Advertisement

EPR Spectrometers at Frequencies Below X-band

  • Gareth R. Eaton
  • Sandra S. Eaton
Part of the Biological Magnetic Resonance book series (BIMR, volume 21)

Abstract

The majority of EPR spectra are obtained at X-band (ca. 9 GHz) EPR.However, there are many incentives for obtaining EPR spectra at frequencies below X-band. This review focuses primarily on the hardware aspects of EPR experiments at lower frequencies including tabulations of papers concerning low-frequency spectrometers, magnets, field gradients, radiofrequency sources, bridges, and resonators.

Keywords

Electron Paramagnetic Resonance Dynamic Nuclear Polarization Electron Spin Echo Automatic Frequency Control Multipolar Magnet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdrakhmanov, R. S., Garif’yanov, N. S., and Semenova, E. I. (1968). EPR Study of the Structure of Some Oxyfluorides. J. Struct. Chem. 9, 453–455 (pages 530–531 in Russian).CrossRefGoogle Scholar
  2. Abdrachmanov, R. S. and Ivanova, T. A. (1973). The EPR study of glasses and frozen solutions in the L and S bands, J. Molec. Structure 19, 683–692. This paper contains citations to early Russian work.CrossRefGoogle Scholar
  3. Abdrachmanov, R. S. and Ivanova, T. A. (1976). Computer Analysis of Frequency Dependence of the ESR Spectra of nd9-ions in Vitreous Media, J. Appl. Spectros. 25, 1195.Google Scholar
  4. Adkins, L. R. and Nolle, A. W. (1966). EPR Spectrometer Utilizing Traveling Wave Helix for 2 Gc Region, Rev. Sci Instrum. 37, 1404–1405.CrossRefGoogle Scholar
  5. Afeworki, M., van Dam, G. M., Devasahayam, N., Murugesan, R., Cook, J., Coffin, D., A- Larsen, J. H., Mitchell, J. B., Subramanian, S., and Krishna, M. C. (2000). Threedimensional whole body imaging of spin probes in mice by time-domain radiofrequency electron paramagnetic resonance, Mag. Reson. Med. 43, 375–382.CrossRefGoogle Scholar
  6. Alecci, M., and Lurie, D. J. (1999). Low Field (10 mT) Pulsed Dynamic Nuclear Polarization, J. Magn. Reson. 138, 313–319.PubMedCrossRefGoogle Scholar
  7. Alecci, M., Gualtieri, G., and Sotgiu, A. (1989). Lumped parameters description of RF losses in ESR experiments on electrically conducting samples, J. Phys. E: Sci. Instrum. 22, 354–359.CrossRefGoogle Scholar
  8. Alecci, M., Gualtieri, G., Sotgiu, A., Testa, L., and Varoli, V. (1991). Multipolar magnet for low-frequency ESR imaging, Meas. Sci. Technol. 2, 32–37CrossRefGoogle Scholar
  9. Alecci, M., Delia Penna, S., Sotgiu, A., and Testa, L., (1992a). R.F. (280 MHz) EPR Imaging of Extended Samples: Apparatus and Preliminary Results, Appl. Magn. Reson. 3, 909–915.Google Scholar
  10. Alecci, M., Delia Penna, S., Sotgiu, A., and Testa, L., and Vannucci, I. (1992b). Electron paramagnetic resonance spectrometer for three-dimensional in vivo imaging at very low frequency, Rev. Sci. Instrum. 63, 4263–4270.CrossRefGoogle Scholar
  11. Alecci, M., Colaicchi, S., Sotgiu, A., Testa, L., and Varoli, V. (1992c). Automatic trimming technique for multipolar magnets, J. Appl. Phys. 71, 3053–3055.CrossRefGoogle Scholar
  12. Alecci, M., Farrari, M., Quaresima, V., Sotgiu, A., and Ursini, C. L. (1994). Simultaneous 280 MHz EPR Imaging of Rat Organs During Nitroxide Free Radical Clearance, Biophys. J. 67, 1274–1279.PubMedCrossRefGoogle Scholar
  13. Alecci, M., McCallum, S. J., and Lurie, D. J. (1995). Design and Optimization of an Automatic Frequency Control System for a Radiofrequency Electron Paramagnetic Resonance Spectrometer, J. Magn. Reson. A, 117, 272–277.CrossRefGoogle Scholar
  14. Alecci, M., Nicholson, I., and Lurie, D. J. (1996). A Novel Multiple-Tune Radiofrequency Loop-Gap Resonator for Use in PEDRI, J. Magn. Reson. B 110, 82–86.CrossRefGoogle Scholar
  15. Alecci, M., Brivati, J. A., Placidi, G., and Sotgiu, A. (1998a). A Radiofrequency (220-MHz) Fourier Transform EPR Spectrometer, J. Magn. Reson. 130, 272 –280.CrossRefGoogle Scholar
  16. Alecci, M., Brivati, J. A., Placidi, G., Testa, L., Lurie, D. J., and Sotgiu, A. (1998b). A Submicrosecond Resonator and Receiver System for Pulsed Magnetic Resonance with Large Samples, J. Magn. Reson. 132, 162–166.CrossRefGoogle Scholar
  17. Alexandrowicz, G., Tashma, T., Feintuch, A., Grayevsky, A., Dormann, E., and Kaplan, N. (2000). Spatial mapping of mobility and density of the conduction electrons in (FA)2PF6, Phys. Rev. Lett. 84, 2973 –2976.PubMedCrossRefGoogle Scholar
  18. Aifonsetti, M., Vecchio, C. D., Giuseppe, S. D., Placidi, G., and Sotgiu, A., 2001, A composite resonator for simultaneous NMR and EPR imaging experiments. Meas. Sci. Technol. 12, 1325 –1329.CrossRefGoogle Scholar
  19. Alger, R. S., Anderson, T. H., and Webb, L. A. (1959). Irradiation Effects in Simple Organic Solids, J. Chem. Phys. 30, 695 –706.CrossRefGoogle Scholar
  20. Alger, R. S., Electron Paramagnetic Resonance: Techniques and Applications. WileyInterscience, New York, 1968, pages 531ff.Google Scholar
  21. Anderegg, M., Cornaz, P., and Borel, J.-P. (1963). Spectroscope de r ésonance paramagetique dans la bande des 1000 MHz utilisant une diode tunnel, Z. Angew. Meth. Phys. 14, 201 –206.Google Scholar
  22. Anderson, W. A. (1961). Electrical Current Shims for Correcting Magnetic Fields. Rev. Sci. Instrum. 32,241–250.CrossRefGoogle Scholar
  23. Antipin, A. A. (1966). Cavity for 10 cm waveband investigations, Instrum. Exptl. Tech. 366–367.Google Scholar
  24. AntokoPskii, G. L., Baranov, V. S., and Iolin, E. M. (1977). Acoustic paramagnetic resonance in an aqueous solution of Frefny’s salt, JETP Lett. 23, 629–632.Google Scholar
  25. Ardenkjaer-Larsen, J. H., Laursen, I., Leunbach, I., Ehnholm, G., Wistrand, L.-G., Petersson, J. S., and Golman, K. (1998). EPR and DNP Properties of Certain Novel Single Electron Contrast Agents Intended for Oximetric Imaging, J. Magn. Reson. 133, 1–12.PubMedCrossRefGoogle Scholar
  26. Arnold, R. D., and Kip, A. F. (1949). Paramagnetic Resonance Absorption in Two Sulfates of Copper, Phys. Rev. 75, 1199–1205.CrossRefGoogle Scholar
  27. Bacic, G., Nilges, M. J., Magin, R. L., Walczak, T., and Swartz, H. M. (1989). In Vivo Localized ESR Spectroscopy Reflecting Metabolism, Magn. Reson. Med. 10, 266–272.PubMedCrossRefGoogle Scholar
  28. Bagguley, D. M. S., and Griffiths, J. H. E. (1947). Paramagnetic Resonance and Magnetic Energy Levels in Chrome Alum, Nature 160, 532–533.CrossRefGoogle Scholar
  29. Bagguley, D. M. S., and Griffiths, H. E. (1948). Paramagnetic Resonance in Copper Sulphate, Nature 162, 538–539.CrossRefGoogle Scholar
  30. Bagguley, D. M. S., Bleaney, B., Griffiths, J. H. E., Penrose, R. P., and Plumpton, B. I. (1948a). Paramagnetic Resonance in Salts of the Iron Group - A Preliminary Survey: I. Theoretical Discussion, Proc. Phys. Soc. (London) 61, 542–550.CrossRefGoogle Scholar
  31. Bagguley, D. M. S., Bleaney, B., Griffiths, J. H. E., Penrose, R. P., and Plumpton, B. I. (1948b). Paramagnetic Resonance in Salts of the Iron Group - A Preliminary Survey: II. Experimental Results, Proc. Phys. Soc. (London) 61, 551–561.CrossRefGoogle Scholar
  32. Barbarin, F., and Germain, J. P. (1975). Etude par resonance paramagnetique electronique des effets de la solvation sur le temps de correlation rotationnel du radical anion pbenzosemiquinone en milieu liquide, J. Phys. 36, 475–480.CrossRefGoogle Scholar
  33. Basosi, R., Antholine, W. E., Hyde, J. S. (1993). Multifrequency ESR of Copper: Biophysical Applications, Biol. Magn. Reson. 13, 103–150.CrossRefGoogle Scholar
  34. Belford, R. L., Clarkson, R. B., Cornelius, J. B., Rothenberger, K. S., Nilges, M. J., and Timkin, M. D. (1987). EPR Over Three Decades of Frequency: Radiofrequency to Infrared, in Electronic Magnetic Resonance of the Solid State. J. A. Weil, ed., Canadian Society for Chemistry, Ottawa, Canada, 21–43.Google Scholar
  35. Benedek, G. B., and Kushida, T. (1960). Nuclear Magnetic Resonance in Antiferromagnetic MnF2 under Hydrostatic Pressure, Phys. Rev. 118, 46–57.CrossRefGoogle Scholar
  36. Berliner, L. J. and Fujii, H. (1985). Magnetic Resonance Imaging of Biological Specimens by Electron Paramagnetic Resonance of Nitroxide Spin Labels, Science 227, 517–519.PubMedCrossRefGoogle Scholar
  37. Berliner, L. J., and Koscielniak, J. (1991). Low-Frequency EPR Spectrometers: L-Band, in EPR Imaging and in vivo EPR, S. S. Eaton, G. R. Eaton, and K. Ohno, eds., CRC Press, Boca Raton, Florida USA, Ch. 7.Google Scholar
  38. Bolas, N. M., Gillies, D. G., Sutcliffe, L. H., and Symms, M.. R. (1996). A radiofrequency ESR spectrometer/imager, Res. Chem. Intermed. 22, 525–537.CrossRefGoogle Scholar
  39. Borel, J.-P., and Manus, C. (1957). Un nouveau type de spectrographe Hertzian pour Pobservation de la resonance electronique dans le domaine des ondes m triques et decimetriques, Helv. Phys. Acta 30, 254–257Google Scholar
  40. Bourg, J., Krishna, M. C, Mitchell, J. B., Tschudin, R. G., Pohida, T. J., Friauf, W. S., Smith, P. D., Metcalfe, J., Harrington, F. and Subramanian, S. (1993). Radiofrequency FT EPR Spectroscopy and Imaging, J. Magn. Reson. B 102, 112–115.CrossRefGoogle Scholar
  41. Bowers, K. D., and Mims, W. B. (1959). Paramagnetic Relaxation in Nickel Fluorosilicate, Phys. Rev. 115, 285–295.CrossRefGoogle Scholar
  42. Bramley, R., and Strach, S. J. (1983). Electron Paramagnetic Resonance Spectroscopy at Zero Magnetic Field, Chem. Rev. 83, 49–82.CrossRefGoogle Scholar
  43. Brivati, J. A., Stevens, A. D., and Symons, M. C. R. (1991). A Radiofrequency ESR Spectrometer for in Vivo Imaging, J. Magn. Reson. 92, 480–489.Google Scholar
  44. Brown, G. (1974). A 1 GHz ESR spectrometer for the study of aqueous samples. J. Phys. E: Sci. Instrum. 7, 635–638.CrossRefGoogle Scholar
  45. Bruin, F., and Bruin, M. (1956). Some Measurements on the Spectral Line Shape and Width of a Paramagnetic Resonance Absorption Line, Physica 22, 129–140.CrossRefGoogle Scholar
  46. Bruin, F., and Khunaysir, H., (1970). Superregenerative FET Oscillator for NQR, ESR, and mAR,Amer. J. Phys. 38, 1480–1481.CrossRefGoogle Scholar
  47. Callaghan, P. T., Coy, A., Dormann, E., Ruf, R., and Kaplan, N. (1994). Pulsed-Gradient Spin-Echo ESR, J. Magn. Reson. A 111, 127–131.CrossRefGoogle Scholar
  48. Charm, M. A. (1956). Montage à 3000 MHz, pour l’étude de la resonance paramagn étique é lectronique et du sugne du facteur de Land é Compes Rendus 243, 652–654Google Scholar
  49. Chiricozzi, E., Masciovecchio, C, Villani, M., Sotgiu, A., and Testa, L. (1998). Multipolar Laminated Electromagnet for Low-Field Magnetic Resonance Imaging and Electron Paramagnetic Resonance Imaging, IEEE Trans. Biomed. Eng. 45, 928 –933.PubMedCrossRefGoogle Scholar
  50. Chirikov, A. K. (1959). Measurement of weak magnetic fields by the electron resonance method, Instrum. Expt. Tech. 211–213.Google Scholar
  51. Chzhan, M., Shteynbuk, M., Kuppusamy, P., and Zweier, J. L. (1993). An Optimized L-Band Ceramic Resonator for EPR Imaging of Biological Samples, J. Magn. Reson. A 105, 49–53.Google Scholar
  52. Chzhan, M., Kuppusamy, P., and Zweier, J. L. (1995). Development of an Electronically Tunable L-Band Resonator for EPR Imaging of Biological Samples, J. Magn. Reson. B 108, 67–72.PubMedCrossRefGoogle Scholar
  53. Chzhan, M., Kuppusamy, P., Samouilov, A., He, G., and Zweier, J. L. (1999). A Tunable Reentrant Resonator with Transverse Orientation of Electric Field for in Vivo EPR Spectroscopy, J. Magn. Reson. 137, 373–378.PubMedCrossRefGoogle Scholar
  54. Clarkson, R. B., Timkin, M. D., Brown, D. R., Crookham, H. C, and Belford, R. L. (1989). Enhancement of Nuclear Modulation in Electron Spin Echoes at Low Magnetic Fields: SBand ESE Spectrometer, Chem. Phys. Let. 163, 277–281.CrossRefGoogle Scholar
  55. Clarkson, R. B., Brown, D. R., Cornelius, J. B., Crookham, H. C, Shi, W.-J., and Belford, R. L. (1992). S-band electron spin echo spectroscopy. Pure & Appl. Chem. 64, 893–902.CrossRefGoogle Scholar
  56. Colacicchi, S., Indovina, P. L., Momo, F., and Sotgiu, A. (1988). Low-frequency three-dimensional ESR imaging of large samples, J. Phys. E: Sci. Instrum. 21, 910–913.CrossRefGoogle Scholar
  57. Colacicchi, S., Brivati, J., Barattelli, G., Gualtieri, G., and Sotgiu, A. (1996). A Minimal Cavity and Its Capacitive Coupling for in Vivo EPR Measurements on Mice. Res. Chem. Intermed. 22, 549–556.CrossRefGoogle Scholar
  58. Collingwood, J. C, and White, J. W. (1967). Helical resonators for spin resonance spectroscopy, J. Sci. Instrum. 44, 509–513.CrossRefGoogle Scholar
  59. Cook, R. F., and Stoodley, L. G. (1963). An electron-spin-resonance spectrometer for use while irradiating wet biological systems, Int. J. Rad. Biol. 7, 155–160.CrossRefGoogle Scholar
  60. Coy, A., Kaplan, N., and Callaghan, P. T. (1996). Three-dimensional pulsed ESR imaging, J. Magn. Reson. A121, 201–205.Google Scholar
  61. Cummerow, R. L., and Halliday, D. (1946). Paramagnetic Losses in Two Manganese Salts, Phys. Rev. 70, 433.CrossRefGoogle Scholar
  62. Cummerow, R. L., Halliday, D., and Moore, G. E. (1947). Paramagnetic Resonance Absorption in Salts of the Iron Group, Phys. Rev. 72, 1233–1240.CrossRefGoogle Scholar
  63. Lino, L., Lucidi, S., Placidi, G., and Sotgiu, A. (2001) Automatic optimization strategy for the design of circular multipolar magnets. J. Phys. D. Appl. Phys. 34, 313–318.CrossRefGoogle Scholar
  64. Dahlberg, E. D., and Dodds, S. A. (1981). Low-frequency tunable (1–1.8 GHz) electron spin resonance resonator and spectrometer, Rev. Sci. Instrum. 52, 472–474.CrossRefGoogle Scholar
  65. Davies, G. R., Lurie, D. J., Hutchison, J. M. S., McCallum, S. J., and Nicholson, I. (2001) Continuous-Wave Magnetic Resonance Imaging of Short T2 Materials. J. Magn. Reson. 148, 289–297.PubMedCrossRefGoogle Scholar
  66. Decorps, M., and Fric, C. (1969). Etude comparative de divers types de volumes resonnants pour spectrometers a resonance paramagnetique electronique, en ondes metriques, J. Phys. E: Sci. Instrum. 2, 1036–1040.CrossRefGoogle Scholar
  67. Decorps, M., and Fric, C. (1972). Un spectrometre basse frequence a haute sensibilitè pour l’ètude de la resonance des spins electroniques, J. Phys. E: Sci. Instrum. 5, 337–342.CrossRefGoogle Scholar
  68. Denisov, Yu. I., and Kalinichenko, V. V. (1965). Cavity Resonator for Decimeter Waveband EPR, Instrum. Expt. Tech. 379–381.Google Scholar
  69. Devasahayam, N., Subramanian, S., Murugesan, R., Cook, J. A., Afeworki, M., Tschudin, R. G., Mitchell, J. B., and Krishna, M. C. (2000). Parallel coil resonators for time-domain radio frequency electron paramagnetic resonance imaging of biological objects, J. Magn. Reson. 142, 168–176.PubMedCrossRefGoogle Scholar
  70. Devasahayam, N., Murugesan, R., Yamada, K., Reijnders, K., Mitchell, J. B., Subramanian, S., Krishna, M. C, and Cook, J. A. (2002) Evaluation of high-speed signal-averager for sensitivity enhancement in radio frequency Fourier transform electron paramagnetic resonance imaging. Rev. Sci. Instrum. 73, 3920–3925.CrossRefGoogle Scholar
  71. Dijret, D., Beranger, M., Bernerd, A., Jeandey, C, and Moussavi, M. (1994). A new 280 MHz ESR spectrometer, J. Chim. Phys. 91, 1862–1867.Google Scholar
  72. Di Luzio, S., Placidi, G., Di Giuseppe, S., Alecci, M., and Sotgiu, A. (1998). A novel, cylindrical, transverse gradient coil design for magnetic resonance imaging of large samples, Meas. Sci. Technol. 9, 1663–1671.CrossRefGoogle Scholar
  73. Diodato, R., Alecci, M., Brivati, J. A., and Sotgiu, A. (1998). Resonant inductive coupling of RF EPR resonators in the presence of electrically conducting samples, Meas. Sci. Technol. 9, 832–837.CrossRefGoogle Scholar
  74. Diodato, R., Alecci, M., Brivati, J. A., Varoli, V., and Sotgiu, A. (1999). Optimization of axial RF field distribution in low-frequency EPR loop-gap resonators, Phys. Med. Biol. 44, N69–N75.CrossRefGoogle Scholar
  75. Dormann, E., Sachs, G., StÖcklein, W., Bail, B., and Schwoerer, M. (1983). Gaussmeter Application of an Organic Conductor, Appl. Phys. A 30, 227–231.CrossRefGoogle Scholar
  76. Duncan, W. (1967). A 900 MHz induction electron spin resonance spectrometer, J. Sci. Instrum. 44, 437–439.CrossRefGoogle Scholar
  77. Duncan, W., and Schneider, E. E. (1965). A 300 Mc/s electron spin resonance spectrometer, J. Sci. Instrum. 42, 395–398.CrossRefGoogle Scholar
  78. Duret, D., Beranger, M., Moussavi, M., Turek, P., and Andre, J. J. (1991). A new ultra low-field ESR spectrometer, Rev. Sci. Instrum. 62, 685–694.CrossRefGoogle Scholar
  79. Duret, D., Beranger, M., and Moussavi, M. (1992). An Absolute Earth Field ESR Vectorial Magnetometer, IEEE Trans. Magn. 28, 2187–2189.CrossRefGoogle Scholar
  80. Eaton, G. R. (1992). EPR Spectroscopy, in Proceedings of National High Magnetic Field Laboratory Workshop on Nuclear Magnetic Resonance, E. R. Andrew, T. Mareci, and N. S. Sullivan, eds., University of Florida, ch. 4.iii.Google Scholar
  81. Eaton, S. S., and Eaton, G. R. (1982). Measurement of Spin-Spin Distances from the Intensity of the EPR Half-field Transition, J. Amer. Chem. Soc. 104, 5002–5003.CrossRefGoogle Scholar
  82. Eaton, G. R., and Eaton, S. S. (1988). EPR Imaging: Progress and Prospects, Bull. Magn. Reson. 10, 22–31.Google Scholar
  83. Eaton, G. R., and Eaton, S. S. (1989). Resolved Electron-Electron Spin-Spin Splitting in EPR Spectra, Biol. Magn. Reson. 8, 339–397.CrossRefGoogle Scholar
  84. Eaton, S. S., and Eaton, G. R. (1990). Electron Spin Resonance Imaging, in Modern Pulsed and Continuous-Wave Electron Spin Resonance, L. Kevan and M. K. Bowman, eds., Wiley, 405–435.Google Scholar
  85. Eaton, S. S., and Eaton, G. R., (1991). EPR Imaging, Specialist Periodical Report, Electron Paramagnetic Resonance 12b, 176–190.Google Scholar
  86. Eaton, S. S., and Eaton, G. R. (1993). Applications of High Magnetic Fields in EPR Spectroscopy, Magn. Reson. Rev. 16, 157–181.Google Scholar
  87. Eaton, G. R., and Eaton, S. S. (1993). Electron Paramagnetic Resonance Imaging, in Microscopic and Spectroscopic Imaging of the Chemical State, M. D. Morris, ed., Marcel Dekker, New York, ch 11, p. 395–419.Google Scholar
  88. Eaton, G. R., and Eaton, S. S. (1999a). High-Field and High-Frequency EPR, Appl. Magn. Reson. 16, 161–166.CrossRefGoogle Scholar
  89. Eaton, S. S., and Eaton, G. R. (1999b). High Magnetic Fields and High Frequencies, in Handbook of Electron Spin Resonance, C. P. Poole, Jr., and H. A. Farach, eds, vol 2, AIP Press, 345–370.Google Scholar
  90. Eaton, G. R., and Eaton, S. S. (1999c). ESR Imaging in Handbook of Electron Spin Resonance, C. P. Poole, Jr. and H. A Farach, vol. 2, 327–343.CrossRefGoogle Scholar
  91. Eaton, S. S., and Eaton, G. R. (2000). EPR imaging in Specialist Periodical Report, Electron Paramagnetic Resonance 17, 109–129.Google Scholar
  92. Eaton, G. R., Eaton, S. S., and Ohno, K., eds. (1991) EPR Imaging and In-Vivo EPR, CRC Press, Boca Raton, FL.Google Scholar
  93. Eaton, G. R., Eaton, S. S., and Rinard, G. A. (1998a). Frequency dependence of EPR Sensitivity, in Spatially Resolved Magnetic Resonance, P. Bltimler, B. Blümich, R. Botto and E. Fukushima, eds., Wiley-VCH, Weinheim, 65–74.CrossRefGoogle Scholar
  94. Eaton, G. R., Eaton, S. S., and Salikhov, K. M., eds., (1998b). Foundations of Modern EPR, World Scientific, Singapore.Google Scholar
  95. El’sting, O. G. (1960). A Device for Investigating Paramagnetic Electronic Resonance at Meter-Band Frequencies. Instrum. Exptl. Tech. 753–755 (page 64–66 in Russian).Google Scholar
  96. Feher, G., and Kip, A. F. (1955). Electron Spin Resonance in Metals. I. Experimental, Phys. Rev. 98, 337–348.CrossRefGoogle Scholar
  97. Feintuch, A., Alexandrowicz, G., Tashma, T., Boasson, Y., Grayevsky, A., and Kaplan, N. (2000). Three-dimensional pulsed ESR Fourier imaging, J. Magn. Reson. 142, 382–385.PubMedCrossRefGoogle Scholar
  98. Fric, C, and Mignot, P. (1975). Étude par RPE en champ faible d’un monoradical nitroxyde dilué dans un solide, Rev. Phys. Appl. 10, 305–308.CrossRefGoogle Scholar
  99. Fujii, H., and Berliner, L. J. (1985). One-and Two-Dimensional EPR Imaging Studies on Phantoms and Plant Specimens, Magn. Reson. Med. 2,275–282.PubMedCrossRefGoogle Scholar
  100. Fukui, K., Sato, T., Yokoyama, H., Ohya, H., and Kamada, H. (2002) Resonance-Field Dependence in Electrically Detected Magnetic Resonance: Effects of Exchange Interaction. J. Magn. Reson. 149, 13–21.CrossRefGoogle Scholar
  101. Garrett, M. W. (1967). Thick Cylindrical Coil Systems for Strong Magnetic Fields with Field or Gradient Homogeneities of the 6th to 20th Order, J. Applied Phys. 38, 2563–2585CrossRefGoogle Scholar
  102. Garstens, M. A., Singer, L. S., and Ryan, A. H. (1954). Magnetic Resonance Absorption of Diphenyl-Picryl Hydrazyl at Low Magnetic Fields, Phys. Rev. 96, 53–56CrossRefGoogle Scholar
  103. Gebhardt, H., and Dormann, E. (1989). ESR gaussmeter for low-field applications, J. Phys. E: Sci. Instrum. 22, 321–324.CrossRefGoogle Scholar
  104. Gerkin, R. E., and Szerenyi, P. (1969). Electron Paramagnetic Resonance Absorption in Oriented Triphenylene in Its Phosphorescent State at Low Magnetic Fields, J. Chem. Phys. 50. 4095–4106.CrossRefGoogle Scholar
  105. Gillies, D. G., Sutcliffe, L. H., and Symms, M. R. (1994). Effects encountered in EPR Spectroscopy and Imaging at Small Magnetic Fields, J. Chem. Soc. Faraday Trans. 90, 2671–2675. .CrossRefGoogle Scholar
  106. Giuseppe, S. D., Placidi, G., and Sotgiu, A. (2001) New experimental apparatus for multimodal resonance imaging: initial EPRI and NMRI experimental results. Phys. Biol. Med. 46, 1003–1016.CrossRefGoogle Scholar
  107. Giordano, M., Martinelli, M., Pardi, L., and Santucci, S. (1976). Electron spin resonance spectrometer with a new wideband resonator for aqueous samples, Rev. Sci. Instrum. 47, 1402–1404.CrossRefGoogle Scholar
  108. Golenishchev-Kutuzov, V. A., and Kharakhash’yan, E. G. (1965) Ultrasonic Paramagnetic Spectrometer, Instrum. Exptl. Tech. 371–374 (pages 126–130 in Russian).Google Scholar
  109. Goiter, C. J. (1936a). Paramagnetic Relaxation, Nature 137, 190.Google Scholar
  110. Goiter, C. J. (1936b). Paramagnetic Relaxation, Physica 3, 503–515.CrossRefGoogle Scholar
  111. Goiter, C. J. (1936c). Paramagnetic Relaxation in Transversal Magnetic Field, Physica 3, 1006–1008.CrossRefGoogle Scholar
  112. Goiter, C. J. (1947). Paramagnetic Relaxation, Elsevier, New York.Google Scholar
  113. Goiter, C. J. (1967). Bad Luck in Attempts to Make Scientific Discoveries, Physics Today, January, p. 76–81; errata April 1967, p. 13.Google Scholar
  114. Greenslade, D. J., Koptyug, A. V., and Symons, M. C. R. (1996). Aspects of Low-frequency Low-field Electron Spin Resonance. Ann. Rep. Pro . Chem. 92, 3–21.CrossRefGoogle Scholar
  115. Grobet, P., Accou, J., Verlinden, R., and Van Gerven, L. (1971). Demagnetizing effects in g-factor measurements in Magnetic Resonance and Related Phenomena, Ursu, I., ed., Publishing House of the Academy of the Socialist Republic of Romania, pp. 268–270.Google Scholar
  116. Grucker, D. (1990). In Vivo Detection of Injected Free Radicals by Overhauser Effect Imaging, Magn. Reson. Med. 14, 140–147.PubMedCrossRefGoogle Scholar
  117. Grucker, D. and Chambron, J. (1989). Sensitivity of Overhauser Effect Imaging to Oxygen, Physica Medica 5, 329–335.Google Scholar
  118. Grucker, D. and Chambron, J. (1993).Oxygen Imaging in Perfused Hearts by Dynamic Nuclear Polarization, Magn. Reson. Im. 11, 691–696.CrossRefGoogle Scholar
  119. Grucker, D., Guiberteau, T., and Planinsic, G. (1996). Proton-Electron Double Resonance: Spectroscopy and Imaging in Very Low Magnetic Fields, Res. Chem. Intermed. 22, 567–579.CrossRefGoogle Scholar
  120. Guiberteau, T., and Grucker, D. (1996). EPR Spectroscopy by Dynamic Nuclear Polarization in Low Magnetic Field, J. Magn. Reson. B 110, 47–54.CrossRefGoogle Scholar
  121. Guiberteau, T., and Grucker, D. (1997). Dynamic nuclear polarization imaging in very low magnetic fields as a noninvasive technique for oximetry, J. Magn. Reson. 124, 263–266.PubMedCrossRefGoogle Scholar
  122. Halliday, D., and Wheatley, J. (1948). Paramagnetic Resonance Absorption in Aqueous Solutions of Manganese Sulfate, Phys. Rev. 74, 1724.CrossRefGoogle Scholar
  123. Halpern, H. J., and Bowman, M. K. (1991). Low-Frequency Electron Paramagnetic Resonance, in EPR Imaging and in vivo EPR, S. S. Eaton, G. R. Eaton, and K. Ohno, eds., CRC Press, Boca Raton, Florida USA, ch. 6.Google Scholar
  124. Halpern, H. J., Spencer, D. P., van Polen, J., Bowman, M. K., Nelson, A. C., Dowey, E. M., and Teicher, B. A. (1989). Imaging radio frequency electron-spin-resonance spectrometer with high resolution and sensitivity for in vivo measurements, Rev. Sci. lnstrum. 60, 1040–1050CrossRefGoogle Scholar
  125. Halpern, H. J., Yu. C, Barth, E., Peric. M., and Rosen, G. (1995). In situ detection, by spin trapping, of hydroxyl radical markers produced from ionizing radiation in the tumor of a living mouse, Proc. Natl. Acad. Sci. USA 92, 796–800.PubMedCrossRefGoogle Scholar
  126. Hankiewicz, J. H., Stenland, C., and Kevan, L. (1993). Pulsed S-band electron spin resonance spectrometer, Rev. Sci. lnstrum. 64, 2850–2856.CrossRefGoogle Scholar
  127. Hardy, W. N., and Whitehead, L. A. (1981). Split-ring resonator for use in magnetic resonance from 200–2000 MHz, Rev. Sci. lnstrum. 52, 200–2000.CrossRefGoogle Scholar
  128. Hatch, G. F., and Kreilick, R. W. (1972). Design of a Broadband Low-Field ESR Spectrometer, J. Magn. Reson. 8, 126–128Google Scholar
  129. He, G., Shankar, R. A., Chzhan, M., Samouilov, A., Kuppusamy, P., and Zweier, J. L. (1999). Nonivasive measurement of anatomic structure and intraluminal oxygenation in the gastrointestinal tract of living mice with spatial and spectral EPR imaging, Proc. Natl. Acad. Sci. USA 96, 4586–4591.PubMedCrossRefGoogle Scholar
  130. He, G., Samouilov, A., Kuppusamy, P., and Zweier, J. L. (2001a) In Vivo EPR Imaging of the Distribution and Metabolism of Nitroxide Radicals in Human Skin. J. Magn. Reson. 148, 155–164.CrossRefGoogle Scholar
  131. He, G., Petryakov, S., Samouilov, A., Chzhan, M., Kuppusamy, P., and Zweier, J. L. (2001b) Development of a Resonator with Automatic Tuning and Coupling Capability to Minimize Sample Motion Noise for in Vivo EPR Spectroscopy. J. Magn. Reson. 149, 218–227.CrossRefGoogle Scholar
  132. Hill, M. J., and Wyard, S. J. (1967). A 280 MHz electron spin resonance spectrometer, J. Sci. lnstrum. 44, 433–436.CrossRefGoogle Scholar
  133. Hirata, H., and Ono, M. (1996). Resonance frequency estimation of a bridged loop-gap resonator used for magnetic resonance measurements, Rev. Sci. lnstrum. 67, 73–78.CrossRefGoogle Scholar
  134. Hirata, H., and Ono, M. (1997). A flexible surface-coil-type resonator using triaxial cable, Rev. Sci. lnstrum. 68, 1–2.CrossRefGoogle Scholar
  135. Hirata, H., and Ono, M. (1997) Impedance-matching system for a flexible surface-coil-type resonator. Rev. Sci. lnstrum. 68, 3528–3532.CrossRefGoogle Scholar
  136. Hirata, H., Iwai, H., and Ono, M. (1995). Analysis of a flexible surface-coil-type resonator for magnetic resonance measurements, Rev. Sci. lnstrum. 66, 4529–4534.CrossRefGoogle Scholar
  137. Hirata, H., Walczak, T., and Swartz, H. M. (2000). Electronically Tunable Surface-Coil-Type Resonator for L-Band EPR Spectroscopy, J. Magn. Reson. 142, 159–167.PubMedCrossRefGoogle Scholar
  138. Hirata, H., Ueda, M., Ono, M., and Shimoyama, Y. (2002) 1.1 GHz Continuous-Wave EPR Spectroscopy with a Frequency Modulation Method. J. Magn. Reson. 155, 140–144PubMedCrossRefGoogle Scholar
  139. Hornak, J. P., Spacher, M., and Bryant, R. G. (1991). A modular low frequency ESR spectrometer, Meas. Sci. Technol. 2, 520–522.CrossRefGoogle Scholar
  140. Hutchinson, J. M. S. (1971). Electron spin resonance spectrometry on the whole mouse in vivo; optimum frequency considerations, J. Phys. E: Sci. lnstrum. 4, 703–704.CrossRefGoogle Scholar
  141. Hutchinson, J. M. S., and Mallard, J. R. (1971). Electron spin resonance spectrometry on the whole mouse in vivo; a 100 MHz spectrometer, J. Phys. E: Sci. lnstrum. 4, 237–239.CrossRefGoogle Scholar
  142. Hyde, J. S., and Froncisz, W. (1981). ESR S-Band Microwave Spectrometer for Process Control, in Proceedings National Electronics Conference, 1981, Vol. 35, National Engineering Consortium, Oak Brook, IL, pp. 602–606.Google Scholar
  143. Hyde, J. S., and Froncisz, W. (1982).The Role of Microwave Frequency in EPR Spectroscopy of Copper Complexes, Ann. Rev. Biophys. Bioeng. 11, 391–417.CrossRefGoogle Scholar
  144. Hyde, J. S., and Froncisz, W. (1986). Loop-Gap Resonators, Specialist Periodical Report: Electron Spin Resonance 10A, 175–184.Google Scholar
  145. Hyde, J. S., and Gajdzinski, J. (1988). EPR automatic frequency control circuit with field effect transistor (FET) microwave amplification, Rev. Sci. lnstrum. 59, 1352–1356.CrossRefGoogle Scholar
  146. Ilangovan, G., Li, H., Zweier, J. L., and Kuppusamy, P. (2002) In vivo meaurement of tumor redox environment using EPR spectroscopy. Molec. Cell. Biochem. 234/235, 393–398.CrossRefGoogle Scholar
  147. Ishida, S., Kumashiro, H., Tsuchihashi, N., Ogata, T., Ono M., Kamada, H., Yoshida, E. (1989). In vivo analysis of nitroxide radicals injected into small animals by L-band ESR technique, Phys. Biol. Med. 34, 1317–1323.CrossRefGoogle Scholar
  148. Ishida, S., Matsumoto, S., Yokoyama, H., Mori, N., Kumashiro, H., Tsuchihashi, N., Ogata, T., Yamada, M., Ono, M., Kitajima, T., Kamada, H., and Yoshida, E. (1992). An ESR-CT Imaging of the Head of a Living Rat Receiving an Administration of a Nitroxide Radical. Magn. Reson. lmaz. 10, 109–114.CrossRefGoogle Scholar
  149. Jiang, J., Liu, K. J., Walczak, T., and Swartz, H. M. (1995). An Analysis of the Effects of Eddy Currents on L-Band EPR Spectra, J. Magn. Reson. B 106, 220–226.PubMedCrossRefGoogle Scholar
  150. Jiang, J., Liu, K. J., and Swartz, H. M. (1996). Low Frequency ESR Surface Probe Based on Dielectric Resonator, Res. Chem. Intermed. 22, 539–547.CrossRefGoogle Scholar
  151. Kangarlu, A., Baertlein, B. A., Lee, R., Ibrahim, T., Yang, L., Abduljalil, A. M., and Robitaille, P.-M. L. (1999). Dielectric Resonance Phenomena in Ultra High Field MRI, J. Comp. Assist. Tomog. 23, 821–831.CrossRefGoogle Scholar
  152. Kent, M., and Mallard, J. R. (1965). An 80 Mc/s electron spin resonance spectrometer for aqueous samples, J. Sci. Instrum. 42, 505–506.CrossRefGoogle Scholar
  153. Kernevez, N., Duret, D., Moussavi, M., and Leger, J.-M. (1992). Weak Field NMR and ESR Spectrometers and Magnetometers, IEEE Trans. Magn. 28, 3054–3059.CrossRefGoogle Scholar
  154. Kim, K., Bodart, J. R., and Sullivan, N. S., High-Sensitivity CW NMR Probe for Low Temperatures and Ultrahigh Frequencies, (1996). J. Magn. Res. A 118, 28–32.CrossRefGoogle Scholar
  155. Klein, M. P., and Phelps, D. E. (1967). Radiofrequency Hybrid Tees for Nuclear Magnetic Resonance, Rev. Sci. Instrum. 38, 1545–1546.CrossRefGoogle Scholar
  156. Koscielniak, J. and Berliner, L. J. (1993). Optimization of L-band Microwave Bridges for Maximum Sensitivity in in-vivo Experiments, Rocky Mountain Conference, Denver, Colorado, abstract 154.Google Scholar
  157. Koscielniak, J. (2000). CW EPR signal detection bridges, in Biol. Magn. Reson. 18, Berliner, L. J., ed., ch. 4, in press.Google Scholar
  158. Konijnenburg, H., and Mehlkopf, A. F. (1996). Optimal SNR for proton electron double resonance imaging, Res. Chem. Intermed. 22, 557–561.CrossRefGoogle Scholar
  159. Koscielniak, J., and Berliner, L. J. (1994). Dual diode detector for homodyne EPR microwave bridges, Rev. Sci. Instrum. 65, 2227–2230.CrossRefGoogle Scholar
  160. Koscielniak, J., Devasahayam, N., Moni, M. S., Kuppusamy, P., Yamada, K., Mitchell, J. B., Krishna, M. C., and Subramanian, S. (2000) 300 MHz continuous wave electron paramagnetic resonance spectrometer for small animal in vivo imaging. Rev. Sci. Instrum. 71,4273–4281.CrossRefGoogle Scholar
  161. Kume, K., and Mizoguchi, K. (1985). Frequency dependence of the ESR in pristine transpoly acetylene: spin-lattice relaxation time Ti, Mol. Cryst. Liq. Cryst. 117, 469–472.CrossRefGoogle Scholar
  162. Kuppusamy, P., Chzhan, M., Vij, K., Shteynbuk, M., Leter, D. J., Giannella, E., and Zweier, J. L. (1994). Three-dimensional spectral-spatial EPR imaging of free radicals in the heart: A technique for imaging tissue metabolism, Proc. Natl. Acad. Sci. USA 91, 3388–3392.PubMedCrossRefGoogle Scholar
  163. Kuppusamy, P., Afeworki, M., Shankar, R. A., Coffin, D., Krishna, M. C., Hahn, S. M., Mitchell, J. B., and Zweier, J. L. (1998a). In vivo electron paramagnetic resonance imaging of tumor heterogeneity and oxygen in a murine model, Cancer Res. 58, 1562–1568.Google Scholar
  164. Kuppusamy, P., Wang, P., Shankar, R. A., Ma, L., Trimble, C. E., Hsia, C. J. C., and Zweier, J. L. (1998b). In Vivo Topical EPR Spectroscopy and Imaging of Nitroxide Free Radicals and Polynitroxyl-Albumin, Magn. Reson. Med. 40, 806–811.CrossRefGoogle Scholar
  165. Kuppusamy, P., Shankar, R. A., Roubaud, V. M., and Zweier, J. L. (2001) Whole Body Detection and Imaging of Nitric Oxide Generation in Mice Following Cardiopulmonary Arrest: Detection of Intrinsic Nitrosoheme Complexes. Magn. Resort. Med. 45, 700–707.CrossRefGoogle Scholar
  166. Li, H., Deng, Y., He., G., Kuppusamy, P., Lurie, D. J., and Zweier, J. L. (2002) Proton Electron Double Resonance Imaging of the In Vivo Distribution and Clearance of a Triaryl Methyl Radical in Mice. Magn. Reson. Med., 48, 530–534.CrossRefGoogle Scholar
  167. Lin, Y., Yokoyama, H., Ishida, S., Tsuchihashi, N., and Ogata, T. (1997). In vivo electron spin resonance analysis of nitroxide radicals injected into a rat by a flexible surface-coil-type resonator as an endoscope-or a stethoscope-like device, MAGMA 5, 99–103PubMedCrossRefGoogle Scholar
  168. Lloyd, J. P., and Pake, G. E. (1954). Spin Relaxation in Free Radical Solutions Exhibiting Hyperfine Structure, Phys. Rev. 94, 579–591.CrossRefGoogle Scholar
  169. Lukiewicz, S. J., and Lukiewicz, S. G. (1984). In vivo spectroscopy of large biological objects, Magn. Reson. Med. 1, 297–298.Google Scholar
  170. Lurie, D. J. (1995). Imaging using the Electronic Overhauser Effect. Encyclopedia of Nuclear Magnetic Resonance, Grant, D. M., and Harris, R. K., eds., Wiley, page 2481–2486.Google Scholar
  171. Lurie, D. J. (2002) Techniques and Applications of EPR Imaging, in Specialist Periodical Report, Electron Paramagnetic Resonance, 18, 137–160.Google Scholar
  172. Lurie, D. J., Bussell, D. M., Bell, L. H., and Mallard, J. R. (1988). Proton-Electron Double Magnetic Resonance Imaging of Free Radical Solutions, J. Magn. Reson. 76, 366–370.Google Scholar
  173. Lurie, D. J., Hutchison, J. M. S., Bell, L. H., Nicholson, I., Bussell, D. M., and Mallard, J. R. (1989). Field-Cycled Proton-Electron Double-Resonance Imaging of Free Radicals in Large Aqueous Samples, J. Magn. Reson. 84, 431–437.Google Scholar
  174. Lurie, D. J., Nicholson, I., Foster, M. A., and Mallard, J. R. (1990). Free radicals imaged in vivo in the rat by using proton-electron double-resonance imaging, Phil. Trans. R. Soc. Lond. A 333, 453–456.CrossRefGoogle Scholar
  175. Lurie, D. J., McLay, J., Nicholson, I., and Mallard, J. R. (1991a). Production of UV- Generated Hydroxyl Free Radicals Imaged by Proton-Electron Double-Resonance Imaging with Spin Trapping, J. Magn. Reson. 95, 191–195.Google Scholar
  176. Lurie, D. J., Nicholson, I., and Mallard, J. R. (1991b). EPR Spectral Information Obtained from Field-Cycled Proton-Electron Double-Resonance Images, J. Magn. Reson. 94, 197–203.Google Scholar
  177. Lurie, D. J., Nicholson, I., and Mallard, J. R. (1991c). Low-Field EPR Measurements of Field-Cycled Dynamic Nuclear Polarization, J. Magn. Reson. 95, 405–409.Google Scholar
  178. Lurie, D. J., Nicholson, I., McLay, J. S., and Mallard, J. R. (1992). Spin-Trapped Hydroxyl Free Radicals Studied at Low Field by Field-Cycled Dynamic Nuclear Polarization. Appl. Magn. Reson. 3, 917–925.Google Scholar
  179. Lurie, D. J., Foster, M. A., Yeung, D., and Hutchison, J. M. S. (1998). Design, construction, and use of a large-sample field-cycled PEDRI imager, Phys. Med. Biol. 43, 1877–1886.PubMedCrossRefGoogle Scholar
  180. Lurie, D. J., Li, H., Petryakov, S., and Zweier, J. L. (2002) Development of a PEDRI free-radical imager using a 0.38 T clinical MRI system. Magn. Reson. Med. 47, 181–186.PubMedCrossRefGoogle Scholar
  181. McCallum, S. J., Alecci, M., and Lurie, D. J. (1996a). Modification of a whole-body NMR imager into a radio frequency EPR spectrometer suitable for in vivo measurements, Meas. Sci. Technol. 7, 1012–1018.CrossRefGoogle Scholar
  182. McCallum, S. J., Nicholson, I., and Lurie, D. J. (1996b). A Combined PEDRI and CW-EPR Instrument for Detecting Free Radicals in Vivo, J. Magn. Reson. B 113, 65–69.CrossRefGoogle Scholar
  183. Marcley, R. G. (1961). Apparatus for Electron Paramagnetic Resonance at Low Fields. Am. J. Phys. 29, 492–497.CrossRefGoogle Scholar
  184. Matheson, M. S., and Smaller, B. (1955). Paramagnetic Species in Gamma-Irradiated Ice. J. Chem.Phys. 23,521–528.CrossRefGoogle Scholar
  185. Matsui, H., Yamada, E., Shimokawa, S., and Nakamura, Y. (1993). Excess Electrons in the Lithium-Methylamine System Studied by Electron Spin Resonance at 200 MHz, J. Phys. Chem. 97, 4284–4287.CrossRefGoogle Scholar
  186. Medvedev, L. I., Suleimanov, N. M., Kharakhash’yan, E. G., and Khlebnikov, S. Ya. (1976). Superheterodyne Decimeter-Waveband ESR Spectrometer for Operation at Ultralow Temperatures, Instrum. Exptl Tech. 19, 1797–1799 (page 1797–1799 in Russian).Google Scholar
  187. Misra, B. N., Gupta, S. K., and Sharma, S. D. (1973).Temperature Variation of Spin Lattice Relaxation Time in a Free Radical Complex. Z Physik. Chem. Neue Foige 85, 64–68.CrossRefGoogle Scholar
  188. Mizoguchi, K., and Kume, K. (1985). Frequency dependence of the ESR in pristine trans-polyacetylene: line width, Mol. Cryst. Liq. Cryst. 117, 459–462.CrossRefGoogle Scholar
  189. Momo, F., and Sotgiu, A. (1984). Re-entrant resonators for ESR spectroscopy between 2 and 10 GHz, J. Phys. E: Sci. Instrum. 17, 556–558.CrossRefGoogle Scholar
  190. Momo, F., Adriani, O., Gualtieri, G., and Sotgiu, A. (1988). Generalized Anderson coils for magnetic resonance imaging, J. Phys. E: Sci. Instrum. 21, 565–568.CrossRefGoogle Scholar
  191. Mtilsch, A., Lurie, D. J., Seimenis, I., Fichtlscherer, B., and Foster, M. A. (1999). Detection of Nitrosyl-lron Complexes by Proton-Electron-Double-Resonance Imaging, Free Rad. Biol. Med. 27, 636–646.CrossRefGoogle Scholar
  192. Murugesan, R., Cook, J. A., Devasahayam, N., Afeworki, M., Subramanian, S., Tschudin, R., Larsen, J. A., Mitchell, J. B., Russo, A., and Krishna, M. C. (1997). In vivo imaging of a stable paramagnetic probe by pulsed-radiofrequency electron paramagnetic resonance spectroscopy, Magn. Reson. Med. 38, 409–414.PubMedCrossRefGoogle Scholar
  193. Murugesan, R., Afeworki, M., Cook, J. A., Devasahayam, N., Tschudin, R., Mitchell, J. B., Subramanian, S., and Krishna, M. C. (1998). A broadband pulsed radio frequency electron paramagnetic resonance spectrometer for biological applications, Rev. Sci. Instrum. 69, 1869–1876.CrossRefGoogle Scholar
  194. Murugesan, R., English, S., Reijnders, K., Yamada, K., Cook, J. A., Mitchell, J. B., Subramanian, S., and Krishna, M. C. (2002) Fluorine Electron Double Resonance Imaging for 19F MRI in Low Magnetic Fields. Magn. Reson. Med. 48, 523–529.PubMedCrossRefGoogle Scholar
  195. Nicholson, I., Lurie, D. J., and Robb, F. J. L. (1994a). The Application of Proton-Electron Double-Resonance Imaging Techniques to Proton Mobility Studies, J. Magn. Reson. B104. 250–255.Google Scholar
  196. Nicholson, I., Robb, F. J. L., and Lurie, D. J. (1994b). Imaging Paramagnetic Species Using Radiofrequency Longitudinally Detected ESR (LODESR Imaging), J. Magn. Reson. B104, 284–288.Google Scholar
  197. Nicholson, I., Foster, M. A., Robb, F. J. L., Hutchison, J. M. S., and Lurie, D. J. (1996). In vivo imaging of nitroxide-free-radical clearance in the rat, using radiofrequency longitudinally detected ESR imaging, J. Magn. Reson. B 113, 256–261.PubMedCrossRefGoogle Scholar
  198. Nilges, M. J., Walczak, T., and Swartz, H. M. (1989). 1 GHz in vivo ESR Spectrometer Operating with a Surface Probe. Phys. Med. 5, 195–201.Google Scholar
  199. Nishikawa, H., Fujn, H., and Berliner, L. J. (1985). Helices and Surface Coils for Low-Field in Vivo ESR and EPR Imaging Applications, J. Magn. Reson. 62, 79–86.Google Scholar
  200. Ogata, T. (1995). Development of the rapid field scan L-band ESR-CT system. In Bioradicals Detected by ESR Spectroscopy Ohya-Nishiguchi, H., and Packer, L., eds., Birkhauser Verlag, Basel, Switzerland, pp. 103–111.CrossRefGoogle Scholar
  201. Oikawa, K., Ogata, T., Lin, Y., Sato, T., Kudo, R., and Kamada, H. (1995). Rapid Field Scan L-Band Electron Spin Resonance Computer Tomography System Using an Air-Core Electromagnet, Anal. Sci. 11, 885–888CrossRefGoogle Scholar
  202. Oikawa, K., Ogata, T., Togashi, H., Yokoyama, H., Ohya-Nishiguchi, H., and Kamada, H. (1996). A 3D- and 4D-ESR Imaging System for Small Animals, Appl. Radial hot. 47, 1605–1609.Google Scholar
  203. Ono, M, Ogata, T., Hsieh, K. C, Suzuki, M., and Kamada, H. (1986). L-band ESR spectrometer using a loop-gap resonator for in vivo analysis, Chem. Lett. 491–494.Google Scholar
  204. Ono, M, Ito, K., Kawamura, N., Hsieh, K.-C, Hirata, H., Tsuchihashi, N., and Kamada, H. (1994). A Surface-Coil-Type Resonator for in vivo ESR Measurements, J. Magn. Reson. B 104, 180–182.PubMedCrossRefGoogle Scholar
  205. Ono, M., Asahi, Y., Hirata, H., and Shimoyama, Y. (1998). A New Frequency Modulation Scheme of Electron Paramagnetic Resonance Spectroscopy. Presented at the workshop on EPR Studies of Viable Biological Systems and Related Techniques, Sept 13–18, 1998, Hanover, NH.Google Scholar
  206. Pake, G. E., Townsend, J., and Weissman, S. I. (1952). Hyperfine Structure in the paramagnetic Resonance of the Ion (S03)2NO“, Phys. Rev. 85, 682–683.CrossRefGoogle Scholar
  207. Panagiotelis, I., Nicholson, I., Hutchison, J. M. S. (2001a) Electron Spin Relaxation Time Measurements Using Radiofrequency Longitudinally Detected ESR and Application to Oximetry. J. Magn. Reson. 149, 74–84.CrossRefGoogle Scholar
  208. Panagiotelis, I., Nicholson, I., Foster, M. A., Hutchison, J. M. S. (2001b) Tie* and T2e* Maps Derived In Vivo From the Rat Using Longitudinally Detected Electron Spin Resonance Phase Imaging: Application to Abdominal Oxygen Mapping. Magn. Reson. Med. 46, 1223–1232.CrossRefGoogle Scholar
  209. Petryakov, S., Chzhan, M., Samouilov, A., He, G., Kuppusamy, P., and Zweier, J. L. (2001) A Bridged Loop-Gap S-Band Surface Resonator for Topical EPR Spectroscopy. J. Magn. Reson. 151,124–128.PubMedCrossRefGoogle Scholar
  210. Placidi, G., M. Alecci, and Sotgiu, A. (2002) First imaging results obtained with a multimodal apparatus combining low-field (35.7 mT) MRI and pulsed EPRI. Phys. Biol. Med. 47, N127–N132.Google Scholar
  211. Pohida, T. J., Fredrickson, H. A., Tschudin, R. G., Fessler, J. F., Krishna, M. C, Bourg, J., Harrington, F., and Subramanian, S. (1994). High-speed digitizer/averager data-acquisition system for Fourier transform electron paramagnetic resonance spectroscopy, Rev. Sci. Instrum. 65, 2500–2504.CrossRefGoogle Scholar
  212. Purcell, E. M., Torrey, H. C, and Pound, R. V. (1946). Resonance Absorption by Nuclear Magnetic Moments in a Solid, Phys. Rev. 69, 37–38.CrossRefGoogle Scholar
  213. Puwanich, P., Lurie, D. J., and Foster, M. A. (1999) Rapid imaging of free radicals in vivo using field cycled PEDRI. Phys. Med. Biol. 44, 2867–2877.PubMedCrossRefGoogle Scholar
  214. Quaresima, V., Alecci, M., Ferrari, M., and Sotgiu, A. (1992). Whole rat electron paramagnetic resonance imaging of a nitroxide free radical by radio frequency (280 MHz) spectrometer, Biochem. Biophys. Res. Commun. 183, 829–835.PubMedCrossRefGoogle Scholar
  215. Quine, R. W., Rinard, G. A., Ghim, B. T., Eaton, S. S., and Eaton, G. R. (1996). A 1–2 GHz Pulsed and Continuous Wave Electron Paramagnetic Resonance Spectrometer, Rev. Sci. Instrum. 67.1–2.CrossRefGoogle Scholar
  216. Quine, R. W., Rinard, G. A., Eaton, S. S., and Eaton, G. R. (2002) A Pulsed and Continuous Wave 250 MHz Electron Paramagnetic Resonance Spectrometer, Magn. Reson. Engineer. 15,59–91.Google Scholar
  217. Rannestad, A., and Wagner, P. A. (1963). Paramagnetic Relaxation in Dilute Potassium Ferricyanide, Phys. Rev. 131, 1953–1960.CrossRefGoogle Scholar
  218. Reynolds, G. F., and Shanholtzer, W. L. (1967). Electron Spin Resonance At Radio Frequencies, Proc. West Virginia Acad. Sci. 39, 387–391.Google Scholar
  219. Rinard, G. A., Quine, R. W., Eaton, S. S., Eaton, G. R., and Froncisz, W. (1994). Relative Benefits of Overcoupled Resonators vs. Inherently Low-Q Resonators for Pulsed Magnetic Resonance, J. Magn. Reson. A108, 71–81.Google Scholar
  220. Rinard, G. A., Quine, R. W., Ghim, B. T., Eaton, S. S., and Eaton, G. R. (1996a). Easily Tunable Crossed-Loop (Bimodal) EPR Resonator, J. Magn. Reson. A122, 50–57.Google Scholar
  221. Rinard, G. A., Quine, R. W., Ghim, B. T., Eaton, S. S., and Eaton, G. R. (1996b). Dispersion and Superheterodyne EPR Using a Bimodal Resonator, J. Magn. Resort. A122, 58–63.CrossRefGoogle Scholar
  222. Rinard, G. A., Quine, R. W., Song, R., Eaton, G. R., and Eaton, S. S. (1999a). Absolute EPR Spin Echo and Noise Intensities, J. Magn. Reson. 140, 69–83.CrossRefGoogle Scholar
  223. Rinard, G. A., Quine, R. W., Harbridge, J. R., Song, R., Eaton, G. R., and Eaton, S. S. (1999b). Frequency Dependence of EPR Signal-to-Noise, J. Magn. Reson. 140, 218–227.PubMedCrossRefGoogle Scholar
  224. Rinard, G. A., Eaton, S. S., Eaton, G. R., Poole, C. P. Jr., and Farach, H. A. (1999c). Sensitivity, in Handbook of Electron Spin Resonance, C. P. Poole, Jr., and H. A. Farach, eds, vol 2, AIP Press, 1–23.Google Scholar
  225. Rinard, G. A., Quine, R. W., and Eaton, G. R., (2000). An L-band Crossed-Loop (Bimodal) Resonator, J. Magn. Reson. 144, 85–88.PubMedCrossRefGoogle Scholar
  226. Rinard, G. A., Quine, R. W., Eaton, G. R., and Eaton, S. S. (2002a) 250 MHz Crossed Loop Resonator for Pulsed Electron Paramagnetic Resonance, Magn. Reson. Engineer. 15, 37–46.Google Scholar
  227. Rinard, G. A., Quine, R. W., Eaton, G. R., and Eaton, S. S. (2002b) Adapting a Hall Probe Controller for Current Control of an Air-Core Magnet, Magn. Reson. Engineer. 15, 47–50.Google Scholar
  228. Rinard, G. A., Quine, R. W., Eaton, G. R., and Eaton, S. S., Barth, E. D., Pelizzari, C. A., and Halpern, H. H. (2002c) Magnet and Gradient Coil System for Low-Field EPR Imaging, Magn. Reson. Engineer. 15, 51–58.Google Scholar
  229. Rinard, G. A., Quine, R. W., Eaton, S. S., and Eaton, G. R. (2002d) Frequency Dependence of EPR Signal Intensity, 250 MHz to 9.1 GHz, J. Magn. Reson. 156, 113–121.CrossRefGoogle Scholar
  230. Rinard, G. A., Quine, R. W., Eaton, S. S., and Eaton, G. R. (2002e) Frequency Dependence of EPR Signal Intensity, 248 MHz to 1.4 GHz, J. Magn. Reson. 154, 80–84.CrossRefGoogle Scholar
  231. Rinard, G. A., Quine, R. W., Eaton, S. S., and Eaton, G. R. (2003). Frequency Dependence of EPR Sensitivity, in Biol. Magn. Reson., L. J. Berliner, ed., this volume..Google Scholar
  232. Robitaille, P.-M. L., Abduljalil, A. M., Kangarlu, A., Zhang, X., Yu. Y., Burgess, R., Bair, S., Noa, P., Yang, L., Zhu, H., Palmer, B., Jiang, Z., Chakeres, D. M., and Spigos, D. (1998). Human magnetic resonance imaging at 8 T, NMR Biomed. 11, 263–265.PubMedCrossRefGoogle Scholar
  233. Robitaille, P.-M. L., Kangarlu, A., and Abduljalil, A. M. (1999). RF Penetration in Ultra High Field MRI: Challenges in Visualizing Details Within the Center of the Human Brain. J. Comp. Assist. Tomog. 23, 845–849.CrossRefGoogle Scholar
  234. Romanelli, M., Kurshev, V., and Kevan, L. (1994). Comparative Analysis of Pulsed Electron Spin Resonance Spectrometers at X-Band and S-Band, Appl. Magn. Reson. 7, 427–441.CrossRefGoogle Scholar
  235. Rothenberger, K. S., Nilges, M. J., Altman, T. E., Glab, K., Belford, R. L., Froncisz, W., and Hyde, J. S. (1986). L-Band Parallel Mode EPR. Measurement of Quadrupole Coupling Through Direct Observation of Secondary Transitions, Chem. Phys. Lett. 124, 295–298CrossRefGoogle Scholar
  236. Rubinson, K. A., Koscielniak, J., and Berliner, L. J. (1995). Modified, Short-Circuited Coaxial-Line Resonators for CW-EPR. J. Magn. Reson. A 111, 91–93.CrossRefGoogle Scholar
  237. Rubinson, K., Cook, J. A., Mitchell, J. B., Murugesan, R., Krishna, M. C, and Subramanian, S. (1998). FT-EPR with a nonresonant probe: use of a truncated coaxial line, J. Magn. Reson. 132, 255–259.PubMedCrossRefGoogle Scholar
  238. Rubinson, K. A. (2000). Resonators for Low-Field in Vivo EPR, Biol. Magn. Reson. 18, Berliner, L. J., ed., ch. 5, in press.Google Scholar
  239. Sakamoto, Y., Hirata, H., and Ono, M. (1995) Design of a Multicoupled Loop-Gap Resonator for Pulsed Electron Paramagnetic Resonance Measurements. IEEE Trans. Microwave Theory Techniques 43, 1840–1847.Google Scholar
  240. Sato, T., Oikawa, K., Ohya-Nishiguchi, H., and Kamada, H. (1997). Development of an L- band electron spin resonance/proton nuclear magnetic resonance imaging instrument, Rev. Sci. Instrum. 68, 2076–2081.CrossRefGoogle Scholar
  241. Sato, T., Yokoyama, H., Ohya, H., and Kamada, H. (2000). Development and evaluation of an electrically detected magnetic resonance spectrometer operating at 900 MHz. Rev. Sci. Instrum. 71, 486–493.CrossRefGoogle Scholar
  242. Sato, T., Yokoyama, H., Ohya, H., and Kamada, H. (2002) An active resonator system for CW-ESR measurement operating at 700 MHz. J. Magn. Reson. 159, 161–166.CrossRefGoogle Scholar
  243. Schmidt, J. (1972). Electron spin echoes in photo-excited triplet states of organic molecules in zero magnetic field, Chem. Phys. Lett. 14, 411–414.CrossRefGoogle Scholar
  244. Schneider, H. J., and Dullenkopf, P. (1977). Slotted tube resonator: A new NMR probe head at high observing frequencies, Rev. Sci. Instrum. 48, 68–73.CrossRefGoogle Scholar
  245. Sciandrone, M., Placidi, G., Testa, L., and Sotgiu, A. (2000). Compact low field magnetic resonance imaging magnet: Design and optimization. Rev. Sci. Instrum. 71, 1534–1538.CrossRefGoogle Scholar
  246. Shing, Y. H., and Buckmaster, H. A. (1976). Anomalous Splitting of the Ground State of Gadolinium Ion in Lanthanum Ethyl Sulfate. J. Magn. Reson. 21, 295–309.Google Scholar
  247. Singer, J. R. (1962). Exchange Narrowed ESR Absorption Lines at Low and Intermediate Frequencies, in Paramagnetic Resonance: Proceedings of the First International Conference held in Jerusalem, July 16–24, 1962, W. Low, ed., Academic Press, N.Y., Vol. II, pp. 16–24.Google Scholar
  248. Smith, C. M., and Stevens, A. D. (1994). Reconstruction of images from radiofrequency electron paramagnetic resonance spectra, Brit. J. Radiol. 67, 1186–1195.PubMedCrossRefGoogle Scholar
  249. Sotgiu, A. (1985). Resonator Design for in Vivo ESR Spectroscopy, J. Magn. Reson. 65, 206–214.Google Scholar
  250. Sotgiu, A. (1986). Fields and gradients in multipolar magnets. J. Appl. Phys. 59, 689–693.CrossRefGoogle Scholar
  251. Sotgiu, A., and Gualtieri, G., (1985). Cavity Resonator for in vivo ESR spectroscopy, J. Phys. E: Sci. Instrum. 18, 899–901.CrossRefGoogle Scholar
  252. Sotgiu, A., Fujii, H., and Gualtieri, G. (1987a). Torroidal surface coil for topical ESR spectroscopy, J. Phys. E: Sci. Instrum. 20, 1428–429.CrossRefGoogle Scholar
  253. Sotgiu, A., Gualtieri, G., and Momo, F. (1987b).Generation of axial fields of arbitrary profile by air core coils, J. Phys. E: Sci. Instrum. 20, 1574–1576.Google Scholar
  254. Sotgiu, A., Alecci, M., Brivati, J., Placidi, G., and Testa, L. (1995). New experimental modalities of low frequency electron paramagnetic resonance imaging. In Bioradicals Detected by ESR Spectroscopy, Ohya-Nishiguchi, H., and Packer, L., eds., BirkhSuser Verlag, Basel, Switzerland, pp. 69–92.CrossRefGoogle Scholar
  255. Stevens, A. D. (1994). A moderately sized resonator/surface coil for radiofrequency electron paramagnetic resonance spectroscopy and imaging in vivo, Brit. J. Radiol. 67, 1243–1248.CrossRefGoogle Scholar
  256. Stevens, A. D., and Brivati, J. A. (1994). A 250 MHz EPR spectrometer with rapid phase-error correction for imaging large biological specimens, Meas. Sci. Technol. 5, 793–796.CrossRefGoogle Scholar
  257. Strandberg, M. W. P., Tinkham, M., Solt, I. H. Jr., and Davis, C. F. Jr. (1956). Recording Magnetic-Resonance Spectrometer, Rev. Sci. Instrum. 27, 596–605.CrossRefGoogle Scholar
  258. Subramanian, S., Murugesan, R., Devasahayan, N., Cook, J. A., Afeworki, M., Pohida, T., Tschudin, R. T., Mitchell, J. B., and Krishna, M. C. (1999). High-speed data acquisition system and receiver configurations for time-domain radiofrequency electron paramagnetic resonance spectroscopy and imaging, J. Magn. Reson. 137, 379–188.PubMedCrossRefGoogle Scholar
  259. Subramanian, S., Mitchell, J. B., and Krishna, M. C. (2000). Time-Domain Radio Frequency EPR Imaging, Biol. Magn. Reson. 18, Berliner, L. J., ed., ch. 2., in press.Google Scholar
  260. Subramanian, S., Devasahayam, N., Murugesan, R., Yamada, K., Cook, J., Taube, A., Mitchell, J. B., Lohman, J. A. B., and Krishna, M. C. (2002) Single-Point (Constant-Time) Imaging in Radiofrequency Fourier Transform Electron Paramagnetic Resonance. Magn. Reson. Med. 48, 370–379.PubMedCrossRefGoogle Scholar
  261. Swartz, H. M., and Halpern, H. (1998). EPR studies of living animals and related model systems (in vivo EPR), Biol. Magn. Reson. 14, 367–404.CrossRefGoogle Scholar
  262. Symons, M. C. R. (1995). Whole body electron spin resonance imaging spectrometer, in Bioradicals Detected by ESR Spectroscopy, H. Ohya-Nishiguchi and L. Packer, eds., Birkhauser Verlag, Basel, 93–102.CrossRefGoogle Scholar
  263. Tada, M., Yokoyama, H., Toyoda, Y., Ohya, H., Ito, T., and Ogata, T. (2000) Surface-Coil- Type Resonators for in Vivo Temporal ESR Measurements in Different Organs of Nitroxide-Treated Rats. Appl. Magn. Reson. 18, 575–582.CrossRefGoogle Scholar
  264. Terakado, O., Kamiyama, T., and Kakamura, Y. (1998). Low-field EPR study of the metal-non-metal transition in sodium-ammonia solutions, J. Chem. Soc, Faraday Trans. 94, 867–869.CrossRefGoogle Scholar
  265. Treiguts, E., and Cugunov, L. (1995). Frequency dependence of Mn2+ ion electron spin resonance spectra in the ultra-high-frequency band, J. Phys. Condens. Matter 7, 6789– 6795.CrossRefGoogle Scholar
  266. Utsumi, H., Tatebe, T., and Hamada, A. (1992). ESR Spectra of V02+ and Mn2+ in Aqueous Solution at L-band, Chem. Lett. 277–280.Google Scholar
  267. Van Gerven, L., Van Itterbeek, A., and De Laet, L. (1962). Low Field EPR Measurements in DPPH at Low Temperatures in Paramagnetic Resonance: Proceedings of the First International Conference held in Jerusalem, July 16–24, 1962, W. Low, ed., Academic Press, N.Y., vol. II, pp. 905–918.Google Scholar
  268. Verlinden, R., Grobet, P., and Van Gerven, L. (1974) Low Temperature Magnetic Properties of DPPH.(C6D6)X, Studied by NMR and EPR. Chem. Phys. Lett. 27, 535–539.CrossRefGoogle Scholar
  269. Weiss, P. R., Whitmer, C. A., Torrey, H. C, Hsiang, J-S., (1947). Magnetic Resonance Absorption of Chromic Ammonium Alum, Phys. Rev. 72, 975.CrossRefGoogle Scholar
  270. Weiss, P. R. (1948). The Microwave Spectroscopy of Paramagnetic Salts: the Spectrum of Chromic Alum, Phys. Rev. 73, 470–476.CrossRefGoogle Scholar
  271. Wheatley, J., and Halliday, D. (1949). Paramagnetic Absorption in Single Crystals of Copper Sulfate Pentahydrate, Phys. Rev. 75, 1412–1415.CrossRefGoogle Scholar
  272. Wilier, M., Forrer, J., Keller, J., Van Doorslaer, S., Schweiger, A., Schuhmann, R., and Weiland, T. (2000). S-band (2–4 GHz) pulse electron paramagnetic resonance spectrometer: Construction, probe head design, and performance, Rev. Sci. Instrum. 71, 2807–2817.CrossRefGoogle Scholar
  273. Yamada, K., Murugesan, R., Devasahayam, N., Cook, J. A., Mitchell, J. B., Subramanian, S., and Krishna, M. C. (2002) Evaluation and Comparison of Pulsed and Continuous Wave Radiofrequency Electron Paramagnetic Resonance Techniques for in Vivo Detection and Imagine of Free Radicals. J. Magn. Reson. 154, 287–297.PubMedCrossRefGoogle Scholar
  274. Yokoyama, H., Ogata, T., Tsuchihashi, N., Hiramatsu, M., and Mori, N. (1996). A Spatiotemporal Study on the Distribution of Intraperitoneally Injected Nitroxide Radical in the Rat Head Using an in Vivo ESR Imaging System, Magn. Reson. Imag. 14, 559–563.CrossRefGoogle Scholar
  275. Yokoyama, H., Sato, T., Tsuchihashi, N., Ogata, T., Ohya-Nishiguchi, H., and Kamada, H. (1997a). A CT Using Longitudinally Detected ESR (LODESR-CT) of Intraperitoneally Injected Nitroxide Radical in a Rat’s Head, Magn. Reson. Imag. 15, 701–708.CrossRefGoogle Scholar
  276. Yokoyama, H., Sato, T., Ogata, T., Ohya-Nishiguchi, H., and Kamada, H. (1997b). In Vivo Longitudinally Detected ESR Measurements at Microwave Regions of 300, 700, and 900 MHz in Rats Treated with a Nitroxide radical, J. Magn. Reson. 129, 201–206.CrossRefGoogle Scholar
  277. Yokoyama, H., Sato, T., Ohya-Nishiguchi, H., and Kamada, H. (1998). In vivo 300 MHz longitudinally detected ESR-CT imaging in the head of a rat treated with a nitroxide radical, Magn. Reson. Mater. Phys. Biol. Med. 7, 63–68.Google Scholar
  278. Yokoyama, H., Sato, T., Fukui, K., Ohya-Nishiguchi, H., Kamada, H. (1999). High-power Low-Q RF ESR Resonator for Pulse Techniques. Chem. Lett. 919–920.Google Scholar
  279. Yokoyama, H., Sato, T., Ogata, T., Ohya, H., and Kamada, H. (2001) Automatic Coupling Control of a Loop-Gap Resonator by a Variable Capacitor Attached Coupling Coil for EPR Measurements at 650 MHz. J. Magn. Reson. 149 29–35.CrossRefGoogle Scholar
  280. Yoshioka, T. (1977). Magnetic Properties and Low-Field ESR of Organic Free Radicals, Monochloroporphyrexide and Porphyrexide, Bull. Chem. Soc. Japan 50, 1372–1378.CrossRefGoogle Scholar
  281. Youngdee, W., Planinsic, G., and Lurie, D. J. (2001) Optimization of field-cycled PEDRI for in vivo imaging of free radicals. Phys. Biol. Med. 46, 2531–2544.CrossRefGoogle Scholar
  282. Youngdee, W., Lurie, D. J., and Foster, M. A. (2002) Rapid imaging of free radicals in vivo using hybrid FISP field-cycled PEDRI. Phys. Med. Biol. 47, 1091–1100.PubMedCrossRefGoogle Scholar
  283. Yuan, H., Collins, M. L. P., and Antholine, W. E (1999). Type 2 Cu2+ in pMMO from Methylomicrobium album BG8, Biophys. J. 76, 2223–2229.PubMedCrossRefGoogle Scholar
  284. Zavoisky, E. (1945). Spin Magnetic Resonance in Paramagnetic Substances, J. Phys. (USSR) 9, 245.Google Scholar
  285. Zavoisky, E. (1946). Spin Magnetic Resonance in the Deci-Meter-Wave Region, J. Phys. (USSR) 10,197–198.Google Scholar
  286. Zweier, J. L., Kuppusamy, P. (1988). Electron paramagnetic resonance measurements of free radicals in the intact beating heart: A technique for detection and characterization of free radicals in whole biological tissues, Proc. Natl. Acad. Sci. (US) 85, 5703–5707.CrossRefGoogle Scholar
  287. Zweier, J. L., and Kuppusamy, P. (1994). EPR Spectroscopy of Free Radicals in the Perfused Heart, Curr. Topics Biophys. 18, 14–25.Google Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Gareth R. Eaton
    • 1
  • Sandra S. Eaton
    • 1
  1. 1.Department of Chemistry and BiochemistryUniversity of DenverDenver

Personalised recommendations