M. et al. (2002). A prospective randomized comparison of sequential versus monoculture systems for in-vitro human blastocyst development. Hum. Reprod. 17: 2700–2705.

    PubMed  CAS  Google Scholar 

  • Martin, K. (2000). Nutritional and metabolic requirements of early cleavage stage embryos and blastocysts. Hum. Fertil., (Camb). 3: 247–254.

    Google Scholar 

  • Mathias, S., Peña, L. and Kolesnick, R (1998). Signal transduction of stress via ceramide, Biochem. J. 335: 465–480.

    PubMed  CAS  Google Scholar 

  • McLaren, A. and Biggers, J. (1958). Successful development and birth of mice cultivated in vitro as early embryos. Nature 182: 877–878.

    PubMed  CAS  Google Scholar 

  • Menezo, Y. (1987). Fertilization in vitro. Perspectives for improving the technics. Rev. Fr. Gynecol. Obstet 82: 745–749.

    CAS  Google Scholar 

  • Menezo, Y., Testart, J. and Perrone, D. (1984). Serum is not necessary in human in vitro fertilization, early embryo culture, and transfer. Fertil. Steril. 42: 750–755.

    PubMed  CAS  Google Scholar 

  • Menezo, Y., Hamamah, S., Hazout, A. and Dale, B. (1998). Time to switch from co-culture to sequential defined media for transfer at the blastocyst stage. Hum Reprod. 13: 2043–2044.

    PubMed  CAS  Google Scholar 

  • Menezo, Y., Guerin, J-F. and Czyba, J-C. (1990). Improvement of human early development in vitro by co-culture on monolayers of Vero cells. Biol. Reprod. 42: 301–306.

    PubMed  CAS  Google Scholar 

  • Mortimer, D. (1986). Elaboration of a new culture medium for physiological studies on human sperm motility and capacitation. Hum. Reprod 1: 247–250.

    PubMed  CAS  Google Scholar 

  • Nasr-Esfahani, M. and Johnson, M. (1990). Hydrogen peroxide levels in mouse oocytes and early cleavage stage embryos developed in vitro or in vivo. Development 109: 501–507.

    PubMed  CAS  Google Scholar 

  • Niemann, H. and Wrenzycki, C. (2000). Alteration of expression of developmentally important genes in preimplantation bovine embryos by in vitro culture conditions: implications for subsequent development. Theriogenology 53: 21–34.

    PubMed  CAS  Google Scholar 

  • Noda, Y., Goto, Y., Umaoka, Y. et al. (1994). Culture of human embryos in alpha modification of Eagle’s medium under low oxygen tension and low illumination. Fertil. Steril. 62: 1022–1027.

    PubMed  CAS  Google Scholar 

  • Orsi, N. and Leese, H. (2001). Protection against reactive oxygen species during mouse preimplantation development: role of EDTA, oxygen tension, catalase, Superoxide dismutase and pyruvate. Mol. Reprod. Dev. 59: 44–53.

    PubMed  CAS  Google Scholar 

  • Phillips, K., Léveille, M-C., Claman, P. and Baltz, J. (2000). Intracellular pH regulation in human preimplantation embryos. Hum. Reprod. 15: 896–904.

    PubMed  CAS  Google Scholar 

  • Purshottam, N. and Pincus, G. (1961) In vitro culture of mammalian eggs. Anat. Rec. 140: 51–55.

    Google Scholar 

  • Quinn, P. (2000). Review of media used in ART laboratories. J. Androl. 21: 610–615.

    PubMed  CAS  Google Scholar 

  • Quinn, P. and Horstman, F. (1998). Is the mouse a good model for the human with respect to the development of the preimplantation embryo in vitro. Hum. Reprod. 13(Suppl. 4) 173–183.

    PubMed  Google Scholar 

  • Quinn, P., Kerin, J. and Warnes, G. (1985). Improved pregnancy rate in human in vitro fertilization with the use of a medium based on the composition of human tubal fluid. Fertil. Steril. 44: 493–498.

    PubMed  CAS  Google Scholar 

  • Quinn, P., Moinipanah, R., Steinberg, J. and Weathersbee, P. (1995). Successful human in vitro fertilization using a modified human tubal fluid medium lacking glucose and phosphate ions. Fertil. Steril. 63: 922–924.

    PubMed  CAS  Google Scholar 

  • Restall, B. (1966). The Fallopian tube of the sheep. I. Cannulation of the Fallopian tube. Aust. J. Biol. Sci. 19: 181–186.

    CAS  Google Scholar 

  • Rieger, D. (1998). Effects of the in vitro chemical environment during early embryogenesis on subsequent development. Arch. Toxicol. (Suppl). 20: 121–129.

    CAS  Google Scholar 

  • Roblero, L., Biggers, J. and Lechene, C. (1976). Electron probe analysis of the elemental microenvironment of oviducal mouse embryos. J. Reprod. Fertil. 46: 431–434.

    PubMed  CAS  Google Scholar 

  • Roblero, L. and Riffo, M. (1986). High potassium concentration improves preimplantation development of mouse embryos in vitro. Fertil. Steril. 45: 412–416.

    PubMed  CAS  Google Scholar 

  • Ronai, Z. (1999). Deciphering the mammalian stress response — a stressful task. Oncogene 18: 6084–6086.

    PubMed  CAS  Google Scholar 

  • Rose, W. (1938). The nutritive significance of the amino acids. Physiol. Rev. 18: 109–136.

    Google Scholar 

  • Schini, S. and Bavister, B. (1988). Two-cell block to development of cultured hamster embryos is caused by phosphate and glucose. Biol. Reprod. 39: 1183–1192.

    PubMed  CAS  Google Scholar 

  • Shim, C., Kwon, H. and Kim, K. (1996). Differential expression of lamin chain-specific mRNA transcripts during mouse preimplantation development. Mol. Reprod. Dev. 44: 44–55.

    PubMed  CAS  Google Scholar 

  • Smith, A. (2002). Blastocyst culture in human IVF: The final destination or a stop along the way? Theriogenology 57: 97–107.

    PubMed  CAS  Google Scholar 

  • Spendley, W., Hext, G. and Himsworth, F. (1962). Sequential application of simplex designs in optimizing an evolutionary operation. Technometrics 4: 441–461.

    Google Scholar 

  • Steptoe, P., and Edwards, R. (1978). Birth after the reimplantation of a human embryo. Lancet 2, 366.

    PubMed  CAS  Google Scholar 

  • Steptoe, P., Edwards, R. and Purdy, J. (1971). Human blastocysts grown in culture. Nature 229: 132–133.

    PubMed  CAS  Google Scholar 

  • Stewart, P.A. (1978). Independent and dependent variables of acid base control. Respir. Physiol. 33: 9–26.

    PubMed  CAS  Google Scholar 

  • Tervit, H., Whittingham, D. and Rowson, L. (1972). Successful culture in vitro of sheep and cattle ova. J. Reprod. Fertil. 30: 493–497.

    PubMed  CAS  Google Scholar 

  • Tyler-Jones, R. and Taylor, E. (1999). Back to basics: a plea for a fundamental reappraisal of the representation of acidity and basicity in biological solutions. In Regulation of Acid-base Status in Animals and Plants. Ed. Egginton, S., Taylot, E.W. and Raven, J.A. Cambridge University Press. Pp. 353–371.

    Google Scholar 

  • Tyrode, M. (1910). The mode of action of some purgative salts. Arch. Pharmacodyn. 20: 205–223.

    Google Scholar 

  • Uechi, H., Tsutsumi, O., Morita, Y. and Taketani, Y. (1997). Cryopreservation of mouse embryos affects later embryonic development possibly through reduced expression of the glucose transporter GLUTI. Mol. Reprod. Dev. 48: 496–500.

    PubMed  CAS  Google Scholar 

  • Van Winkle, L. Haghighat, N. and Campione, A. (1990). Glycine protects preimplantation conceptuses from a detrimental effect on development of the inorganic ions in oviductal fluid. J. Exp.Zool. 253: 215–219.

    PubMed  Google Scholar 

  • Vinten-Johansen, J. (2000). Physiological effects of peroxynitrite: potential products of the environment. Circulation Res. 87: 170–172.

    PubMed  CAS  Google Scholar 

  • Wales, R. (1970). Effects of ions on the development of the preimplantation mouse embryo in vitro. Aust. J. Biol. Sci. 23: 421–429.

    CAS  Google Scholar 

  • Walters, F., Parker, L., Jr., Morgan, S. and Deming, S. (1991). Sequential simplex optimization. Boca Raton: CRC Press.

    Google Scholar 

  • Warner, C. and Brenner, C. (2001). Genetic regulation of preimplantation embryo survival. Curr. Top. Dev. Biol. 52: 151–192.

    PubMed  CAS  Google Scholar 

  • Warren, J., Shaw, B. and Steinkampf, M. (1990). Effects of nitrous oxide on preimplantation mouse embryo cleavage and development. Biol. Reprod. 43: 158–161.

    PubMed  CAS  Google Scholar 

  • Waymouth, C. (1965). Construction and use of synthetic media. In Cells and Tissues in ulture. Vol.1. E.N. Willmer, ed. New York: Academic Press, pp.99–142.

    Google Scholar 

  • Waymouth, C. (1972). Construction of tissue culture media. In Growth, Nutrition and metabolism of Cells in Culture. Vol. 1. G.H. Rothblat, V.J. Cristofalo, eds. New York: Academic Press.

    Google Scholar 

  • White, P. (1946). Cultivation of animal tissues in vitro in nutrients of precisely known composition. Growth 10: 23–289.

    Google Scholar 

  • Whitten, W. (1956). Culture of tubal ova. Nature. 177: 96.

    PubMed  CAS  Google Scholar 

  • Whitten, W. (1957). Culture of tubal ova. Nature. 179: 1081–1082.

    PubMed  CAS  Google Scholar 

  • Whitten, W. (1970). Nutrient requirements for the culture of preimplantation embryos in vitro. Advances in the Biosciences 6: 131–141.

    Google Scholar 

  • Whitten, W. and Biggers, J. (1968). Complete development in vitro of the preimplantation stages of the mouse in a simple chemically defined medium. J. Reprod. Fertil. 17: 399–401.

    PubMed  CAS  Google Scholar 

  • Whittingham, D. (1971). Culture of mouse ova. J. Reprod. Fertil. (Suppl). 14: 7–21.

    CAS  Google Scholar 

  • Whittingham, D. (1975). Fertilization, early development and storage of mammalian ova in vitro. In The Early Development of Mammals. Cambridge University Press, Cambridge, pp 1–24.

    Google Scholar 

  • Wiley, L., Yamami, S. and Van Muyden, D. (1986). Effect of potassium concentration, type of protein supplement, and embryo density on mouse preimplantation development in vitro. Fertil. Steril. 45: 111–119.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Biggers, J.D. (2004). Fundamentals of the Design of Culture Media that Support Human Preimplantation Development. In: Van Blerkom, J., Gregory, L. (eds) Essential IVF. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8955-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8955-0_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4735-4

  • Online ISBN: 978-1-4419-8955-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics