Skip to main content

Digital Radio Systems

  • Chapter
Digital Transmission Systems
  • 1002 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Henry R. Reed and Carl M. Rusell, Ultra High Frequency Propagation (London: Chapman & Hall, 1966).

    Google Scholar 

  2. Lee, Wm. C. Y., Mobile Communications Design Fundamentals, John Wiley & Sons, New York, 1993.

    Book  Google Scholar 

  3. Kenneth Bullington, “Radio Propagation Fundamentals,” Bell System Technical Journal 36(May 1957):593–626.

    Google Scholar 

  4. Wait, J. R., “Diffraction and Scattering of the Electromagnetic Groundwave by Terrain Features,” Radio Sci., Vol. 3, No. 10, October 1968, pp. 995–1003.

    Google Scholar 

  5. Luebbers, R. J., “Propagation Prediction for Hilly Terrain Using GTD Wedge Diffraction,” IEEE Trans. Ant. and Propag., Vol. AP-32, No. 9, Sept. 1984, pp. 70–76.

    Article  Google Scholar 

  6. Wait, J. R., and K. P. Spies, “Radio Propagation Over a Cylindrical Hill Including the Effect of a Surmounted Obstacle,” IEEE Trans. Ant. and Prop., Vol. AP-16, No. 6, Nov. 1968, pp. 700–705.

    Article  Google Scholar 

  7. K. Bullington, “Radio Propagation at Frequencies Above 30 Megacycles,” Proc. IRE, October 1957, pp. 1122–1136.

    Google Scholar 

  8. J. Epstein and D. W. Peterson, ’An Experimental Study of Wave Propagation at 850 Mc,” Proc. IRE, Vol. 41, No. 5, May 1953, pp. 595–611.

    Article  Google Scholar 

  9. J. Deygout, “Multiple Knife-Edge Diffraction of Microwaves,” IEEE Trans. On Antennas and Propagation, Vol. 14, No. 4, 1966, pp. 480–489.

    Article  Google Scholar 

  10. ITU-R Rec. P.530–9, “Propagation Data and Prediction Methods Required for the Deisgn of Terrestrial Line-of-Sight Systems,” 2001.

    Google Scholar 

  11. TIA/EIA Telecommunications Systems Bulletin TSB88-A, Wireless Communications System—Performance in Noise and Interference Limited Situations— Recommended Methods for Technology-Independent Methods for the Modeling, Simulation and Verification, June, 1999.

    Google Scholar 

  12. J. H. Van Vleck, Radiation Lab. Report 664, MIT, 1945.

    Google Scholar 

  13. Reports of the ITU-R, 1990, Annex to Vol. V, Propagation in Non-Ionized Media (Geneva: ITU, 1990).

    Google Scholar 

  14. S. H. Lin, “Nationwide Long-Term Rain Rate Statistics and Empirical Calculation of II-GHt Microwave Rain Attenuation,” Bell System Technical Journal 56(November 1977):1581–1604.

    Google Scholar 

  15. D. R. Smith, “A Computer-Aided Design Methodology for Digital Line-of-Sight Links,” 1990 International Conference on Communications, pp. 59–65.

    Google Scholar 

  16. Engineering Considerations for Microwave Communications Systems (San Carlos, CA: GTE Lenkurt Inc., 1981).

    Google Scholar 

  17. M. Schwartz, W. R. Bennett, and S. Stein, Communication Systems and Techniques (New York: McCraw-Hill, 1966).

    Google Scholar 

  18. D. M. Black and D. O. Reudink, “Some Characteristics of Mobile Radio Propagation at 836 MHZ in the Philadelphia Area,” IEEE Transactions on Vehicular Technology, VT-21, No. 2, May 1972, pp. 45–51.

    Article  Google Scholar 

  19. D. C. Cox, R. R. Murray, and A. W. Norris, “800 MHz Attenuation Measured in and around Suburban Houses,” AT&T Bell Laboratories Technical journal, vol. 63, No. 6, July-August 1984.

    Google Scholar 

  20. Jakes, W. ed., Microwave Mobile Communications, IEEE Press, NJ, 1974.

    Google Scholar 

  21. Owen, D. B. Handbook of Statistical Tables, Reading, MA: Addison-Wesley, 1962.

    MATH  Google Scholar 

  22. Longley, A. G. and P. L. Rice, Boulder, Prediction of Tropospheric Radio Transmission Loss Over Irregular Terrain, Institutes for Environmental Research Rep. ERL-79-ITS-67, Boulder, CO: U.S. Department of Commerce, Environmental Science Services Administration, 1968.

    Google Scholar 

  23. U.S. Department of Commerce NTIA/ITS Institute for Telecommunications Sciences Irregular Terrain Model (ITM) (Longley-Rice), http://elbert.its.bldrdoc.gov/itm.html

  24. Okumura, Y. et al., “Field Strength and Its Variability in VHF and UHF Land Mobile Radio Service,” Rev. Elect. Comm. Lab., Vol. 16, Nos. 9-10, Sept.-Oct., 1968, pp. 825–873.

    Google Scholar 

  25. Hata, M., “Empirical formula for propagation Loss in Land Mobile Radio Services,” IEEE Trans. Veh. Tech., Vol. 29, No. 3, August 1980, pp. 317–325.

    Article  MathSciNet  Google Scholar 

  26. COST 231 Final Report, Digital Mobile Radio Towards Future Generation Systems, European Commission, 1999.

    Google Scholar 

  27. W. T. Barnett, “Multipath Propagation at 4, 6, and 11 GHz,” Bell System Technical Journal S1(February 1972):321–361.

    Google Scholar 

  28. L. C. Greenstein and B. A. Czekaj, “A Polynomial Model for Multipath Fading Channel Responses,” Bell System Technical Journal 59(September 1980):1197–1205.

    Google Scholar 

  29. W. D. Rummler, “A New Selective Fading Model: Application to Propagation Data,” Bell System Technical Journal 58(May/June 1979):1037–1071.

    MATH  Google Scholar 

  30. W. C. Jakes, Jr., “An Approximate Method to Estimate an Upper Bound on the Effect of Multipath Delay Distortion on Digital Transmission,” 1978 International Conference on Communications, pp. 47.1.1–47.1.5.

    Google Scholar 

  31. M. Emshwiller, “Characterization of the Performance of PSK Digital Radio Transmission in the Presence of Multipath Fading,” 1978 International Conference on Communications, pp. 47.3.1–47.3.6.

    Google Scholar 

  32. C. W. Lundgren and W. D. Rummler, “Digital Radio Outage Due to Selective Fading-Observation vs. Prediction from Laboratory Simulation,” Bell System Technical Journal 58(May/June 1979):1073–1100.

    Google Scholar 

  33. ITU-R Rec. F.1093, “Effects of Multipath Propagation on the Design and Operation of Line-of-Sight Digital Radio Relay Systems,” 1997.

    Google Scholar 

  34. D. R. Smith and J. J. Cormack, “Improvement in Digital Radio Due to Space Diversity and Adaptive Equalization,” 1984 Global Telecommunications Conference, pp. 45.6.1–45.6.6.

    Google Scholar 

  35. T. S. Giuffrida, “Measurements of the Effects of Propagation on Digital Radio Systems Equipped with Space Diversity and Adaptive Equalization,” 1979 International Conference on Communications, pp. 48.1.1–48.1.6.

    Google Scholar 

  36. Yacoub, M. D., Foundations of Mobile Radio Engineering, CRC Press, Boca Raton, FL. 1993.

    Google Scholar 

  37. A. Vigants, “Space Diversity Performance as a Function of Antenna Separation,” IEEE Trans. on Comm. Tech., vol. COM-16, no. 6, December 1968, pp. 831–836.

    Article  Google Scholar 

  38. A. Vigants and M. V. Pursley, “Transmission Unavailability of Frequency Diversity Protected Microwave FM Radio Systems Caused by Multipath Fading,” Bell System Technical Journal 58(October 1979):1779–1796.

    Google Scholar 

  39. Hansen, R. C, Phased Array Antennas, John Wiley & Sons, 1998.

    Google Scholar 

  40. Federal Communications Commission Rules and Regulations, Part 101, Fixed Microwave Services, 1 August 1996.

    Google Scholar 

  41. TIA/EIA Telecommunications Systems Bulletin, TSB10-F, “Interference Criteria for Microwave Systems”, June 1994.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Smith, D.R. (2004). Digital Radio Systems. In: Digital Transmission Systems. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8933-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8933-8_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4726-2

  • Online ISBN: 978-1-4419-8933-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics