Skip to main content

Design Principles for the Distributed Control of Modular Self-Reconfigurable Robots

  • Chapter
Collectives and the Design of Complex Systems
  • 324 Accesses

Summary

Modular self-reconfigurable (MSR) robots consist of many identical modules that can move, attach, and detach relative to each other, thereby changing the robot's overall shape. This chapter presents general design techniques for the distributed multiagent control algorithms of MSR robots, based on local rules. These techniques are illustrated with simulation experiments on two types of MSR robots: Proteo and TeleCube.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Abelson et al. Amorphous computing. Technical Report 1665, MIT Artificial Intelligence Lab, August 1999.

    Google Scholar 

  2. K. F. Bohringer et al. Computational methods for design and control of MEMS micromanipulator arrays. Computational Science and Engineering, 4(1): 17–29, January-March 1997.

    Article  Google Scholar 

  3. H. Bojinov, A. Casal, and T. Hogg. Multiagent control of modular self-reconfigurable robots. Artificial Intelligence, 142:99–120, 2002. Preprint available at Los Alamos archive cs.RO/0006030.

    Article  MathSciNet  MATH  Google Scholar 

  4. N. Bowden, A. Terfort, J. Carbeck, and G. M. Whitesides. Self-assembly of mesoscale objects into ordered two-dimensional arrays. Science, 276:233–5, 1997.

    Article  Google Scholar 

  5. P. Caloud et al. Indoor automation with many mobile robots. In Proc. of the Intl. Workshop on Intelligent Robots and Systems. IEEE, 1990.

    Google Scholar 

  6. A. Casal and M. Yim. Self-reconfiguration planning for a class of modular robots. In SPIE Symposium on Intelligent Systems and Advanced Manufacturing: Sensor Fusion and Decentralized Control in Robotic Systems, pages 246–57, 1999.

    Google Scholar 

  7. A. Castano, W. M. Shen, and P. Will. CONRO: Towards miniature self-sufficient metamorphic robots. Autonomous Robots, 8:309–24, 2000.

    Article  Google Scholar 

  8. M. E. Csete and J. C. Doyle. Reverse engineering of biological complexity. Science, 295:1664–9, 2002.

    Article  Google Scholar 

  9. R. A. Freitas, Jr. Nanomedicine, volume 1. Landes Bioscience, Georgetown, TX, 1999. Available at www.nanomedicine.com

    Google Scholar 

  10. T. Fukuda and Y. Kawauchi. Cellular robotic system (cebot) as one of the realizations of self-organizing intelligent universal manipulator. In Proc. of the IEEE Conference on Robotics and Automation, pages 662–7, 1990.

    Google Scholar 

  11. S. Hackwood and G. Beni. Self-organization of sensors for swarm intelligence. In Proc. of the Conference on Robotics and Automation (ICRA92). IEEE, 1992.

    Google Scholar 

  12. J. Storrs Hall. Utility fog: The stuff that dreams are made of. In B. C. Crandall, editor, Nanotechnology, pages 161–84. MIT Press, Cambridge, MA, 1996.

    Google Scholar 

  13. F. Harary and E. M. Palmer. Graphical Enumeration. Academic Press, New York, 1973.

    MATH  Google Scholar 

  14. B. Hasslacher and M. W. Tilden. Living machines. In L. Steels, editor, Robotics and Autonomous Systems: The Biology and Technology of Intelligent Autonomous Agents. Elsivier, 1995.

    Google Scholar 

  15. T. Hogg and B. A. Huberman. Achieving global stability through local controls. In Proc. of the 6th IEEE Symposium on Intelligent Control (ISIC 91), pages 67–72, 1991.

    Google Scholar 

  16. K. Hosokawa et al. Self-organizing collective robots with morphogenesis in a vertical plane. In Proc. of the Conference on Robotics and Automation (ICRA98). IEEE, 1998.

    Google Scholar 

  17. B. A. Huberman and N. S. Glance. Evolutionary games and computer simulations. Proceedings of the National Academy of Science USA, 90:7716–8, August 1993.

    Article  MATH  Google Scholar 

  18. H. Kitano, editor. Robocup-97: Robot Soccer World Cup I, volume 1395 of Lecture Notes in Computer Science. Springer, Berlin, 1998.

    Google Scholar 

  19. K. Kotay, D. Rus, M. Vona, and C. McGray. The self-reconfiguring robotic molecule: Design and control algorithms. Algorithmic Foundations of Robotics, 1998.

    Google Scholar 

  20. J. Kubica, A. Casal, and T. Hogg. Agent-based control for object manipulation with modular self-reconfigurable robots. In Proc. of the 17th Intl. Joint Conf. on Artificial Intelligence (IJCAI-2001), pages 1344–9, San Francisco, 2001. Morgan Kaufmann.

    Google Scholar 

  21. J. Kubica, A. Casal, and T. Hogg. Complex behaviors from local rules in modular self-reconfigurable robots. In Proc. of IEEE Conference on Robotics and Automation (ICRA2001), 2001.

    Google Scholar 

  22. J. Kubica and E. Rieffel. Creating a smarter membrane: Automatic code generation for modular self-reconfigurable robots. In Proc. of ICRA-2002, 2002.

    Google Scholar 

  23. K. Lerman et al. A macroscopic analytical model of collaboration in distributed robotic systems. Artificial Life, 7:375–93, 2001.

    Article  Google Scholar 

  24. W. G. Macready, A. G. Siapas, and S. A. Kauffman. Criticality and parallelism in combinatorial optimization. Science, 271:56–8, 1996.

    Article  Google Scholar 

  25. R. J. Metzger and M. A. Krasnow. Genetic control of branching morphogenesis. Science, 284:1635–9, 1999.

    Article  Google Scholar 

  26. S. Murata et al. A 3-D self-reconfigurable structure. In Proc. of the Conference on Robotics and Automation (ICRA98), p. 432. IEEE, 1998.

    Google Scholar 

  27. S. Murata, H. Kurokawa, and S. Kokaji. Self-assembling machine. In Proc. of the Conference on Robotics and Automation (ICRA94), pp. 441–8, Los Alamitos, CA, 1994. IEEE.

    Chapter  Google Scholar 

  28. A. Pamecha, I. Ebert-Uphoff, and G. S. Chirikjian. Useful metrics for modular robot motion planning. IEEE Transactions on Robotics and Automation, 13:531–45, 1997.

    Article  Google Scholar 

  29. D. Rus and M. Vona. Self-reconfiguration planning with compressible unit modules. In Proc. of the Conference on Robotics and Automation (ICRA99). IEEE, 1999.

    Google Scholar 

  30. J. R. Rush, A. P. Fraser, and D. P. Barnes. Evolving cooperation in autonomous robotic systems. In Proceedings of the IEEE International Conference on Control, March 21-24 1994.

    Google Scholar 

  31. B. Salemi, W.-M. Shen, and P. Will. Hormone controlled metamorphic robots. In Proc. of the Intl. Conf. on Robotics and Automation (ICRA2001), 2001.

    Google Scholar 

  32. A. Schrijver. Theory of Linear and Integer Programming. John Wiley, 1987.

    Google Scholar 

  33. L. Steels. Cooperation between distributed agents through self-organization. Journal on Robotics and Autonomous Systems, 1989.

    Google Scholar 

  34. D. W. Thompson. On Growth and Form. Cambridge University Press, Cambridge, 1992.

    Google Scholar 

  35. J. von Neumann. Probabilistic logics and the synthesis of reliable organisms from unreliable components. In C. E. Shannon and J. McCarthy, editors, Automata Studies, volume 34 of Ann. of Math. Stud., pages 43–98. Princeton University Press, 1956.

    Google Scholar 

  36. D. H. Wolpert and K. Turner. Collective intelligence, data routing and braess' paradox. J. of Artificial Intelligence Research, 16:359–87, 2002.

    Article  MATH  Google Scholar 

  37. M. Yim. Locomotion with a Unit-Modular Reconfigurable Robot. Ph.D. thesis, Stanford University, 1994.

    Google Scholar 

  38. M. Yim, Ying Zhang, John Lamping, and Eric Mao. Distributed control for 3D metamorphosis. Autonomous Robots, 10:41–56, 2001.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Casal, A., Hogg, T. (2004). Design Principles for the Distributed Control of Modular Self-Reconfigurable Robots. In: Tumer, K., Wolpert, D. (eds) Collectives and the Design of Complex Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-8909-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8909-3_9

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-6472-9

  • Online ISBN: 978-1-4419-8909-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics